1
|
Yuan Z, Jiang Q, Liang G. Inspired by nature: Bioluminescent systems for bioimaging applications. Talanta 2025; 281:126821. [PMID: 39255622 DOI: 10.1016/j.talanta.2024.126821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/01/2024] [Accepted: 09/05/2024] [Indexed: 09/12/2024]
Abstract
Bioluminescence is a natural process where biological organisms produce light through chemical reactions. These reactions predominantly occur between small-molecule substrates and luciferase within bioluminescent organisms. Bioluminescence imaging (BLI) has shown significant potential in biomedical research owing to its non-invasive, real-time observation and quantification. In this review, we introduced the chemical mechanism of bioluminescent systems and categorized several strategies that successfully addressed the native limitations, including improvements on the chemical structures of luciferase-luciferin bioluminescence system and bioluminescence resonance energy transfer (BRET) methods. In addition, we also reviewed and summarized recent advances in bioimaging applications. We hope that this review can provide effective guidance for the development and application of bioluminescent systems in the field of bioimaging.
Collapse
Affiliation(s)
- Zihan Yuan
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Qiaochu Jiang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Gaolin Liang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China; Handan Norman Technology Co., Ltd., Guantao, 057750, China.
| |
Collapse
|
2
|
Caldwell DR, Townsend KM, Kolbaba-Kartchner B, Hadjian T, Ivanic J, Love AC, Malvar B, Mills J, Prescher JA, Schnermann MJ. Expedient Synthesis and Characterization of π-Extended Luciferins. J Org Chem 2024; 89:14625-14633. [PMID: 38096133 PMCID: PMC11323054 DOI: 10.1021/acs.joc.3c01920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Bioluminescence imaging enables the sensitive tracking of cell populations and the visualization of biological processes in living systems. Bioluminescent luciferase/luciferin pairs with far-red and near-infrared emission benefit from the reduced competitive absorption by blood and tissue while also facilitating multiplexing strategies. Luciferins with extended π-systems, such as AkaLumine and recently reported CouLuc-1 and -3, can be used for bioluminescence imaging in this long wavelength regime. Existing synthetic routes to AkaLumine and similar π-extended compounds require a multistep sequence to install the thiazoline heterocycle. Here we detail the development of a two-step strategy for accessing these molecules via a Horner-Wadsworth-Emmons reaction and cysteine condensation sequence from readily available aldehyde starting materials. We detail an improved synthesis of AkaLumine, as well as the corresponding two-carbon homologues, Tri- and Tetra-AkaLumine. We then extended this approach to prepare coumarin- and naphthalene-derived luciferins. These putative luciferins were tested against a panel of luciferases to identify capable emitters. Of these, an easily prepared naphthalene derivative exhibits photon emission on par with that of the broadly used Akaluc/AkaLumine pair with similar emission maxima. Overall, this chemistry provides efficient access to several bioluminescent probes for a variety of imaging applications.
Collapse
Affiliation(s)
- Donald R Caldwell
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Katherine M Townsend
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Bethany Kolbaba-Kartchner
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85281, United States
- The Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe, Arizona 85281, United States
| | - Tanya Hadjian
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Joseph Ivanic
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland 21702, United States
| | - Anna C Love
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Beatrice Malvar
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Jeremy Mills
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85281, United States
- The Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe, Arizona 85281, United States
| | - Jennifer A Prescher
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Martin J Schnermann
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| |
Collapse
|
3
|
Moon SW, Min SK. Gaussian Process Regression-Based Near-Infrared d-Luciferin Analogue Design Using Mutation-Controlled Graph-Based Genetic Algorithm. J Chem Inf Model 2024; 64:1522-1532. [PMID: 38365605 DOI: 10.1021/acs.jcim.3c00870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
Molecular discovery is central to the field of chemical informatics. Although optimization approaches have been developed that target-specific molecular properties in combination with machine learning techniques, optimization using databases of limited size is challenging for efficient molecular design. We present a molecular design method with a Gaussian process regression model and a graph-based genetic algorithm (GB-GA) from a data set comprising a small number of compounds by introducing mutation probability control in the genetic algorithm to enhance the optimization capability and speed up the convergence to the optimal solution. In addition, we propose reducing the number of parameters in the conventional GB-GA focusing on efficient molecular design from a small database. We generated a target-specific database by combining active learning and iterative design in the evolutionary methodologies and chose Gaussian process regression as the prediction model for molecular properties. We show that the proposed scheme is more efficient for optimization toward the target properties from goal-directed benchmarks with several drug-like molecules compared to the conventional GB-GA method. Finally, we provide a demonstration whereby we designed D-luciferin analogues with near-infrared fluorescence for bioimaging, which is desirable for effective in vivo light sources, from a small-size data set.
