1
|
Chałupka J, Marszałł MP, Sikora A. Enzymatic Kinetic Resolution of Racemic 1-(Isopropylamine)-3-phenoxy-2-propanol: A Building Block for β-Blockers. Int J Mol Sci 2024; 25:10730. [PMID: 39409060 PMCID: PMC11476467 DOI: 10.3390/ijms251910730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
This study aimed to optimize the kinetic resolution of building blocks for the synthesis of β-blockers using Candida rugosa lipases, which could be potentially used to synthesize enantiomerically pure β-blockers further. Reaction mixtures were incubated in a thermostated shaker. Qualitative and quantitative analyses of the reaction mixtures were performed using chiral stationary phases and the UPLC-IT-TOF system. Of the 24 catalytic systems prepared, a system containing lipase from Candida rugosa MY, [EMIM][BF4] and toluene as a two-phase reaction medium and isopropenyl acetate as an acetylating agent was optimal. This resulted in a product with high enantiomeric purity produced via biotransformation, whose enantioselectivity was E = 67.5. Using lipases from Candida rugosa enables the enantioselective biotransformation of the β-blockers building block. The biocatalyst used, the reaction environment, and the acetylating agent significantly influence the efficiency of performer kinetic resolutions. The studies made it possible to select an optimum system, a prerequisite for obtaining a product of high enantiomeric purity. As a result of the performed biotransformation, the (S)-enantiomer of the β-blocker derivative was obtained, which can be used to further synthesize enantiomerically pure β-blockers.
Collapse
Affiliation(s)
- Joanna Chałupka
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Medical Biotechnology and Laboratory Medicine, Pomeranian Medical University in Szczecin, 71-251 Szczecin, Poland
- Department of Medicinal Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Dr. A. Jurasza 2, 85-089 Bydgoszcz, Poland
| | - Michał Piotr Marszałł
- Department of Medicinal Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Dr. A. Jurasza 2, 85-089 Bydgoszcz, Poland
| | - Adam Sikora
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Medical Biotechnology and Laboratory Medicine, Pomeranian Medical University in Szczecin, 71-251 Szczecin, Poland
- Department of Medicinal Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Dr. A. Jurasza 2, 85-089 Bydgoszcz, Poland
| |
Collapse
|
2
|
Siódmiak J, Dulęba J, Kocot N, Mastalerz R, Haraldsson GG, Marszałł MP, Siódmiak T. A New Approach in Lipase-Octyl-Agarose Biocatalysis of 2-Arylpropionic Acid Derivatives. Int J Mol Sci 2024; 25:5084. [PMID: 38791124 PMCID: PMC11121684 DOI: 10.3390/ijms25105084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/23/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
The use of lipase immobilized on an octyl-agarose support to obtain the optically pure enantiomers of chiral drugs in reactions carried out in organic solvents is a great challenge for chemical and pharmaceutical sciences. Therefore, it is extremely important to develop optimal procedures to achieve a high enantioselectivity of the biocatalysts in the organic medium. Our paper describes a new approach to biocatalysis performed in an organic solvent with the use of CALB-octyl-agarose support including the application of a polypropylene reactor, an appropriate buffer for immobilization (Tris base-pH 9, 100 mM), a drying step, and then the storage of immobilized lipases in a climatic chamber or a refrigerator. An immobilized lipase B from Candida antarctica (CALB) was used in the kinetic resolution of (R,S)-flurbiprofen by enantioselective esterification with methanol, reaching a high enantiomeric excess (eep = 89.6 ± 2.0%). As part of the immobilization optimization, the influence of different buffers was investigated. The effect of the reactor material and the reaction medium on the lipase activity was also studied. Moreover, the stability of the immobilized lipases: lipase from Candida rugosa (CRL) and CALB during storage in various temperature and humidity conditions (climatic chamber and refrigerator) was tested. The application of the immobilized CALB in a polypropylene reactor allowed for receiving over 9-fold higher conversion values compared to the results achieved when conducting the reaction in a glass reactor, as well as approximately 30-fold higher conversion values in comparison with free lipase. The good stability of the CALB-octyl-agarose support was demonstrated. After 7 days of storage in a climatic chamber or refrigerator (with protection from humidity) approximately 60% higher conversion values were obtained compared to the results observed for the immobilized form that had not been stored. The new approach involving the application of the CALB-octyl-agarose support for reactions performed in organic solvents indicates a significant role of the polymer reactor material being used in achieving high catalytic activity.
