1
|
Wu Z, Herok C, Friedrich A, Engels B, Marder TB, Hudson ZM. Impurities in Arylboronic Esters Induce Persistent Afterglow. J Am Chem Soc 2024; 146:31507-31517. [PMID: 39499625 DOI: 10.1021/jacs.4c08329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Several recent reports suggest that arylboronic esters can exhibit room temperature phosphorescence (RTP), an optical property that is desirable for applications in security printing, oxygen sensing, and bioimaging. These findings challenged the fundamental notion that heavy elements or changes in orbital symmetry were required for intersystem crossing to occur in organic compounds. As we had not observed long afterglow in the many arylboronic esters we had synthesized over many years, we suspected that the RTP observed in these systems had a simpler explanation: the materials reported were impure. Herein, we synthesized 12 arylboronic esters that were previously reported to show RTP, and carefully purified them by column chromatography, recrystallization, and sublimation. We re-examined their photophysical properties alongside single-crystal X-ray diffraction analysis and detailed theoretical studies. While 4 of the 12 compounds showed long afterglows as crude products, none of them showed persistent RTP after careful purification. We also successfully isolated the impurity 4-amino-3,5-bis(pinacolatoboryl)benzonitrile (2), identifying it as the impurity responsible for inducing delayed fluorescence in 3,5-bis(pinacolatoboryl)benzonitrile (1). Doping 1 with 1.0 mol % 2 led to a persistent afterglow with a lifetime of 67 ms, which is mediated by a dimer charge transfer state. Our findings call for a re-examination of previous studies reporting RTP from arylboronic esters, highlight the importance of careful purification in photophysical research, and provide a practical strategy for designing organic materials with a long afterglow.
Collapse
Affiliation(s)
- Zhu Wu
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Christoph Herok
- Institute of Physical and Theoretical Chemistry, Julius-Maximilians-Universität Würzburg, Emil-Fischer-Straße 42, 97074 Würzburg, Germany
| | - Alexandra Friedrich
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Bernd Engels
- Institute of Physical and Theoretical Chemistry, Julius-Maximilians-Universität Würzburg, Emil-Fischer-Straße 42, 97074 Würzburg, Germany
| | - Todd B Marder
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Zachary M Hudson
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
2
|
Guo Z, Wang Y, Heitmüller J, Sieck C, Prüfer A, Ralle P, Steffen A, Henke P, Ogilby PR, Marder TB, Ma X, Brixner T. Ultrafast photophysics of para-substituted 2,5-bis(arylethynyl) rhodacyclopentadienes: thermally activated intersystem crossing. Chem Sci 2024:d4sc04306e. [PMID: 39176244 PMCID: PMC11337014 DOI: 10.1039/d4sc04306e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 08/14/2024] [Indexed: 08/24/2024] Open
Abstract
2,5-Bis(phenylethynyl) rhodacyclopentadienes (RCPDs), as a type of Rh(iii) complex, exhibit unusually intense fluorescence and slow intersystem crossing (ISC) due to weak metal-ligand interactions. However, details on their ultrafast photophysics and ISC dynamics are limited. In this work, electronic relaxation upon photoexcitation of two substituted RCPDs with two -CO2Me (A-RC-A) or -NMe2/-CO2Me (D-RC-A) end groups are comprehensively investigated using femtosecond transient absorption spectroscopy and theoretical analysis. Upon ultraviolet and visible excitation, dephasing of vibrational coherence, charge transfer, conformation relaxation, and ISC are observed experimentally. By calculating the spin-orbit coupling, reorganization energy, and adiabatic energy gap of plausible ISC channels, semi-classical Marcus theory revealed the dominance of thermally activated ISC (S1 → T2) for both D-RC-A and A-RC-A, while S1 → T1 channels are largely blocked due to high ISC barriers. With weak spin-orbit coupling, such differences in plausible ISC channels are predominately tuned by energetic parameters. Singlet oxygen sensitization studies of A-RC-A provide additional insight into the excited-state behavior of this complex.
