1
|
Liu M, Yan L, Lin Z, Wu D, Qiu B, Weng S. CHA-based microarray with Cas12a universal readout for multiple microRNA detection. Mikrochim Acta 2025; 192:293. [PMID: 40214787 DOI: 10.1007/s00604-025-07049-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 02/14/2025] [Indexed: 05/11/2025]
Abstract
Hirschsprung's disease (HSCR), a congenital condition characterized by the absence of nerve cells in the intestinal wall, often requires early and accurate diagnosis for optimal patient outcomes. In this study, we developed a novel and ultrasensitive biosensing strategy for the detection of HSCR-related microRNAs (miRNAs) by integrating catalytic hairpin assembly (CHA) with CRISPR-Cas12a technology. A two-stage process consists of array recognition, and a universal readout is designed. In the first stage, target miRNAs are recognized and amplified on a solid-phase microarray, while in the second stage, the accumulated conversion chains which are not related to target sequences, activate Cas12a, leading to the cleavage of reporter DNA and the generation of a fluorescence signal spatially separated from the first stage. The proposed method was validated for the comprehensive detection of HSCR-related miRNAs and demonstrated high sensitivity and specificity. This work represents a significant advancement in miRNA diagnostics and holds potential for broader clinical applications.
Collapse
Affiliation(s)
- Mingkun Liu
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350001, Fujian, China
- General Surgery Department, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Children'S Hospital (Fujian Branch of Shanghai Children'S Medical Center), Fujian Medical University, Fuzhou, Fujian, China
| | - Lei Yan
- General Surgery Department, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Children'S Hospital (Fujian Branch of Shanghai Children'S Medical Center), Fujian Medical University, Fuzhou, Fujian, China
| | - Zhixiong Lin
- General Surgery Department, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Children'S Hospital (Fujian Branch of Shanghai Children'S Medical Center), Fujian Medical University, Fuzhou, Fujian, China
| | - Dianming Wu
- General Surgery Department, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Children'S Hospital (Fujian Branch of Shanghai Children'S Medical Center), Fujian Medical University, Fuzhou, Fujian, China
| | - Bin Qiu
- College of Chemistry, Fuzhou University, Fuzhou, 350108, Fujian, China
| | - Shangeng Weng
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350001, Fujian, China.
| |
Collapse
|
2
|
Xue B, Qiao B, Jia L, Chi J, Su M, Song Y, Du J. A Sensitive and Fast microRNA Detection Platform Based on CRlSPR-Cas12a Coupled with Hybridization Chain Reaction and Photonic Crystal Microarray. BIOSENSORS 2025; 15:233. [PMID: 40277547 PMCID: PMC12024684 DOI: 10.3390/bios15040233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/25/2025] [Accepted: 03/31/2025] [Indexed: 04/26/2025]
Abstract
Changes in microRNA (miRNA) levels are closely associated with the pathological processes of many diseases. The sensitive and fast detection of miRNAs is critical for diagnosis and prognosis. Here, we report a platform employing CRISPR/Cas12a to recognize and report changes in miRNA levels while avoiding complex multi-thermal cycling procedures. A non-enzyme-dependent hybridization chain reaction (HCR) was used to convert the miRNA signal into double-stranded DNA, which contained a Cas12a activation sequence. The target sequence was amplified simply and isothermally, enabling the test to be executed at a constant temperature of 37 °C. The detection platform had the capacity to measure concentrations down to the picomolar level, and the target miRNA could be distinguished at the nanomolar level. By using photonic crystal microarrays with a stopband-matched emission spectrum of the fluorescent-quencher modified reporter, the fluorescence signal was moderately enhanced to increase the sensitivity. With this enhancement, analyzable fluorescence results were obtained in 15 min. The HCR and Cas12a cleavage processes could be conducted in a single tube by separating the two procedures into the bottom and the cap. We verified the sensitivity and specificity of this one-pot system, and both were comparable to those of the two-step method. Overall, our study produced a fast and sensitive miRNA detection platform based on a CRISPR/Cas12a system and enzyme-free HCR amplification. This platform may serve as a potential solution for miRNA detection in clinical practice.