Collapse
Affiliation(s)
- Joanna Siódmiak
- Department of Laboratory Medicine, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland;
| | - Jacek Dulęba
- Department of Medicinal Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-089 Bydgoszcz, Poland; (J.D.); (N.K.); (R.M.); (M.P.M.)
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Medical Biotechnology and Laboratory Medicine, Pomeranian Medical University in Szczecin, 71-251 Szczecin, Poland
| | - Natalia Kocot
- Department of Medicinal Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-089 Bydgoszcz, Poland; (J.D.); (N.K.); (R.M.); (M.P.M.)
- Doctoral School of Medical and Health Sciences, Jagiellonian University, Łazarza 16, 31-530 Kraków, Poland
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Rafał Mastalerz
- Department of Medicinal Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-089 Bydgoszcz, Poland; (J.D.); (N.K.); (R.M.); (M.P.M.)
| | | | - Michał Piotr Marszałł
- Department of Medicinal Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-089 Bydgoszcz, Poland; (J.D.); (N.K.); (R.M.); (M.P.M.)
| | - Tomasz Siódmiak
- Department of Medicinal Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-089 Bydgoszcz, Poland; (J.D.); (N.K.); (R.M.); (M.P.M.)
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Medical Biotechnology and Laboratory Medicine, Pomeranian Medical University in Szczecin, 71-251 Szczecin, Poland
| |
Collapse
|
3
|
Chałupka J, Sikora A, Ziegler-Borowska M, Marszałł MP. Bio-Approach for Obtaining Enantiomerically Pure Clopidogrel with the Use of Ionic Liquids. Int J Mol Sci 2023; 24:11124. [PMID: 37446300 PMCID: PMC10342315 DOI: 10.3390/ijms241311124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Clopidogrel is a chiral compound widely used as an antiplatelet medication that lowers the risk of blood clots, strokes, and heart attacks. The main aim of the study presented herein was to obtain (S)-clopidogrel, which is commercially available in treatments, via the kinetic resolution of racemic clopidogrel carboxylic acid with the use of lipase from Candida rugosa and a two-phase reaction medium containing an ionic liquid. For this purpose, the enantioselective biotransformation of clopidogrel carboxylic acid and chiral chromatographic separation with the use of a UPLC-MS/MS system were optimized. The best kinetic resolution parameters were obtained by using a catalytic system containing lipase from Candida rugosa OF as a biocatalyst, cyclohexane and [EMIM][BF4] as a two-phase reaction medium, and methanol as an acyl acceptor. The enantiomeric excess of the product was eep = 94.21% ± 1.07 and the conversion was c = 49.60% ± 0.57%, whereas the enantioselectivity was E = 113.40 ± 1.29. The performed study proved the possibility of obtaining (S)-clopidogrel with the use of lipase as a biocatalyst and a two-phase reaction medium containing an ionic liquid, which is in parallel with green chemistry methodology and does not require environmentally harmful conditions.