Collapse
Affiliation(s)
- Zilong Guo
- Institute of Molecular Plus, Tianjin University Tianjin 300072 P. R. China
| | - Yaxin Wang
- Institute of Molecular Plus, Tianjin University Tianjin 300072 P. R. China
| | - Julia Heitmüller
- Institut für Physikalische und Theoretische Chemie, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Carolin Sieck
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Andreas Prüfer
- Department of Chemistry and Chemical Biology, TU Dortmund University Otto-Hahn-Str. 6 44227 Dortmund Germany
| | - Philipp Ralle
- Department of Chemistry and Chemical Biology, TU Dortmund University Otto-Hahn-Str. 6 44227 Dortmund Germany
| | - Andreas Steffen
- Department of Chemistry and Chemical Biology, TU Dortmund University Otto-Hahn-Str. 6 44227 Dortmund Germany
| | - Petr Henke
- Department of Chemistry, Aarhus University Aarhus DK-8000 Denmark
- Faculty of Science, Charles University Hlavova 2030 128 43 Prague 2 Czech Republic
| | - Peter R Ogilby
- Department of Chemistry, Aarhus University Aarhus DK-8000 Denmark
| | - Todd B Marder
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institute for Sustainable Chemistry and Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Xiaonan Ma
- Institute of Molecular Plus, Tianjin University Tianjin 300072 P. R. China
- Institut für Physikalische und Theoretische Chemie, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Tobias Brixner
- Institut für Physikalische und Theoretische Chemie, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institute for Sustainable Chemistry and Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| |
Collapse
|
3
|
Adachi Y, Kurihara M, Yamada K, Arai F, Hattori Y, Yamana K, Kawasaki R, Ohshita J. Insights into mechanistic interpretation of crystalline-state reddish phosphorescence of non-planar π-conjugated organoboron compounds. Chem Sci 2024; 15:8127-8136. [PMID: 38817577 PMCID: PMC11134383 DOI: 10.1039/d4sc01184h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/20/2024] [Indexed: 06/01/2024] Open
Abstract
Metal-free room-temperature phosphorescent (RTP) materials are attracting attention in such applications as organic light-emitting diodes and bioimaging. However, the chemical structures of RTP materials reported thus far are mostly predominantly based on π-conjugated systems incorporating heavy atoms such as bromine atoms or carbonyl groups, resulting in limited structural diversity. On the other hand, triarylboranes are known for their strong Lewis acidity and deep LUMO energy levels, but few studies have reported on their RTP properties. In this study, we discovered that compounds based on a tetracyclic structure containing boron, referred to as benzo[d]dithieno[b,f]borepins, exhibit strong solid-state reddish phosphorescence even in air. Quantum chemical calculations, including those for model compounds, revealed that the loss of planarity of the tetracyclic structure increases spin-orbit coupling matrix elements, thereby accelerating the intersystem crossing process. Moreover, single-crystal X-ray structural analysis and natural energy decomposition analysis suggested that the borepin compounds without bromine or oxygen atoms, unlike typical RTP materials, exhibit red-shifted phosphorescence in the crystalline state owing to structural relaxation in the T1 state. Additionally, the borepin compounds showed potential application as bioimaging dyes.
Collapse
Affiliation(s)
- Yohei Adachi
- Smart Innovation Program, Graduate School of Advanced Science and Engineering, Hiroshima University Higashi-Hiroshima 739-8527 Japan
| | - Maho Kurihara
- Smart Innovation Program, Graduate School of Advanced Science and Engineering, Hiroshima University Higashi-Hiroshima 739-8527 Japan
| | - Kohei Yamada
- Smart Innovation Program, Graduate School of Advanced Science and Engineering, Hiroshima University Higashi-Hiroshima 739-8527 Japan
| | - Fuka Arai
- Smart Innovation Program, Graduate School of Advanced Science and Engineering, Hiroshima University Higashi-Hiroshima 739-8527 Japan
| | - Yuto Hattori
- Smart Innovation Program, Graduate School of Advanced Science and Engineering, Hiroshima University Higashi-Hiroshima 739-8527 Japan
| | - Keita Yamana
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University Higashi-Hiroshima 739-8527 Japan
| | - Riku Kawasaki
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University Higashi-Hiroshima 739-8527 Japan
| | - Joji Ohshita
- Smart Innovation Program, Graduate School of Advanced Science and Engineering, Hiroshima University Higashi-Hiroshima 739-8527 Japan
- Division of Materials Model-Based Research, Digital Monozukuri (Manufacturing) Education and Research Center, Hiroshima University Higashi-Hiroshima Hiroshima 739-0046 Japan