Collapse
Affiliation(s)
- Bingjie Xue
- Beijing Anzhen Hospital, Capital Medical University, Key Laboratory of Remodeling-Related Cardio-Vascular Diseases, Ministry of Education, Beijing Collaborative Innovation Centre for Cardiovascular Disorders, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Disease, No. 2 Anzhen Road, Chaoyang District, Beijing 100029, China; (B.X.); (B.Q.); (L.J.)
| | - Bokang Qiao
- Beijing Anzhen Hospital, Capital Medical University, Key Laboratory of Remodeling-Related Cardio-Vascular Diseases, Ministry of Education, Beijing Collaborative Innovation Centre for Cardiovascular Disorders, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Disease, No. 2 Anzhen Road, Chaoyang District, Beijing 100029, China; (B.X.); (B.Q.); (L.J.)
| | - Lixin Jia
- Beijing Anzhen Hospital, Capital Medical University, Key Laboratory of Remodeling-Related Cardio-Vascular Diseases, Ministry of Education, Beijing Collaborative Innovation Centre for Cardiovascular Disorders, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Disease, No. 2 Anzhen Road, Chaoyang District, Beijing 100029, China; (B.X.); (B.Q.); (L.J.)
- Institute for Biological Therapy, Henan Academy of Innovations in Medical Science, Zhengzhou, 451163, China
| | - Jimei Chi
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS)/Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing 100190, China; (J.C.); (M.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meng Su
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS)/Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing 100190, China; (J.C.); (M.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanlin Song
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS)/Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing 100190, China; (J.C.); (M.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Du
- Beijing Anzhen Hospital, Capital Medical University, Key Laboratory of Remodeling-Related Cardio-Vascular Diseases, Ministry of Education, Beijing Collaborative Innovation Centre for Cardiovascular Disorders, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Disease, No. 2 Anzhen Road, Chaoyang District, Beijing 100029, China; (B.X.); (B.Q.); (L.J.)
| |
Collapse
|
3
|
Li D, Cheng W, Yin F, Yao Y, Wang Z, Xiang Y. A sensitive miRNA detection method based on a split-T7 switch modulating CRISPR/Cas12a system. Chem Commun (Camb) 2025; 61:4555-4558. [PMID: 40007451 DOI: 10.1039/d5cc00170f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
This study presents a novel method for sensitive miRNA detection based on a split-T7 switch modulating CRISPR/Cas12a system. By integrating the split-T7 promoter-mediated transcription with the CRISPR/Cas12a system, this method can achieve femtomolar detection of the target miRNA within 1 h and successfully analyze miR-21 in samples from various cell lines, demonstrating its potential for clinical applications.
Collapse
Affiliation(s)
- Dayong Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China.
| | - Wenting Cheng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China.
| | - Feifan Yin
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China.
| | - Yanheng Yao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China.
| | - Zhongyun Wang
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P. R. China.
| | - Yang Xiang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China.
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, P. R. China
| |
Collapse
|
4
|
Fu Y, Zhang P, Chen F, Xie Z, Xiao S, Huang Z, Lau CH, Zhu H, Luo J. CRISPR detection of cardiac tumor-associated microRNAs. Mol Biol Rep 2025; 52:114. [PMID: 39797940 DOI: 10.1007/s11033-024-10205-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 12/28/2024] [Indexed: 01/13/2025]
Abstract
As multiple imaging modalities cannot reliably diagnose cardiac tumors, the molecular approach offers alternative ways to detect rare ones. One such molecular approach is CRISPR-based diagnostics (CRISPR-Dx). CRISPR-Dx enables visual readout, portable diagnostics, and rapid and multiplex detection of nucleic acids such as microRNA (miRNA). Dysregulation of miRNA expressions has been associated with cardiac tumors such as atrial myxoma and angiosarcoma. Diverse CRISPR-Dx systems have been developed to detect miRNA in recent years. These CRISPR-Dx systems are generally classified into four classes, depending on the Cas proteins used (Cas9, Cas12, Cas13, or Cas12f). CRISPR/Cas systems are integrated with various isothermal amplifications to detect low-abundance miRNAs. Amplification-free CRISPR-Dx systems have also been recently developed to detect miRNA directly. Herein, we critically discuss the advances, pitfalls, and future perspectives for these CRISPR-Dx systems in detecting miRNA, focusing on the diagnosis and prognosis of cardiac tumors.
