1
|
Lauko K, Nesterowicz M, Trocka D, Dańkowska K, Żendzian-Piotrowska M, Zalewska A, Maciejczyk M. Novel Properties of Old Propranolol-Assessment of Antiglycation Activity through In Vitro and In Silico Approaches. ACS OMEGA 2024; 9:27559-27577. [PMID: 38947802 PMCID: PMC11209686 DOI: 10.1021/acsomega.4c03025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/01/2024] [Accepted: 06/06/2024] [Indexed: 07/02/2024]
Abstract
Hypertension has earned the "silent killer" nickname since it may lead to a number of comorbidities, including diabetes and cardiovascular diseases. Oxidative stress and protein glycation play vital roles in the pathogenesis of hypertension. Several studies have shown that they profoundly account for vascular dysfunction, endothelial damage, and disruption of blood pressure regulatory mechanisms. Of particular note are advanced glycation end products (AGEs). AGEs alter vascular tissues' functional and mechanical properties by binding to receptors for advanced glycation end products (RAGE), stimulating inflammation and free radical-mediated pathways. Propranolol, a nonselective beta-adrenergic receptor antagonist, is one of the most commonly used drugs to treat hypertension and cardiovascular diseases. Our study is the first to analyze propranolol's effects on protein glycoxidation through in vitro and in silico approaches. Bovine serum albumin (BSA) was utilized to evaluate glycoxidation inhibition by propranolol. Propranolol (1 mM) and BSA (0.09 mM) were incubated with different glycating (0.5 M glucose, fructose, and galactose for 6 days and 2.5 mM glyoxal and methylglyoxal for 12 h) or oxidizing agents (chloramine T for 1 h). Biomarkers of protein glycation (Amadori products (APs), β-amyloid (βA), and advanced glycation end products (AGEs)), protein glycoxidation (dityrosine (DT), kynurenine (KYN), and N-formylkynurenine (NFK)), protein oxidation (protein carbonyls (PCs), and advanced oxidation protein products (AOPPs)) were measured by means of colorimetric and fluorimetric methods. The scavenging of reactive oxygen species (hydrogen peroxide, hydroxyl radical, and nitric oxide) and the antioxidant capacity (2,2-diphenyl-1-picrylhydrazyl radical and ferrous ion chelating (FIC) assays)) of propranolol were also evaluated. Additionally, in silico docking was performed to showcase propranolol's interaction with BSA, glycosides, and AGE/RAGE pathway proteins. The products of protein glycation (↓APs, ↓βA, ↓AGEs), glycoxidation (↓DT, ↓KYN, ↓NFK), and oxidation (↓PCs, ↓AOPPs) prominently decreased in the BSA samples with both glycating/oxidizing factors and propranolol. The antiglycoxidant properties of propranolol were similar to those of aminoguanidine, a known protein oxidation inhibitor, and captopril, which is an established antioxidant. Propranolol showed a potent antioxidant activity in the FIC and H2O2 scavenging assays, comparable to aminoguanidine and captopril. In silico analysis indicated propranolol's antiglycative properties during its interaction with BSA, glycosidases, and AGE/RAGE pathway proteins. Our results confirm that propranolol may decrease protein oxidation and glycoxidation in vitro. Additional studies on human and animal models are vital for in vivo verification of propranolol's antiglycation activity, as this discovery might hold the key to the prevention of diabetic complications among cardiology-burdened patients.