| |
Collapse
|
4
|
Bozzi ÍAO, Machado LA, Diogo EBT, Delolo FG, Barros LOF, Graça GAP, Araujo MH, Martins FT, Pedrosa LF, da Luz LC, Moraes ES, Rodembusch FS, Guimarães JSF, Oliveira AG, Röttger SH, Werz DB, Souza CP, Fantuzzi F, Han J, Marder TB, Braunschweig H, da Silva Júnior EN. Electrochemical Diselenation of BODIPY Fluorophores for Bioimaging Applications and Sensitization of 1 O 2. Chemistry 2024; 30:e202303883. [PMID: 38085637 DOI: 10.1002/chem.202303883] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Indexed: 01/19/2024]
Abstract
We report a rapid, efficient, and scope-extensive approach for the late-stage electrochemical diselenation of BODIPYs. Photophysical analyses reveal red-shifted absorption - corroborated by TD-DFT and DLPNO-STEOM-CCSD computations - and color-tunable emission with large Stokes shifts in the selenium-containing derivatives compared to their precursors. In addition, due to the presence of the heavy Se atoms, competitive ISC generates triplet states which sensitize 1 O2 and display phosphorescence in PMMA films at RT and in a frozen glass matrix at 77 K. Importantly, the selenium-containing BODIPYs demonstrate the ability to selectively stain lipid droplets, exhibiting distinct fluorescence in both green and red channels. This work highlights the potential of electrochemistry as an efficient method for synthesizing unique emission-tunable fluorophores with broad-ranging applications in bioimaging and related fields.
Collapse
Affiliation(s)
- Ícaro A O Bozzi
- Instituto de Ciências Exatas, Departamento de Química, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Luana A Machado
- Instituto de Ciências Exatas, Departamento de Química, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
- Institute for Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Emilay B T Diogo
- Instituto de Ciências Exatas, Departamento de Química, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Fábio G Delolo
- Instituto de Ciências Exatas, Departamento de Química, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Luiza O F Barros
- Instituto de Ciências Exatas, Departamento de Química, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Gabriela A P Graça
- Instituto de Ciências Exatas, Departamento de Química, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Maria H Araujo
- Instituto de Ciências Exatas, Departamento de Química, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Felipe T Martins
- Instituto de Química, Universidade Federal de Goiás, Goiânia, 74690-900, Brazil
| | - Leandro F Pedrosa
- Instituto de Ciências Exatas, Departamento de Química, Universidade Federal Fluminense, Volta Redonda, RJ, 27213-145, Brazil
| | - Lilian C da Luz
- Instituto de Química, Universidade Federal do Rio Grande do Sul, Porto Alegre, 91501-970, RS, Brazil
| | - Emmanuel S Moraes
- Universidade Estadual de Campinas (Unicamp), Cidade Universitária, 13083970 -, Campinas, SP, Brazil
| | - Fabiano S Rodembusch
- Instituto de Química, Universidade Federal do Rio Grande do Sul, Porto Alegre, 91501-970, RS, Brazil
| | - João S F Guimarães
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - André G Oliveira
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Sebastian H Röttger
- DFG Cluster of Excellence livMatS @FIT and Albert-Ludwigs-Universität Freiburg, Institute of Organic Chemistry, Albertstraße 21, 79104, Freiburg (Breisgau), Germany
| | - Daniel B Werz
- DFG Cluster of Excellence livMatS @FIT and Albert-Ludwigs-Universität Freiburg, Institute of Organic Chemistry, Albertstraße 21, 79104, Freiburg (Breisgau), Germany
| | - Cauê P Souza
- School of Chemistry and Forensic Science, University of Kent, Park Wood Rd, Canterbury, CT2 7NH, United Kingdom
| | - Felipe Fantuzzi
- School of Chemistry and Forensic Science, University of Kent, Park Wood Rd, Canterbury, CT2 7NH, United Kingdom
| | - Jianhua Han
- Institute for Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Todd B Marder
- Institute for Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Holger Braunschweig
- Institute for Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Eufrânio N da Silva Júnior
- Instituto de Ciências Exatas, Departamento de Química, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| |
Collapse
|
5
|
Tumir LM, Pavlović Saftić D, Crnolatac I, Ban Ž, Maslać M, Griesbeck S, Marder TB, Piantanida I. The Nature of the (Oligo/Hetero)Arene Linker Connecting Two Triarylborane Cations Controls Fluorimetric and Circular Dichroism Sensing of Various ds-DNAs and ds-RNAs. Molecules 2023; 28:4348. [PMID: 37298825 PMCID: PMC10254923 DOI: 10.3390/molecules28114348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