Collapse
Affiliation(s)
- Joanna Chałupka
- Department of Medicinal Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Dr. A. Jurasza 2, 85-089 Bydgoszcz, Poland; (J.C.); (M.P.M.)
| | - Adam Sikora
- Department of Medicinal Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Dr. A. Jurasza 2, 85-089 Bydgoszcz, Poland; (J.C.); (M.P.M.)
| | - Marta Ziegler-Borowska
- Department of Biomedical Chemistry and Polymer Science, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Toruń, Poland;
| | - Michał Piotr Marszałł
- Department of Medicinal Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Dr. A. Jurasza 2, 85-089 Bydgoszcz, Poland; (J.C.); (M.P.M.)
| |
Collapse
|
4
|
Climatic Chamber Stability Tests of Lipase-Catalytic Octyl-Sepharose Systems. Catalysts 2023. [DOI: 10.3390/catal13030501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023] Open
Abstract
The application of the climatic chamber presented in this paper to assess the storage stability of immobilized lipases is a new approach characterized by the potential of unifying the study conditions of biocatalysts created in various laboratories. The data achieved from storing lipases in the climatic chambers may be crucial for the chemical and pharmaceutical industry. Our paper describes the developed protocols for immobilization via interfacial activation of lipase B from Candida antarctica (CALB) and lipase OF from Candida rugosa (CRL-OF) on the Octyl-Sepharose CL-4B support. Optimization included buffers with different pH values of 4–9 and a wide range of ionic strength from 5 mM to 700 mM. It has been shown that the optimal medium for the CALB immobilization process on the tested support is a citrate buffer at pH 4 and high ionic strength of 500 mM. Implementing new optimal procedures enabled the hyperactivation of immobilized CALB (recovery activity 116.10 ± 1.70%) under the applicable reaction conditions using olive oil as a substrate. Importantly, CALB storage stability tests performed in a climatic chamber under drastic temperature and humidity conditions proved good stability of the developed biocatalyst (residual activity 218 ± 7.3% of dry form, after 7 days). At the same time, the low storage stability of CRL OF in a climatic chamber was demonstrated. It should be emphasized that the use of a climatic chamber to test the storage stability of a dry form of the studied lipases immobilized on Octyl-Sepharose CL-4B is, to our knowledge, described for the first time in the literature.
Collapse
|
5
|
The Application of Two-Phase Catalytic System in Enantioselective Separation of Racemic (R,S)-1-Phenylethanol. Catalysts 2023. [DOI: 10.3390/catal13020292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Kinetic resolution is one of the methods which allows obtaining enantiomerically pure compounds. In the study presented herein, enantioselective biotransformations of (R,S)-1-phenylethanol were performed with the use of various catalytic systems containing ionic liquids and n-heptane or toluene as a reaction medium, vinyl acetate or isopropenyl acetate as an acetylating agent, and lipases from Burkholderia cepacia or Candida rugosa. The conducted studies proved that the use of Burkholderia cepacia lipase, vinyl acetate, and n-heptane with [EMIM][BF4] allows obtaining enantiomerically pure 1-phenylethyl acetate, with the enantiomeric excess of products eep = 98.9%, conversion c = 40.1%, and high value of enantioselectivity E > 200. Additionally, the use of ionic liquids allowed us to reuse enzyme in 5 reaction cycles, ensuring the high operational stability of the protein.
Collapse
|
6
|
Dulęba J, Siódmiak T, Marszałł MP. The influence of substrate systems on the enantioselective and lipolytic activity of immobilized Amano PS from Burkholderia cepacia lipase (APS-BCL). Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Rodríguez-Ortega PG, Sánchez-Valera M, López-González JJ, Montejo M. Fourier Transform Infrared Spectroscopy and Vibrational Circular Dichroism Assisted Elucidation of the Solution-State Supramolecular Speciation in Racemic and Enantiopure Ketoprofen. APPLIED SPECTROSCOPY 2022; 76:216-227. [PMID: 35001646 DOI: 10.1177/00037028211060073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The molecular structure and solution-state molecular interactions in the popular non-steroidal anti-inflammatory drug, ketoprofen, are extensively studied with the aim of gaining a better understanding of the chemical behavior of its solution state and its connection to its nucleation pathway and crystallization outcome. Using as reference solid-state X-ray structures of enantiomeric and racemic forms of ketoprofen, a set of self-assembly models underpinned by density functional theory calculations has been considered for the analysis of spectroscopic data, infrared (IR) and vibrational circular dichroism (VCD), obtained for solutions of the samples as a function of composition and solvent. From our results it can be concluded that, contrary to the general belief for generic carboxylic acids, there are no cyclic dimeric structures of ketoprofen present in solution, but rather linear arrays made up of two (in high polar or diluted media) or more units (in low polar or low dilution media). This observation is in line with the idea that the weak contacts (other than H-bonding) would hold the key to molecular self-assembly, in agreement with recent studies on other aromatic carboxylic acids.