Collapse
Affiliation(s)
- Sung Wook Moon
- Departmet of Chemistry, School of Natural Science, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan 44919, South Korea
| | - Seung Kyu Min
- Departmet of Chemistry, School of Natural Science, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan 44919, South Korea
| |
Collapse
|
4
|
Miyabara H, Hirano R, Watanabe S, Soriano JCC, Watanabe H, Kuchimaru T, Kitada N, Kadonosono T, Maki SA, Kondoh G, Kizaka‐Kondoh S. In vivo optical imaging of tumor stromal cells with hypoxia-inducible factor activity. Cancer Sci 2023; 114:3935-3945. [PMID: 37482942 PMCID: PMC10551579 DOI: 10.1111/cas.15907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/25/2023] Open
Abstract
Tumors contain various stromal cells, such as immune cells, endothelial cells, and fibroblasts, which contribute to the development of a tumor-specific microenvironment characterized by hypoxia and inflammation, and are associated with malignant progression. In this study, we investigated the activity of intratumoral hypoxia-inducible factor (HIF), which functions as a master regulator of the cellular response to hypoxia and inflammation. We constructed the HIF activity-monitoring reporter gene hypoxia-response element-Venus-Akaluc (HVA) that expresses the green fluorescent protein Venus and modified firefly luciferase Akaluc in a HIF activity-dependent manner, and created transgenic mice harboring HVA transgene (HVA-Tg). In HVA-Tg, HIF-active cells can be visualized using AkaBLI, an ultra-sensitive in vivo bioluminescence imaging technology that produces an intense near-infrared light upon reaction of Akaluc with the D-luciferin analog AkaLumine-HCl. By orthotopic transplantation of E0771, a mouse triple negative breast cancer cell line without a reporter gene, into HVA-Tg, we succeeded in noninvasively monitoring bioluminescence signals from HIF-active stromal cells as early as 8 days after transplantation. The HIF-active stromal cells initially clustered locally and then spread throughout the tumors with growth. Immunohistochemistry and flow cytometry analyses revealed that CD11b+ F4/80+ macrophages were the predominant HIF-active stromal cells in E0771 tumors. These results indicate that HVA-Tg is a useful tool for spatiotemporal analysis of HIF-active tumor stromal cells, facilitating investigation of the roles of HIF-active tumor stromal cells in tumor growth and malignant progression.