A series of tetracationic bis-triarylborane dyes, differing in the aromatic linker connecting two dicationic triarylborane moieties, showed very high submicromolar affinities toward ds-DNA and ds-RNA. The linker strongly influenced the emissive properties of triarylborane cations and controlled the fluorimetric response of dyes. The fluorene-analog shows the most selective fluorescence response between AT-DNA, GC-DNA, and AU-RNA, the pyrene-analog's emission is non-selectively enhanced by all DNA/RNA, and the dithienyl-diketopyrrolopyrrole analog's emission is strongly quenched upon DNA/RNA binding. The emission properties of the biphenyl-analog were not applicable, but the compound showed specific induced circular dichroism (ICD) signals only for AT-sequence-containing ds-DNAs, whereas the pyrene-analog ICD signals were specific for AT-DNA with respect to GC-DNA, and also recognized AU-RNA by giving a different ICD pattern from that observed upon interaction with AT-DNA. The fluorene- and dithienyl-diketopyrrolopyrrole analogs were ICD-signal silent. Thus, fine-tuning of the aromatic linker properties connecting two triarylborane dications can be used for the dual sensing (fluorimetric and CD) of various ds-DNA/RNA secondary structures, depending on the steric properties of the DNA/RNA grooves.
Collapse
Affiliation(s)
- Lidija-Marija Tumir
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (L.-M.T.); (D.P.S.); (I.C.); (Ž.B.); (M.M.)
| | - Dijana Pavlović Saftić
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (L.-M.T.); (D.P.S.); (I.C.); (Ž.B.); (M.M.)
| | - Ivo Crnolatac
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (L.-M.T.); (D.P.S.); (I.C.); (Ž.B.); (M.M.)
| | - Željka Ban
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (L.-M.T.); (D.P.S.); (I.C.); (Ž.B.); (M.M.)
| | - Matea Maslać
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (L.-M.T.); (D.P.S.); (I.C.); (Ž.B.); (M.M.)
| | - Stefanie Griesbeck
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, 97074 Würzburg, Germany;
| | - Todd B. Marder
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, 97074 Würzburg, Germany;
| | - Ivo Piantanida
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (L.-M.T.); (D.P.S.); (I.C.); (Ž.B.); (M.M.)
| |
Collapse
|
6
|
Liu K, Jiang Z, Zhao F, Wang W, Jäkle F, Wang N, Tang X, Yin X, Chen P. Triarylboron-Doped Acenethiophenes as Organic Sonosensitizers for Highly Efficient Sonodynamic Therapy with Low Phototoxicity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2206594. [PMID: 36193773 DOI: 10.1002/adma.202206594] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/28/2022] [Indexed: 06/16/2023]
Abstract
The development of efficient organic sonosensitizers is crucial for sonodynamic therapy (SDT) in the field of cancer treatment. Herein, a new strategy for the development of efficient organic sonosensitizers based on triarylboron-doped acenethiophene scaffolds is presented. The attachment of boron to the linear acenethiophenes lowers the lowest unoccupied molecular orbital (LUMO) energy, resulting in redshifted absorptions and emissions. After encapsulation with the amphiphilic polymer DSPE-mPEG2000 , it is found that the nanostructured BAnTh-NPs and BTeTh-NPs (nanoparticles of BAnTh and BTeTh) shows efficient hydroxyl radical (• OH) generation under ultrasound (US) irradiation in aqueous solution with almost no phototoxicity, which can overcome the shortcomings of O2 -dependent SDT and avoid the potential cutaneous phototoxicity issue. In vitro and in vivo therapeutic results validate that boron-doped acenethiophenes as sonosensitizers enable high SDT efficiency with low phototoxicity and good biocompatibility, indicating that boron-functionalization of acenes is a promising strategy toward organic sonosensitizers for SDT.
Collapse
Affiliation(s)
- Kanglei Liu
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Zhenqi Jiang
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
- School of Medical Technology, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Fenggui Zhao
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Weizhi Wang
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Frieder Jäkle
- Department of Chemistry, Rutgers University - Newark, Newark, NJ, 07102, USA
| | - Nan Wang
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Xiaoying Tang
- School of Medical Technology, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Xiaodong Yin
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Pangkuan Chen
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| |
Collapse
|