Collapse
Affiliation(s)
| | | | | | - Manuel Montejo
- Department of Physical and Analytical Chemistry, 16747University of Jaén, Jaén, Spain
| |
Collapse
|
8
|
Performance of Candida rugosa lipase supported on nanocellulose-silica-reinforced polyethersulfone membrane for the synthesis of pentyl valerate: Kinetic, thermodynamic and regenerability studies. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111852] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Song M, Di X, Zhang Y, Sun Y, Wang Z, Yuan Z, Guo Y. The effect of enzyme loading, alcohol/acid ratio and temperature on the enzymatic esterification of levulinic acid with methanol for methyl levulinate production: a kinetic study. RSC Adv 2021; 11:15054-15059. [PMID: 35424031 PMCID: PMC8698936 DOI: 10.1039/d1ra01780b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 04/14/2021] [Indexed: 01/26/2023] Open
Abstract
Based on reaction reversibility and the law of mass action, a mathematical model was developed. By the developed model, the effect of enzyme loading, molar alcohol/acid ratio, and temperature on methyl levulinate yield was kinetically analyzed.
Collapse
Affiliation(s)
- Miaojia Song
- Guangzhou Institute of Energy Conversion
- Chinese Academy of Sciences
- CAS Key Laboratory of Renewable Energy
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development
- Guangzhou 510640
| | - Xiaohui Di
- Laboratory of Synthesis, Organic Reactivity & Catalysis
- Strasbourg Institute of Chemistry, associated with CNRS (UMR 7177)
- University of Strasbourg
- France
| | - Yu Zhang
- Guangzhou Institute of Energy Conversion
- Chinese Academy of Sciences
- CAS Key Laboratory of Renewable Energy
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development
- Guangzhou 510640
| | - Yongming Sun
- Guangzhou Institute of Energy Conversion
- Chinese Academy of Sciences
- CAS Key Laboratory of Renewable Energy
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development
- Guangzhou 510640
| | - Zhongming Wang
- Guangzhou Institute of Energy Conversion
- Chinese Academy of Sciences
- CAS Key Laboratory of Renewable Energy
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development
- Guangzhou 510640
| | - Zhenhong Yuan
- Guangzhou Institute of Energy Conversion
- Chinese Academy of Sciences
- CAS Key Laboratory of Renewable Energy
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development
- Guangzhou 510640
| | - Ying Guo
- Guangzhou Institute of Energy Conversion
- Chinese Academy of Sciences
- CAS Key Laboratory of Renewable Energy
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development
- Guangzhou 510640
| |
Collapse
|
10
|
Liu X, Zhao M, Fan X, Fu Y. Reshaping the active pocket of esterase Est816 for resolution of economically important racemates. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01028j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Eight 2-arylpropionic acids with high E values were generated by engineered Est816, which overcomes the contradiction between the wide substrate scope and high enantioselectivity of esterases.