Collapse
Affiliation(s)
- Hitomi Miyabara
- School of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
| | - Ryuichiro Hirano
- School of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
| | - Shigeaki Watanabe
- School of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
| | | | - Hitomi Watanabe
- Institute for Life and Medical SciencesKyoto UniversityKyotoJapan
| | - Takahiro Kuchimaru
- School of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
- Center for Molecular MedicineJichi Medical UniversityShimotsukeJapan
| | - Nobuo Kitada
- Graduate School of Informatics and EngineeringThe University of Electro‐CommunicationsChofuJapan
| | - Tetsuya Kadonosono
- School of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
| | - Shojiro A. Maki
- Graduate School of Informatics and EngineeringThe University of Electro‐CommunicationsChofuJapan
| | - Gen Kondoh
- Institute for Life and Medical SciencesKyoto UniversityKyotoJapan
| | | |
Collapse
|
5
|
Baljinnyam B, Ronzetti M, Simeonov A. Advances in luminescence-based technologies for drug discovery. Expert Opin Drug Discov 2023; 18:25-35. [PMID: 36562206 PMCID: PMC9892298 DOI: 10.1080/17460441.2023.2160441] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Luminescence-based technologies, specifically bioluminescence and chemiluminescence, are powerful tools with extensive use in drug discovery. Production of light during chemiluminescence and bioluminescence, unlike fluorescence, doesn't require an excitation light source, resulting in high signal-to-noise ratio, less background interference, and no issues from phototoxicity and photobleaching. These characteristics of luminescence technologies offer unique advantages for experimental designs, allowing for greater flexibility to target a wide range of proteins and biological processes for drug discovery at different stages. AREAS COVERED This review provides a basic overview of luciferase-based technologies and details recent advances and use cases of luciferase and luciferin variations and their applicability in the drug discovery toolset. The authors expand upon specific applications of luciferase technologies, including chemiluminescent and bioluminescent-based microscopy. Finally, the authors lay out forward-looking statements on the field of luminescence and how it may shape the translational scientists' work moving forward. EXPERT OPINION The demand for improved luciferase and luciferin pairs correlates strongly with efforts to improve the sensitivity and robustness of high-throughput assays. As luminescent reporter systems improve, so will the expansion of use cases for luminescence-based technologies in early-stage drug discovery. With the synthesis of novel, non-enzymatic chemiluminescence-based probes, which previously were restrained to only basic research applications, they may now be readily implemented in drug discovery campaigns.
Collapse
Affiliation(s)
- Bolormaa Baljinnyam
- Staff Scientist, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Michael Ronzetti
- Predoctoral IRTA Fellow, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Anton Simeonov
- Group Leader, Scientific Director, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
6
|
Hesemans E, Buttiens K, Manshian BB, Soenen SJ. The Role of Optical Imaging in Translational Nanomedicine. J Funct Biomater 2022; 13:137. [PMID: 36135572 PMCID: PMC9502568 DOI: 10.3390/jfb13030137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/18/2022] Open
Abstract
Nanomedicines have been a major research focus in the past two decades and are increasingly emerging in a broad range of clinical applications. However, a proper understanding of their biodistribution is required to further progress the field of nanomedicine. For this, imaging methods to monitor the delivery and therapeutic efficacy of nanoparticles are urgently needed. At present, optical imaging is the most common method used to study the biodistribution of nanomaterials, where the unique properties of nanomaterials and advances in optical imaging can jointly result in novel methods for optimal monitoring of nanomaterials in preclinical animal models. This review article aims to give an introduction to nanomedicines and their translational impact to highlight the potential of optical imaging to study the biodistribution of nanoparticles and to monitor the delivery and therapeutic efficacy at the preclinical level. After introducing both domains, the review focuses on different techniques that can be used to overcome some intrinsic limitations of optical imaging and how this can specifically benefit nanoparticle studies. Finally, we point out some important key features of nanoparticles that currently hinder their full potential in the clinic and how the advances in optical imaging can help to provide us with the information needed to further boost the clinical translation and expand the field of nanomedicines.
Collapse
Affiliation(s)
- Evelien Hesemans
- NanoHealth and Optical Imaging Group, Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium
| | - Kiana Buttiens
- NanoHealth and Optical Imaging Group, Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium
| | - Bella B. Manshian
- Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium
- Leuven Cancer Institute, 3000 Leuven, Belgium
| | - Stefaan J. Soenen
- NanoHealth and Optical Imaging Group, Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium
- Leuven Cancer Institute, 3000 Leuven, Belgium
| |
Collapse
|
7
|
Emerging tools for bioluminescence imaging. Curr Opin Chem Biol 2021; 63:86-94. [PMID: 33770744 DOI: 10.1016/j.cbpa.2021.02.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/27/2021] [Accepted: 02/15/2021] [Indexed: 02/08/2023]
Abstract
Bioluminescence (BL) relies on the enzymatic reaction between luciferase, a substrate conventionally named luciferin, and various cofactors. BL imaging has become a widely used technique to interrogate gene expression and cell fate, both in small and large animal models of research. Recent developments include the generation of improved luciferase-luciferin systems for deeper and more sensitive imaging as well as new caged luciferins to report on enzymatic activity and other intracellular functions. Here, we critically evaluate the emerging tools for BL imaging aiming to provide the reader with an updated compendium of the latest developments (2018-2020) and their notable applications.
