1
|
Bhunia S, Box SM, Bera S, Dolai A, Samanta S. Progress of Photoantibiotics in Overcoming Antibiotic Resistance. ChemMedChem 2025; 20:e202400613. [PMID: 39474944 DOI: 10.1002/cmdc.202400613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/28/2024] [Indexed: 02/18/2025]
Abstract
Antibiotic resistance has emerged as a global public health crisis in the 21st century, leading to treatment failures. To address this issue, the medical and pharmaceutical sectors are confronted with two challenges: i) finding potent new antimicrobial agents that would work against resistant-pathogens, and ii) developing conceptually new or unconventional strategies by which a particular antibiotic would remain effective persistently. Photopharmacology with the aid of reversibly controllable light-active antibiotics that we call "photoantibiotics" shows great promise to meet the second challenge, which has inspired many research laboratories worldwide to align their research in inventing or developing such antibiotics. In this review, we have given an overview of the progress made over the last ten years or so towards developing such photoantibiotics. Although making such antibiotics that hold high antimicrobial potency like the native drugs and subsequently maintain a significant activity difference between light-irradiated and non-irradiated states is very challenging, the progress being reported here demonstrates the feasibility of various approaches to engineer photoantibiotics. This review provides a future perspective on the use of such antibiotics in clinical practice with the identification of potential problems and their solutions.
Collapse
Affiliation(s)
- Supriya Bhunia
- Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata, West Bengal, 700009, India
| | - Sk Majid Box
- Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata, West Bengal, 700009, India
| | - Satyajit Bera
- Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata, West Bengal, 700009, India
| | - Anirban Dolai
- Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata, West Bengal, 700009, India
| | - Subhas Samanta
- Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata, West Bengal, 700009, India
| |
Collapse
|
2
|
Ruiz-Soriano A, Lamelza L, Pizzamiglio E, Just-Baringo X. Synthesis of Tetra- ortho-Methoxylated Azobenzene Photoswitches via Sequential Catalytic C-H Activation and Methoxylation. J Org Chem 2024; 89:17141-17146. [PMID: 39513681 PMCID: PMC11629381 DOI: 10.1021/acs.joc.4c01554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/17/2024] [Accepted: 10/15/2024] [Indexed: 11/15/2024]
Abstract
Functionalized tetra-ortho-methoxyazobenzenes have been prepared in a two-step approach based on palladium-catalyzed C-H ortho bromination of azobenzenes, followed by copper-catalyzed methoxylation. The method has shown a broad tolerance to different functional groups that could not be incorporated by previous strategies. With this two-step transition metal-catalyzed strategy, we achieved overall yields that range from good to excellent and enable the exploitation of these highly coveted photoswitches. The superior robustness of this scaffold for solid phase peptide synthesis (SPPS) applications when compared to its chlorinated counterpart has been demonstrated after extensive treatments with piperidine while bound to a RinkAmide ChemMatrix resin, showcasing their potential for use in the synthesis of red-light-operated peptides.
Collapse
Affiliation(s)
- Albert Ruiz-Soriano
- Laboratori de Química
Orgànica, Facultat de Farmàcia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Lara Lamelza
- Laboratori de Química
Orgànica, Facultat de Farmàcia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Elena Pizzamiglio
- Laboratori de Química
Orgànica, Facultat de Farmàcia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Xavier Just-Baringo
- Laboratori de Química
Orgànica, Facultat de Farmàcia, Universitat de Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
3
|
Kerckhoffs A, Ahmad M, Langton MJ. Transient Photoactivation of Anionophores by Using Redshifted Fast-Relaxing Azobenzenes. Chemistry 2024; 30:e202402382. [PMID: 39087671 DOI: 10.1002/chem.202402382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/01/2024] [Accepted: 08/01/2024] [Indexed: 08/02/2024]
Abstract
Photo-regulated transmembrane ionophores enable spatial and temporal control over activity, offering promise as targeted therapeutics. Key to such applications is control using bio-compatible visible light. Herein, we report red-shifted azobenzene-derived synthetic anionophores that use amber or red light to trigger (E)-(Z) photoisomerisation and activation of transmembrane chloride transport. We demonstrate that by tuning the thermal half-life of the more active, but thermodynamically unstable, Z isomer to relax on the timescale of minutes, transient activation of ion transport can be achieved by activating solely with visible light and deactivating by thermal relaxation.