Collapse
Affiliation(s)
- Xiaolong Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Meng Zhao
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Rd, Hefei, 230032, Anhui, People's Republic of China
| | - Xinjiong Fan
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Rd, Hefei, 230032, Anhui, People's Republic of China
| | - Yao Fu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
11
|
Chałupka J, Sikora A, Kozicka A, Marszałł MP. Overview: Enzyme-catalyzed Enantioselective Biotransformation of Chiral Active Compounds Used in Hypertension Treatment. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824999201020204256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Enzymatic kinetic resolution is one of the methods which allows for the synthesis
of enantiomerically pure various active pharmaceutical ingredients. In contrast to chemical
routes, enzymatic reactions have characteristics, including mild reaction conditions, a few byproducts,
and relatively high activity of the used enzymes. β-adrenolytic drugs are widely
used in the treatment of hypertension and cardiovascular disorders. Due to the fact that β-
blockers possess an asymmetric carbon atom in their structure, they are presented in two
enantiomeric forms. It was reported by many studies that only the (S)-enantiomers of these
drugs possess the desired therapeutic effect, whereas the administration of the racemate may
cause dangerous side effects, such as bronchoconstriction or diabetes. Nevertheless, β-
blockers are still commercially available drugs mainly used in medicine as racemates, whereas there are several
methods that are widely used in order to obtain enantiomerically pure compounds.
Collapse
Affiliation(s)
- Joanna Chałupka
- Department of Medicinal Chemistry, Collegium Medicum in Bydgoszcz, Faculty of Pharmacy, Nicolaus Copernicus University in Toruń, Dr. A. Jurasza 2, 85-089 Bydgoszcz, Poland
| | - Adam Sikora
- Department of Medicinal Chemistry, Collegium Medicum in Bydgoszcz, Faculty of Pharmacy, Nicolaus Copernicus University in Toruń, Dr. A. Jurasza 2, 85-089 Bydgoszcz, Poland
| | - Aleksandra Kozicka
- Department of Medical Genetics, University in Cambridge, Lv 6 Addenbrooke’s Treatment Centre, Cambridge, United Kingdom
| | - Michał Piotr Marszałł
- Department of Medicinal Chemistry, Collegium Medicum in Bydgoszcz, Faculty of Pharmacy, Nicolaus Copernicus University in Toruń, Dr. A. Jurasza 2, 85-089 Bydgoszcz, Poland
| |
Collapse
|
12
|
Advances in Recombinant Lipases: Production, Engineering, Immobilization and Application in the Pharmaceutical Industry. Catalysts 2020. [DOI: 10.3390/catal10091032] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Lipases are one of the most used enzymes in the pharmaceutical industry due to their efficiency in organic syntheses, mainly in the production of enantiopure drugs. From an industrial viewpoint, the selection of an efficient expression system and host for recombinant lipase production is highly important. The most used hosts are Escherichia coli and Komagataella phaffii (previously known as Pichia pastoris) and less often reported Bacillus and Aspergillus strains. The use of efficient expression systems to overproduce homologous or heterologous lipases often require the use of strong promoters and the co-expression of chaperones. Protein engineering techniques, including rational design and directed evolution, are the most reported strategies for improving lipase characteristics. Additionally, lipases can be immobilized in different supports that enable improved properties and enzyme reuse. Here, we review approaches for strain and protein engineering, immobilization and the application of lipases in the pharmaceutical industry.
Collapse
|
13
|
The Use of Ion Liquids as a Trojan Horse Strategy in Enzyme-Catalyzed Biotransformation of (R,S)-Atenolol. Catalysts 2020. [DOI: 10.3390/catal10070787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The enzymatic method was used for the direct biotransformation of racemic atenolol. The catalytic activities of commercially available lipases from Candida rugosa were tested for the kinetic resolution of (R,S)-atenolol by enantioselective acetylation in various two-phase reaction media containing ionic liquids. The composed catalytic system gave the possibility to easy separate substrates and products of the conducted enantioselective reaction and after specific procedure to reuse utilized enzymes in another catalytic cycle.
