1
|
Yang X, Jiang W. Enantioselective Recognition of Functional Organic Molecules in Water by Biomimetic Macrocyclic Hosts. J Am Chem Soc 2024; 146:3900-3909. [PMID: 38294833 DOI: 10.1021/jacs.3c11492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Enantioselective recognition of functional organic molecules in water is routine in nature but remains a formidable challenge for synthetic hosts. Here, we reported two pairs of chiral naphthotubes with chiral centers located in the neighborhood of the inward-directing amide groups. These naphthotubes, with a chiral twisted cavity, show highly enantioselective recognition in water to a wide scope of organic molecules (90 chiral guests). The highest enantioselectivity of 34 was achieved with neotame. Small differences between all of the noncovalent interactions shielded in the hydrophobic cavity were revealed to be responsible for the enantioselective recognition in water, which is different from the traditional views. Moreover, these hosts can differentiate the analogues of aspartame using fluorescence spectroscopy. These chiral naphthotubes have made unprecedented achievements in enantioselective recognition, providing the basis for their applications in chiral analysis and separations.
Collapse
Affiliation(s)
- Xiran Yang
- Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, and Department of Chemistry, Southern University of Science and Technology (SUSTech), Xueyuan Blvd 1088, Shenzhen 518055, China
| | - Wei Jiang
- Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, and Department of Chemistry, Southern University of Science and Technology (SUSTech), Xueyuan Blvd 1088, Shenzhen 518055, China
| |
Collapse
|
2
|
Wang SM, Wang YF, Huang L, Zheng LS, Nian H, Zheng YT, Yao H, Jiang W, Wang X, Yang LP. Chiral recognition of neutral guests by chiral naphthotubes with a bis-thiourea endo-functionalized cavity. Nat Commun 2023; 14:5645. [PMID: 37704639 PMCID: PMC10499783 DOI: 10.1038/s41467-023-41390-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/04/2023] [Indexed: 09/15/2023] Open
Abstract
Developing chiral receptors with an endo-functionalized cavity for chiral recognition is of great significance in the field of molecular recognition. This study presents two pairs of chiral naphthotubes containing a bis-thiourea endo-functionalized cavity. Each chiral naphthotube has two homochiral centers which were fixed adjacent to the thiourea groups, causing the skeleton and thiourea groups to twist enantiomerically through chiral transfer. These chiral naphthotubes are highly effective at enantiomerically recognizing various neutral chiral molecules with an enantioselectivity up to 17.0. Furthermore, the mechanism of the chiral recognition has been revealed to be originated from differences in multiple non-covalent interactions. Various factors, such as the shape of cavities, substituents of guests, flexibility of host and binding modes are demonstrated to contribute to creating differences in the non-covalent interactions. Additionally, the driving force behind enantioselectivity is mainly attributed to enthalpic differences, and enthalpy -entropy compensation has also been observed to influence enantioselectivity.
Collapse
Affiliation(s)
- Song-Meng Wang
- Department of Chemistry, Southern University of Science and Technology, Xueyuan Blvd 1088, Shenzhen, 518055, China
| | - Yan-Fang Wang
- Department of Chemistry, Southern University of Science and Technology, Xueyuan Blvd 1088, Shenzhen, 518055, China
| | - Liping Huang
- Department of Chemistry, Southern University of Science and Technology, Xueyuan Blvd 1088, Shenzhen, 518055, China
| | - Li-Shuo Zheng
- Department of Chemistry, Southern University of Science and Technology, Xueyuan Blvd 1088, Shenzhen, 518055, China
| | - Hao Nian
- Department of Chemistry, Southern University of Science and Technology, Xueyuan Blvd 1088, Shenzhen, 518055, China
| | - Yu-Tao Zheng
- Department of Chemistry, Southern University of Science and Technology, Xueyuan Blvd 1088, Shenzhen, 518055, China
| | - Huan Yao
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Wei Jiang
- Department of Chemistry, Southern University of Science and Technology, Xueyuan Blvd 1088, Shenzhen, 518055, China.
| | - Xiaoping Wang
- Department of Chemistry, Southern University of Science and Technology, Xueyuan Blvd 1088, Shenzhen, 518055, China.
| | - Liu-Pan Yang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|