Collapse
Affiliation(s)
- Youlin Fu
- Department of Cardiology, Ganzhou People's Hospital, Ganzhou, Jiangxi, China
| | - Peng Zhang
- Department of Cardiology, Ganzhou People's Hospital, Ganzhou, Jiangxi, China
| | - Feng Chen
- Department of Cardiology, Ganzhou People's Hospital, Ganzhou, Jiangxi, China
| | - Ziqiang Xie
- Department of Cardiology, Ganzhou People's Hospital, Ganzhou, Jiangxi, China
| | - Shihui Xiao
- Department of Cardiology, Ganzhou People's Hospital, Ganzhou, Jiangxi, China
| | - Zhihao Huang
- Department of Biology, College of Science, Shantou University, Shantou, 515063, Guangdong, China
| | - Cia-Hin Lau
- Department of Biology, College of Science, Shantou University, Shantou, 515063, Guangdong, China
| | - Haibao Zhu
- Department of Biology, College of Science, Shantou University, Shantou, 515063, Guangdong, China
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, Guangdong, China
- Shantou Key Laboratory of Marine Microbial Resources and Interactions with Environment, Shantou University, Shantou, 515063, Guangdong, China
| | - Jun Luo
- Department of Cardiology, Ganzhou People's Hospital, Ganzhou, Jiangxi, China.
| |
Collapse
|
5
|
Feng Y, Yang J, He Z, Liu X, Ma C. CRISPR-Cas-based biosensors for the detection of cancer biomarkers. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:6634-6653. [PMID: 39258950 DOI: 10.1039/d4ay01446d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Along with discovering cancer biomarkers, non-invasive detection methods have played a critical role in early cancer diagnosis and prognostic improvement. Some traditional detection methods have been used for detecting cancer biomarkers, but they are time-consuming and involve materials and human costs. With great flexibility, sensitivity and specificity, the clustered regularly interspaced short palindromic repeats (CRISPR)-associated system provides a wide range of application prospects in this field. Herein, we introduce the background of the CRISPR-Cas (CRISPR-associated) system and comprehensively summarize the diagnosis strategies of cancer mediated by the CRISPR-Cas system, including four kinds of biochemical-based markers: nucleic acid, enzyme, tumor-specific protein and exosome. Furthermore, we discuss the challenges in implementing the CRISPR-Cas system in clinical applications.
Collapse
Affiliation(s)
- Yuxin Feng
- School of Life Sciences, Central South University, Changsha 410013, China.
- Clinical Medicine Eight-year Program, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Jinmeng Yang
- School of Life Sciences, Central South University, Changsha 410013, China.
- Clinical Medicine Eight-year Program, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Ziping He
- School of Life Sciences, Central South University, Changsha 410013, China.
- Clinical Medicine Eight-year Program, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Xinfa Liu
- School of Life Sciences, Central South University, Changsha 410013, China.
| | - Changbei Ma
- School of Life Sciences, Central South University, Changsha 410013, China.
| |
Collapse
|
6
|
Liu H, Dong J, Duan Z, Xia F, Willner I, Huang F. Light-activated CRISPR-Cas12a for amplified imaging of microRNA in cell cycle phases at single-cell levels. SCIENCE ADVANCES 2024; 10:eadp6166. [PMID: 39047109 PMCID: PMC11268419 DOI: 10.1126/sciadv.adp6166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/20/2024] [Indexed: 07/27/2024]
Abstract
An ortho-nitrobenzyl phosphate ester-caged nucleic acid hairpin structure coupled to the CRISPR-Cas12a complex is introduced as a functional reaction module for the light-induced activation of the CRISPR-Cas12a (LAC12a) machinery toward the amplified fluorescence detection of microRNA-21 (miRNA-21). The LAC12a machinery is applied for the selective, in vitro sensing of miRNA-21 and for the intracellular imaging of miRNA-21 in different cell lines. The LAC12a system is used to image miRNA-21 in different cell cycle phases of MCF-7 cells. Moreover, the LAC12a machinery integrated in cells enables the two-photon laser confocal microscopy-assisted, light-stimulated spatiotemporal, selective activation of the CRISPR-Cas12a miRNA-21 imaging machinery at the single-cell level and the evaluation of relative expression levels of miRNA-21 at distinct cell cycle phases. The method is implemented to map the distribution of cell cycle phases in an array of single cells.