Collapse
|
14
|
Salgın S, Çakal M, Salgın U. Kinetic resolution of racemic naproxen methyl ester by magnetic and non-magnetic cross-linked lipase aggregates. Prep Biochem Biotechnol 2019; 50:148-155. [PMID: 31647366 DOI: 10.1080/10826068.2019.1679178] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
In this study, the non-magnetic and the magnetic cross-linked enzyme aggregates (CLEAs) from Candida rugosa lipase were synthesized to catalyze the kinetic resolution reaction of naproxen methyl ester (NME). Magnetic iron oxide nanoparticles (MIONPs) were produced through co-precipitation method and their surfaces were modified by silanization reaction. The MIONPs were used as a platform to synthesize the magnetic CLEAs (M-CLEAs). The biocatalysts and MIONPs synthesized were characterized by FTIR spectroscopy and SEM analysis. The kinetic resolution of racemic NME was studied in aqueous buffer solution/isooctane biphasic system to compare the performance of M-CLEAs and CLEAs. The effects of reaction parameters such as temperature, pH, stirring rate on the enantiomeric excess of the substrate (ees%) were investigated in a batch reactor system. The activity recovery of CRL enzyme in CLEAs was higher than M-CLEAs. Compared with M-CLEAs, CLEAs biocatalysts had previously reached ees% values. Although both biocatalysts showed similar cavity structure from SEM analysis, the lower performance of M-CLEAs may be due to the different microenvironments of M-CLEAs from CLEAs. However, the reusability performance of M-CLEAs was higher than that of CLEAs. The optimal reaction conditions for M-CLEAs and CLEAs were found to be 37 °C, pH 7.5, and 300 rpm.
Collapse
Affiliation(s)
- Sema Salgın
- Department of Chemical Engineering, Faculty of Engineering, Sivas Cumhuriyet University, Sivas, Turkey
| | - Mustafa Çakal
- Department of Chemical Engineering, Faculty of Engineering, Sivas Cumhuriyet University, Sivas, Turkey
| | - Uğur Salgın
- Department of Chemical Engineering, Faculty of Engineering, Sivas Cumhuriyet University, Sivas, Turkey
| |
Collapse
|
15
|
Cui X, Ding Q, Shan RN, He CH, Wu KJ. Enantioseparation of flurbiprofen enantiomers using chiral ionic liquids by liquid-liquid extraction. Chirality 2019; 31:457-467. [PMID: 31062890 DOI: 10.1002/chir.23071] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 03/01/2019] [Accepted: 03/29/2019] [Indexed: 12/14/2022]
Abstract
Flurbiprofen is a kind of nonsteroidal anti-inflammatory drug, which has been widely used in clinic for treatment of rheumatoid arthritis and osteoarthritis. It has been reported that S-flurbiprofen shows good performance on clinic anti-inflammatory treatment, while R-enantiomer almost has no pharmacological activities. It has important practical values to obtain optically pure S-flurbiprofen. In this work, chiral ionic liquids, which have good structural designability and chiral recognize ability, were selected as the extraction selector by the assistance of quantum chemistry calculations. The distribution behaviors of flurbiprofen enantiomers were investigated in the extraction system, which was composed of organic solvent and aqueous phase containing chiral ionic liquid. The results show that maximum enantioselectivity up to 1.20 was attained at pH 2.0, 25°C using 1,2-dichloroethane as organic solvent, 1-butyl-3-methylimidazole L-tryptophan ([Bmim][L-trp]) as chiral selector. The racemic flurbiprofen initial concentration was 0.2 mmol L-1 , and [Bmim][L-trp] concentration was 0.02 mol L-1 . Furthermore, the recycle of chiral ionic liquids has been achieved by reverse extraction process of the aqueous phase with chiral selector, which is significant for industrial application of chiral ionic liquids and scale-up of the extraction process.