Collapse
|
8
|
Saito-Moriya R, Nakayama J, Kamiya G, Kitada N, Obata R, Maki SA, Aoyama H. How to Select Firefly Luciferin Analogues for In Vivo Imaging. Int J Mol Sci 2021; 22:1848. [PMID: 33673331 PMCID: PMC7918177 DOI: 10.3390/ijms22041848] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 02/06/2023] Open
Abstract
Bioluminescence reactions are widely applied in optical in vivo imaging in the life science and medical fields. Such reactions produce light upon the oxidation of a luciferin (substrate) catalyzed by a luciferase (enzyme), and this bioluminescence enables the quantification of tumor cells and gene expression in animal models. Many researchers have developed single-color or multicolor bioluminescence systems based on artificial luciferin analogues and/or luciferase mutants, for application in vivo bioluminescence imaging (BLI). In the current review, we focus on the characteristics of firefly BLI technology and discuss the development of luciferin analogues for high-resolution in vivo BLI. In addition, we discuss the novel luciferin analogues TokeOni and seMpai, which show potential as high-sensitivity in vivo BLI reagents.
Collapse
Affiliation(s)
- Ryohei Saito-Moriya
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
- Department of Engineering Science, Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo 182-8585, Japan
- Center for Neuroscience and Biomedical Engineering, The University of Electro-Communications, Tokyo 182-8585, Japan
| | - Jun Nakayama
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Genta Kamiya
- Department of Engineering Science, Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo 182-8585, Japan
- Center for Neuroscience and Biomedical Engineering, The University of Electro-Communications, Tokyo 182-8585, Japan
| | - Nobuo Kitada
- Department of Engineering Science, Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo 182-8585, Japan
- Center for Neuroscience and Biomedical Engineering, The University of Electro-Communications, Tokyo 182-8585, Japan
| | - Rika Obata
- Department of Engineering Science, Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo 182-8585, Japan
| | - Shojiro A Maki
- Department of Engineering Science, Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo 182-8585, Japan
- Center for Neuroscience and Biomedical Engineering, The University of Electro-Communications, Tokyo 182-8585, Japan
| | - Hiroshi Aoyama
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| |
Collapse
|
9
|
Syed AJ, Anderson JC. Applications of bioluminescence in biotechnology and beyond. Chem Soc Rev 2021; 50:5668-5705. [DOI: 10.1039/d0cs01492c] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Bioluminescent probes have hugely benefited from the input of synthetic chemistry and protein engineering. Here we review the latest applications of these probes in biotechnology and beyond, with an eye on current limitations and future directions.