Collapse
Affiliation(s)
- Hong Liu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P.R. China
| | - Jiantong Dong
- Institute of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Zhijuan Duan
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P.R. China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P.R. China
| | - Itamar Willner
- Institute of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Fujian Huang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P.R. China
| |
Collapse
|
7
|
Deng R, Bai Y, Liu Y, Lu Y, Zhao Z, Deng Y, Yang H. DNAzyme-activated CRISPR/Cas assay for sensitive and one-pot detection of lead contamination. Chem Commun (Camb) 2024; 60:5976-5979. [PMID: 38769822 DOI: 10.1039/d4cc01852d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Hazardous lead ions (Pb2+) even at a minute level can pose side effects on human health, highlighting the need for tools for trace Pb2+ detection. Herein, we present a DNAzyme-activated CRISPR assay (termed DzCas12T) for sensitive and one-pot detection of lead contamination. Using an extension-bridged strategy eliminates the need for separation to couple the DNAzyme recognition and CRISPR reporting processes. The tandem design endowed the DzCas12T assay with high specificity and sensitivity down to the pM-level. This assay has been used to detect lead contamination in food and water samples, indicating the potential for monitoring lead-associated environmental and food safety.
Collapse
Affiliation(s)
- Ruijie Deng
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Yaxuan Bai
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Yumei Liu
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Yunhao Lu
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Zhifeng Zhao
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Yi Deng
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Hao Yang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| |
Collapse
|
8
|
Zeng D, Jiao J, Mo T. Combination of nucleic acid amplification and CRISPR/Cas technology in pathogen detection. Front Microbiol 2024; 15:1355234. [PMID: 38380103 PMCID: PMC10877009 DOI: 10.3389/fmicb.2024.1355234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/16/2024] [Indexed: 02/22/2024] Open
Abstract
Major health events caused by pathogenic microorganisms are increasing, seriously jeopardizing human lives. Currently PCR and ITA are widely used for rapid testing in food, medicine, industry and agriculture. However, due to the non-specificity of the amplification process, researchers have proposed the combination of nucleic acid amplification technology with the novel technology CRISPR for detection, which improves the specificity and credibility of results. This paper summarizes the research progress of nucleic acid amplification technology in conjunction with CRISPR/Cas technology for the detection of pathogens, which provides a reference and theoretical basis for the subsequent application of nucleic acid amplification technology in the field of pathogen detection.
Collapse
Affiliation(s)
| | | | - Tianlu Mo
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
9
|
Yang Z, Mao S, Wang L, Fu S, Dong Y, Jaffrezic-Renault N, Guo Z. CRISPR/Cas and Argonaute-Based Biosensors for Pathogen Detection. ACS Sens 2023; 8:3623-3642. [PMID: 37819690 DOI: 10.1021/acssensors.3c01232] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Over the past few decades, pathogens have posed a threat to human security, and rapid identification of pathogens should be one of the ideal methods to prevent major public health security outbreaks. Therefore, there is an urgent need for highly sensitive and specific approaches to identify and quantify pathogens. Clustered Regularly Interspaced Short Palindromic Repeats CRISPR/Cas systems and Argonaute (Ago) belong to the Microbial Defense Systems (MDS). The guided, programmable, and targeted activation of nucleases by both of them is leading the way to a new generation of pathogens detection. We compare these two nucleases in terms of similarities and differences. In addition, we discuss future challenges and prospects for the development of the CRISPR/Cas systems and Argonaute (Ago) biosensors, especially electrochemical biosensors. This review is expected to afford researchers entering this multidisciplinary field useful guidance and to provide inspiration for the development of more innovative electrochemical biosensors for pathogens detection.