Collapse
Affiliation(s)
- Xing Cui
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.,Institute of Zhejiang University-Quzhou, Quzhou, China
| | - Qi Ding
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.,Institute of Zhejiang University-Quzhou, Quzhou, China
| | - Ruo-Ni Shan
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.,Institute of Zhejiang University-Quzhou, Quzhou, China
| | - Chao-Hong He
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.,Institute of Zhejiang University-Quzhou, Quzhou, China
| | - Ke-Jun Wu
- School of Chemical and Process Engineering, University of Leeds, Leeds, UK
| |
Collapse
|
16
|
Hachuła B. The nature of hydrogen-bonding interactions in nonsteroidal anti-inflammatory drugs revealed by polarized IR spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 188:189-196. [PMID: 28711781 DOI: 10.1016/j.saa.2017.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 07/05/2017] [Accepted: 07/08/2017] [Indexed: 06/07/2023]
Abstract
The influence of hydrogen-bonding interactions in the solid phase on the IR spectroscopic pattern of the νOH band of nonsteroidal anti-inflammatory drugs (NSAIDs) was studied experimentally by IR spectroscopy with the use of polarized light at two temperatures (293K and 77K) and in isotopic dilution. The neat and deuterated crystals of (S)-naproxen ((S)-NPX), (R)-flurbiprofen ((R)-FBP), (RS)-flurbiprofen ((RS)-FBP) and (RS)-ketoprofen ((RS)-KTP) were obtained by melt crystallization between the two squeezed CaF2 plates. The vibrational spectra of selected α-aryl propionic acid derivatives (2APAs) reflected the characteristics of their hydrogen-bond networks, i.e., 2APAs were characterized by the chain ((S)-NPX, (R)-FBP) and by dimeric ((RS)-FBP, (RS)-KTP) arrangement of hydrogen bonds in the crystal lattice. Spectroscopic results showed that the interchain (through-space) exciton coupling, between two laterally-spaced hydrogen bonds, dominates in the crystals of four NSAIDs. The same exciton coupled hydrogen bonds were also responsible for the H/D isotopic recognition mechanism in the crystalline spectra of deuterated 2APAs. The presented spectral results may help to predict the hydrogen bond motifs in the crystalline NSAIDs, which structures are not yet known, based on their IR spectra of hydrogen bond in the crystals.
Collapse
Affiliation(s)
- Barbara Hachuła
- Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland.
| |
Collapse
|
17
|
Sarmah N, Revathi D, Sheelu G, Yamuna Rani K, Sridhar S, Mehtab V, Sumana C. Recent advances on sources and industrial applications of lipases. Biotechnol Prog 2017; 34:5-28. [DOI: 10.1002/btpr.2581] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 10/18/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Nipon Sarmah
- Chemical Engineering Div.; CSIR-Indian Institute of Chemical Technology; Hyderabad 500007 India
- Academy of Scientific and Innovative Research (AcSIR); Chennai 600 113 India
| | - D. Revathi
- Chemical Engineering Div.; CSIR-Indian Institute of Chemical Technology; Hyderabad 500007 India
| | - G. Sheelu
- Medicinal Chemistry and Pharmacology Div.; CSIR-Indian Institute of Chemical Technology; Hyderabad 500007 India
| | - K. Yamuna Rani
- Chemical Engineering Div.; CSIR-Indian Institute of Chemical Technology; Hyderabad 500007 India
| | - S. Sridhar
- Chemical Engineering Div.; CSIR-Indian Institute of Chemical Technology; Hyderabad 500007 India
| | - V. Mehtab
- Chemical Engineering Div.; CSIR-Indian Institute of Chemical Technology; Hyderabad 500007 India
| | - C. Sumana
- Chemical Engineering Div.; CSIR-Indian Institute of Chemical Technology; Hyderabad 500007 India
- Academy of Scientific and Innovative Research (AcSIR); Chennai 600 113 India
| |
Collapse
|
18
|