Collapse
Affiliation(s)
- Aidan Kerckhoffs
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Manzoor Ahmad
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Matthew J Langton
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| |
Collapse
|
4
|
Bhunia S, Jana SK, Sarkar S, Das A, Mandal S, Samanta S. Direct Growth Control of Antibiotic-Resistant Bacteria Using Visible-Light-Responsive Novel Photoswitchable Antibiotics. Chemistry 2024; 30:e202303685. [PMID: 38217466 DOI: 10.1002/chem.202303685] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/21/2023] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
In addition to the discovery of new (modified) potent antibiotics to combat antibiotic resistance, there is a critical need to develop novel strategies that would restrict their off-target effects and unnecessary exposure to bacteria in our body and environment. We report a set of new photoswitchable arylazopyrazole-modified norfloxacin antibiotics that present a high degree of bidirectional photoisomerization, impressive fatigue resistance and reasonably high cis half-lives. The irradiated isomers of most compounds were found to exhibit nearly equal or higher antibacterial activity than norfloxacin against Gram-positive bacteria. Notably, against norfloxacin-resistant S. aureus bacteria, the visible-light-responsive p-SMe-substituted derivative showed remarkably high antimicrobial potency (MIC of 0.25 μg/mL) in the irradiated state, while the potency was reduced by 24-fold in case of its non-irradiated state. The activity was estimated to be retained for more than 7 hours. This is the first report to demonstrate direct photochemical control of the growth of antibiotic-resistant bacteria and to show the highest activity difference between irradiated and non-irradiated states of a photoswitchable antibiotic. Additionally, both isomers were found to be non-harmful to human cells. Molecular modellings were performed to identify the underlying reason behind the high-affinity binding of the irradiated isomer to topoisomerase IV enzyme.
Collapse
Affiliation(s)
- Supriya Bhunia
- Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata, 700009, West Bengal, India
| | - Santosh Kumar Jana
- Department of Microbiology, University of Calcutta, 35-Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Soumik Sarkar
- Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata, 700009, West Bengal, India
| | - Arpan Das
- Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata, 700009, West Bengal, India
| | - Sukhendu Mandal
- Department of Microbiology, University of Calcutta, 35-Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Subhas Samanta
- Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata, 700009, West Bengal, India
| |
Collapse
|
5
|
Kalyvas JT, Facal Marina P, Stachura DL, Horsley JR, Abell AD. Smart Wearable Patches Using Light-Controlled Activation and Delivery of Photoswitchable Antimicrobial Peptides. Chemistry 2023; 29:e202301487. [PMID: 37309073 DOI: 10.1002/chem.202301487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/14/2023]
Abstract
A novel strategy to treat Staphylococcus aureus (S. aureus) skin infections is presented, where UV light is used to facilitate concomitant light-controlled activation and delivery of an antimicrobial therapeutic agent. Specifically, a new photoswitchable gramicidin S analogue was immobilized onto a polymeric wearable patch via a photocleavable linker that undergoes photolysis at the same wavelength of light required for activation of the peptide. Unlike toxic gramicidin S, the liberated active photoswitchable peptide exhibits antimicrobial activity against S. aureus while being ostensibly non-haemolytic to red blood cells. Moreover, irradiation with visible light switches off the antimicrobial properties of the peptide within seconds, presenting an ideal strategy to regulate antibiotic activity for localized bacterial infections with the potential to mitigate resistance.
Collapse
Affiliation(s)
- John T Kalyvas
- School of Physics, Chemistry & Earth Sciences, The University of Adelaide Adelaide, South Australia, 5005, Australia
| | - Paula Facal Marina
- School of Physics, Chemistry & Earth Sciences, The University of Adelaide Adelaide, South Australia, 5005, Australia
- Flinders Institute for NanoScale Science and Technology College of Science and Engineering, Flinders University, South Australia, 5042, Australia
| | - Damian L Stachura
- School of Physics, Chemistry & Earth Sciences, The University of Adelaide Adelaide, South Australia, 5005, Australia
| | - John R Horsley
- School of Physics, Chemistry & Earth Sciences, The University of Adelaide Adelaide, South Australia, 5005, Australia
| | - Andrew D Abell
- School of Physics, Chemistry & Earth Sciences, The University of Adelaide Adelaide, South Australia, 5005, Australia
| |
Collapse
|
6
|
Velema WA. Exploring antibiotic resistance with chemical tools. Chem Commun (Camb) 2023; 59:6148-6158. [PMID: 37039397 PMCID: PMC10194278 DOI: 10.1039/d3cc00759f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/05/2023] [Indexed: 04/08/2023]
Abstract
Antibiotic resistance is an enormous problem that is accountable for over a million deaths annually, with numbers expected to significantly increase over the coming decades. Although some of the underlying causes leading up to antibiotic resistance are well understood, many of the molecular processes involved remain elusive. To better appreciate at a molecular level how resistance emerges, customized chemical biology tools can offer a solution. This Feature Article attempts to provide an overview of the wide variety of tools that have been developed over the last decade, by highlighting some of the more illustrative examples. These include the use of fluorescent, photoaffinity and activatable antibiotics and bacterial components to start to unravel the molecular mechanisms involved in resistance. The antibiotic crisis is an eminent global threat and requires the continuous development of creative chemical tools to dissect and ultimately counteract resistance.