Collapse
Affiliation(s)
- Zhiruo Yang
- Hubei Province Key Laboratory of Occupational Hazard identification and Control, School of Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, PR China
| | - Siying Mao
- Hubei Province Key Laboratory of Occupational Hazard identification and Control, School of Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, PR China
| | - Lu Wang
- Hubei Province Key Laboratory of Occupational Hazard identification and Control, School of Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, PR China
| | - Sinan Fu
- Hubei Province Key Laboratory of Occupational Hazard identification and Control, School of Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, PR China
| | - Yanming Dong
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Nicole Jaffrezic-Renault
- University of Lyon, Institute of Analytical Sciences, UMR-CNRS 5280, 5, La Doua Street, Villeurbanne 69100, France
| | - Zhenzhong Guo
- Hubei Province Key Laboratory of Occupational Hazard identification and Control, School of Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, PR China
| |
Collapse
|
10
|
Ma J, Li X, Lou C, Lin X, Zhang Z, Chen D, Yang S. Utility of CRISPR/Cas mediated electrochemical biosensors. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:3785-3801. [PMID: 37489056 DOI: 10.1039/d3ay00903c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Electrochemical biosensors represent a class of sensors that employ biological materials as sensitive elements, electrodes as conversion elements, and potential or current as detection signals. The integration of CRISPR/Cas systems into electrochemical biosensors holds immense potential, offering enhanced versatility, heightened sensitivity and specificity, reduced recovery time, and the ability to capture and identify analytes at low concentrations. In this review, we provided a succinct summary of the fundamental principles underlying electrochemical biosensors and CRISPR/Cas systems, and new progress of electrochemical biosensors based on CRISPR/Cas systems in virus, bacteria, and cancer detections. Besides, we discussed its pros and cons, present gaps, potential problem-solvers, and future prospects. To sum up, CRISPR/Cas mediated electrochemical biosensors will surely benefit us a lot in the detection of cells and microorganisms, and of course in other promising fields.
Collapse
Affiliation(s)
- Jiajie Ma
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.
| | - Xinwei Li
- Department of Clinical Medicine, Medical College of Zhengzhou University, Zhengzhou, China
| | - Chenyang Lou
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.
| | - Xinyue Lin
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, Zhengzhou, China
| | - Di Chen
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, Zhengzhou, China
| | - Sen Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, Zhengzhou, China
| |
Collapse
|
11
|
Ma X, Zhang Y, Qiao X, Yuan Y, Sheng Q, Yue T. Target-Induced AIE Effect Coupled with CRISPR/Cas12a System Dual-Signal Biosensing for the Ultrasensitive Detection of Gliotoxin. Anal Chem 2023; 95:11723-11731. [PMID: 37493946 DOI: 10.1021/acs.analchem.3c01760] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Here, a novel rapid and ultrasensitive aptamer biosensor was designed for target-induced activation of AIE effect and followed by the activation of Crispr Cas12a (LbCpf1)-mediated cleavage to achieve dual-signal detection. The prepared DNA building blocks contain the target aptamer, ssDNA-Fc, and Activator1. In this system, the activation mode was divided into two steps. First, when the target interacts with the aptamers, the DNA building blocks would be disintegrated rapidly, releasing a mass of Ac1, generating ETTC-dsDNA aggregated to produce a fluorescence signal by the AIE effect. Second, with the release of Ac2, LbCpf1-crRNA was activated, which greatly improves the ssDNA-Fc cleavage efficiency to render signal amplification and ultrasensitive detection of the target. Satisfactorily, using this approach to detect gliotoxin, optimal conditions for detection was achieved for reducing the detection time to 55 min, achieving a low detection limit of 2.4 fM and a satisfactory linear in the range of 50 fM to 1 nM, which addressed the shortcoming of a weak electrochemical signal in previous sensors. The water-insoluble AIE material was coupled with DNA to obtain water-soluble ETTC-dsDNA and successfully introduced into the sensor system, with a low detection limit of 5.6 fM. Subsequently, the biosensor combined with handheld electrochemical workstation was successfully applied in the detection of gliotoxin in five actual samples, with a detection range of 32.0 to 2.09 × 108 pM. This strategy not only provides a novel and effective detection platform for mycotoxins in complex food matrices but also opens a promising avenue for various molecules detection in imaging and disease diagnosis.
Collapse
Affiliation(s)
- Xin Ma
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China
- Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering/Research Center of Food Safety Risk Assessment and Control, Xi'an, Shaanxi 710069, China
| | - Yu Zhang
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China
- Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering/Research Center of Food Safety Risk Assessment and Control, Xi'an, Shaanxi 710069, China
| | - Xiujuan Qiao
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yahong Yuan
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China
- Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering/Research Center of Food Safety Risk Assessment and Control, Xi'an, Shaanxi 710069, China
| | - Qinglin Sheng
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China
- Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering/Research Center of Food Safety Risk Assessment and Control, Xi'an, Shaanxi 710069, China
| | - Tianli Yue
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China
- Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering/Research Center of Food Safety Risk Assessment and Control, Xi'an, Shaanxi 710069, China
| |
Collapse
|