Enantioseparation of (RS)-atenolol with the use of lipases immobilized onto new-synthesized magnetic nanoparticles. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.tetasy.2017.01.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Sikora A, Chełminiak-Dudkiewicz D, Siódmiak T, Tarczykowska A, Sroka WD, Ziegler-Borowska M, Marszałł MP. Enantioselective acetylation of ( R , S )-atenolol: The use of Candida rugosa lipases immobilized onto magnetic chitosan nanoparticles in enzyme-catalyzed biotransformation. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2016.09.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
20
|
Velasco-Lozano S, López-Gallego F, Rocha-Martin J, Guisán JM, Favela-Torres E. Improving enantioselectivity of lipase from Candida rugosa by carrier-bound and carrier-free immobilization. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2016.04.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Immobilization of Candida antarctica Lipase B on Magnetic Poly(Urea-Urethane) Nanoparticles. Appl Biochem Biotechnol 2016; 180:558-575. [DOI: 10.1007/s12010-016-2116-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 05/05/2016] [Indexed: 01/20/2023]
|
22
|
|
23
|
Siódmiak T, Mangelings D, Heyden YV, Ziegler-Borowska M, Marszałł MP. High enantioselective Novozym 435-catalyzed esterification of (R,S)-flurbiprofen monitored with a chiral stationary phase. Appl Biochem Biotechnol 2015; 175:2769-85. [PMID: 25561056 PMCID: PMC4346682 DOI: 10.1007/s12010-014-1455-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 12/15/2014] [Indexed: 12/03/2022]
Abstract
Lipases form Candida rugosa and Candida antarctica were tested for their application in the enzymatic kinetic resolution of (R,S)-flurbiprofen by enantioselective esterification. Successful chromatographic separation with well-resolved peaks of (R)- and (S)-flurbiprofen and their esters was achieved in one run on chiral stationary phases by high-performance liquid chromatography (HPLC). In this study screening of enzymes was performed, and Novozym 435 was selected as an optimal catalyst for obtaining products with high enantiopurity. Additionally, the influence of organic solvents (dichloromethane, dichloroethane, dichloropropane, and methyl tert-butyl ether), primary alcohols (methanol, ethanol, n-propanol, and n-butanol), reaction time, and temperature on the enantiomeric ratio and conversion was tested. The high values of enantiomeric ratio (E in the range of 51.3-90.5) of the esterification of (R,S)-flurbiprofen were obtained for all tested alcohols using Novozym 435, which have a great significance in the field of biotechnological synthesis of drugs. The optimal temperature range for the performed reactions was from 37 to 45 °C. As a result of the optimization, (R)-flurbiprofen methyl ester was obtained with a high optical purity, eep = 96.3 %, after 96 h of incubation. The enantiomeric ratio of the reaction was E = 90.5 and conversion was C = 35.7 %.
Collapse
Affiliation(s)
- Tomasz Siódmiak
- Department of Medicinal Chemistry, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Dr. A. Jurasza 2, 85-089 Bydgoszcz, Poland
| | - Debby Mangelings
- Department of Analytical Chemistry and Pharmaceutical Technology, Center for Pharmaceutical Research (CePhaR), Vrije Universiteit Brussel-VUB, Laarbeeklaan 103, B-1090 Brussels, Belgium
| | - Yvan Vander Heyden
- Department of Analytical Chemistry and Pharmaceutical Technology, Center for Pharmaceutical Research (CePhaR), Vrije Universiteit Brussel-VUB, Laarbeeklaan 103, B-1090 Brussels, Belgium
| | - Marta Ziegler-Borowska
- Department of Chemistry, Chair of Chemistry and Photochemistry of Polymers, Nicolaus Copernicus University, Gagarina 7, 87-100 Toruń, Poland
| | - Michał Piotr Marszałł
- Department of Medicinal Chemistry, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Dr. A. Jurasza 2, 85-089 Bydgoszcz, Poland
| |
Collapse
|