Collapse
Affiliation(s)
- Kamil
Klaudiusz Lauko
- ‘Biochemistry
of Civilisation Diseases’ Students’ Scientific Club
at the Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, 2c Mickiewicza Street, Bialystok 15-233, Poland
| | - Miłosz Nesterowicz
- ‘Biochemistry
of Civilisation Diseases’ Students’ Scientific Club
at the Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, 2c Mickiewicza Street, Bialystok 15-233, Poland
| | - Daria Trocka
- ‘Biochemistry
of Civilisation Diseases’ Students’ Scientific Club
at the Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, 2c Mickiewicza Street, Bialystok 15-233, Poland
| | - Karolina Dańkowska
- ‘Biochemistry
of Civilisation Diseases’ Students’ Scientific Club
at the Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, 2c Mickiewicza Street, Bialystok 15-233, Poland
| | - Małgorzata Żendzian-Piotrowska
- Department of Hygiene, Epidemiology and
Ergonomics, Medical University of Bialystok, 2c Mickiewicza Street, Bialystok 15-233, Poland
| | - Anna Zalewska
- Independent Laboratory of Experimental
Dentistry, Medical University of Bialystok, 24a M. Sklodowskiej-Curie Street , Bialystok 15-274, Poland
| | - Mateusz Maciejczyk
- Department of Hygiene, Epidemiology and
Ergonomics, Medical University of Bialystok, 2c Mickiewicza Street, Bialystok 15-233, Poland
| |
Collapse
|
2
|
In Vitro and In Silico Studies of Human Tyrosyl-DNA Phosphodiesterase 1 (Tdp1) Inhibition by Stereoisomeric Forms of Lipophilic Nucleosides: The Role of Carbohydrate Stereochemistry in Ligand-Enzyme Interactions. Molecules 2022; 27:molecules27082433. [PMID: 35458631 PMCID: PMC9024977 DOI: 10.3390/molecules27082433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/03/2022] [Accepted: 04/06/2022] [Indexed: 12/10/2022] Open
Abstract
Inhibition of human DNA repair enzyme tyrosyl-DNA phosphodiesterase 1 (Tdp1) by different chiral lipophilic nucleoside derivatives was studied. New Tdp1 inhibitors were found in the series of the studied compounds with IC50 = 2.7–6.7 μM. It was shown that D-lipophilic nucleoside derivatives manifested higher inhibition activity than their L-analogs, and configuration of the carbohydrate moiety can influence the mechanism of Tdp1 inhibition.
Collapse
|
3
|
Syntheses, crystal structures, and solid-state spectroscopic properties of helical and non-helical dinuclear zinc(II) complexes derived from N2O2 ligands with different torsion-generating sources. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.118979] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Mikhael S, Abrol R. Chiral Graphs: Reduced Representations of Ligand Scaffolds for Stereoselective Biomolecular Recognition, Drug Design, and Enhanced Exploration of Chemical Structure Space. ChemMedChem 2019; 14:798-809. [PMID: 30821046 DOI: 10.1002/cmdc.201800761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/26/2019] [Indexed: 11/11/2022]
Abstract
Rational structure-based drug design relies on a detailed, atomic-level understanding of protein-ligand interactions. The chiral nature of drug binding sites in proteins has led to the discovery of predominantly chiral drugs. A mechanistic understanding of stereoselectivity (which governs how one stereoisomer of a drug might bind stronger than the others to a protein) depends on the topology of stereocenters in the chiral molecule. Chiral graphs and reduced chiral graphs, introduced here, are new topological representations of chiral ligands using graph theory, to facilitate a detailed understanding of chiral recognition of ligands/drugs by proteins. These representations are demonstrated by application to all ≈14 000+ chiral ligands in the Protein Data Bank (PDB), which will facilitate an understanding of protein-ligand stereoselectivity mechanisms. Ligand modifications during drug development can be easily incorporated into these chiral graphs. In addition, these chiral graphs present an efficient tool for a deep dive into the enormous chemical structure space to enable sampling of unexplored structural scaffolds.
Collapse
Affiliation(s)
- Simoun Mikhael
- Department of Chemistry and Biochemistry, College of Science and Mathematics, California State University, Northridge, CA, 91330, USA
| | - Ravinder Abrol
- Department of Chemistry and Biochemistry, College of Science and Mathematics, California State University, Northridge, CA, 91330, USA
| |
Collapse
|
5
|
Hu Y, Lin F, Wu T, Zhou Y, Li Q, Shao Y, Xu Z. DNA Duplex Engineering for Enantioselective Fluorescent Sensor. Anal Chem 2017; 89:2181-2185. [DOI: 10.1021/acs.analchem.6b04709] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yuehua Hu
- Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
| | - Fan Lin
- Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
| | - Tao Wu
- Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
| | - Yufeng Zhou
- Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
| | - Qiusha Li
- Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
| | - Yong Shao
- Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
| | - Zhiai Xu
- School
of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| |
Collapse
|