Collapse
Affiliation(s)
- Willem A Velema
- Institute for Molecules and Materials, Radboud University Nijmegen, The Netherlands, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands.
| |
Collapse
|
7
|
Kosol S, Rostock L, Barsig J, Tabarelli T, Hommernick K, Kulike M, Eulberg T, Seidel M, Behroz I, Kleebauer L, Grätz S, Mainz A, Süssmuth RD. Transcription activation by the resistance protein AlbA as a tool to evaluate derivatives of the antibiotic albicidin. Chem Sci 2023; 14:5069-5078. [PMID: 37206387 PMCID: PMC10189885 DOI: 10.1039/d3sc00955f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/15/2023] [Indexed: 05/21/2023] Open
Abstract
The rising numbers of fatal infections with resistant pathogens emphasizes the urgent need for new antibiotics. Ideally, new antibiotics should be able to evade or overcome existing resistance mechanisms. The peptide antibiotic albicidin is a highly potent antibacterial compound with a broad activity spectrum but also with several known resistance mechanisms. In order to assess the effectiveness of novel albicidin derivatives in the presence of the binding protein and transcription regulator AlbA, a resistance mechanism against albicidin identified in Klebsiella oxytoca, we designed a transcription reporter assay. In addition, by screening shorter albicidin fragments, as well as various DNA-binders and gyrase poisons, we were able to gain insights into the AlbA target spectrum. We analysed the effect of mutations in the binding domain of AlbA on albicidin sequestration and transcription activation, and found that the signal transduction mechanism is complex but can be evaded. Further demonstrating AlbA's high level of specificity, we find clues for the logical design of molecules capable of avoiding the resistance mechanism.
Collapse
Affiliation(s)
- Simone Kosol
- Institut für Chemie, Technische Universität Berlin Strasse des 17. Juni 124 10623 Berlin Germany
| | - Lida Rostock
- Institut für Chemie, Technische Universität Berlin Strasse des 17. Juni 124 10623 Berlin Germany
| | - Jonas Barsig
- Institut für Chemie, Technische Universität Berlin Strasse des 17. Juni 124 10623 Berlin Germany
| | - Theresa Tabarelli
- Institut für Chemie, Technische Universität Berlin Strasse des 17. Juni 124 10623 Berlin Germany
| | - Kay Hommernick
- Institut für Chemie, Technische Universität Berlin Strasse des 17. Juni 124 10623 Berlin Germany
| | - Marcel Kulike
- Institut für Chemie, Technische Universität Berlin Strasse des 17. Juni 124 10623 Berlin Germany
| | - Tobias Eulberg
- Institut für Chemie, Technische Universität Berlin Strasse des 17. Juni 124 10623 Berlin Germany
| | - Maria Seidel
- Institut für Chemie, Technische Universität Berlin Strasse des 17. Juni 124 10623 Berlin Germany
| | - Iraj Behroz
- Institut für Chemie, Technische Universität Berlin Strasse des 17. Juni 124 10623 Berlin Germany
| | - Leonardo Kleebauer
- Institut für Chemie, Technische Universität Berlin Strasse des 17. Juni 124 10623 Berlin Germany
| | - Stefan Grätz
- Institut für Chemie, Technische Universität Berlin Strasse des 17. Juni 124 10623 Berlin Germany
| | - Andi Mainz
- Institut für Chemie, Technische Universität Berlin Strasse des 17. Juni 124 10623 Berlin Germany
| | - Roderich D Süssmuth
- Institut für Chemie, Technische Universität Berlin Strasse des 17. Juni 124 10623 Berlin Germany
| |
Collapse
|