Collapse
Affiliation(s)
- Aisha J. Syed
- Department of Chemistry
- University College London
- London
- UK
| | | |
Collapse
|
10
|
Viviani VR, Bevilaqua VR, de Souza DR, Pelentir GF, Kakiuchi M, Hirano T. A Very Bright Far-Red Bioluminescence Emitting Combination Based on Engineered Railroad Worm Luciferase and 6'-Amino-Analogs for Bioimaging Purposes. Int J Mol Sci 2020; 22:E303. [PMID: 33396708 PMCID: PMC7794784 DOI: 10.3390/ijms22010303] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 12/18/2022] Open
Abstract
Beetle luciferases produce bioluminescence (BL) colors ranging from green to red, having been extensively used for many bioanalytical purposes, including bioimaging of pathogen infections and metastasis proliferation in living animal models and cell culture. For bioimaging purposes in mammalian tissues, red bioluminescence is preferred, due to the lower self-absorption of light at longer wavelengths by hemoglobin, myoglobin and melanin. Red bioluminescence is naturally produced only by Phrixothrix hirtus railroad worm luciferase (PxRE), and by some engineered beetle luciferases. However, Far-Red (FR) and Near-Infrared (NIR) bioluminescence is best suited for bioimaging in mammalian tissues due to its higher penetrability. Although some FR and NIR emitting luciferin analogs have been already developed, they usually emit much lower bioluminescence activity when compared to the original luciferin-luciferases. Using site-directed mutagenesis of PxRE luciferase in combination with 6'-modified amino-luciferin analogs, we finally selected novel FR combinations displaying BL ranging from 636-655 nm. Among them, the combination of PxRE-R215K mutant with 6'-(1-pyrrolidinyl)luciferin proved to be the best combination, displaying the highest BL activity with a catalytic efficiency ~2.5 times higher than the combination with native firefly luciferin, producing the second most FR-shifted bioluminescence (650 nm), being several orders of magnitude brighter than commercial AkaLumine with firefly luciferase. Such combination also showed higher thermostability, slower BL decay time and better penetrability across bacterial cell membranes, resulting in ~3 times higher in vivo BL activity in bacterial cells than with firefly luciferin. Overall, this is the brightest FR emitting combination ever reported, and is very promising for bioimaging purposes in mammalian tissues.
Collapse
Affiliation(s)
- Vadim R. Viviani
- Graduate Program of Evolutive Genetics and Molecular Biology, Federal University of São Carlos (UFSCar), 18052-780 São Carlos, São Paulo, Brazil;
- Graduate Program of Biotechnology and Environmental Monitoring, Federal University of São Carlos (UFSCar), 18119-001 Sorocaba, São Paulo, Brazil;
| | - Vanessa R. Bevilaqua
- Graduate Program of Evolutive Genetics and Molecular Biology, Federal University of São Carlos (UFSCar), 18052-780 São Carlos, São Paulo, Brazil;
| | - Daniel R. de Souza
- Graduate Program of Biotechnology and Environmental Monitoring, Federal University of São Carlos (UFSCar), 18119-001 Sorocaba, São Paulo, Brazil;
| | - Gabriel F. Pelentir
- Department of Physics, Chemistry and Mathematics, Federal University of São Carlos (UFSCar), 18052-780 São Carlos, São Paulo, Brazil;
| | - Michio Kakiuchi
- Department of Engineering Science, Graduate School of Informatics and Engineering, The University of Electro-Communications, Chofu, Tokyo 182-8585, Japan; (M.K.); (T.H.)
| | - Takashi Hirano
- Department of Engineering Science, Graduate School of Informatics and Engineering, The University of Electro-Communications, Chofu, Tokyo 182-8585, Japan; (M.K.); (T.H.)
| |
Collapse
|
11
|
Li S, Ruan Z, Zhang H, Xu H. Recent achievements of bioluminescence imaging based on firefly luciferin-luciferase system. Eur J Med Chem 2020; 211:113111. [PMID: 33360804 DOI: 10.1016/j.ejmech.2020.113111] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 11/26/2020] [Accepted: 12/13/2020] [Indexed: 02/06/2023]
Abstract
Bioluminescence imaging (BLI) is a newly developed noninvasive visual approach which facilitates the understanding of a plethora of biological processes in vitro and in vivo due to the high sensitivity, resolution and selectivity, low background signal, and the lack of external light excitation. BLI based on firefly luciferin-luciferase system has been widely used for the activity evaluation of tumor-specific enzymes, for the detection of diseases-related bioactive small molecules and metal ions, and for the diagnosis and therapy of diseases including the studies of drug transport, the research of immune response, and the evaluation of drug potency and tissue distribution. In this review, we highlight the recent achievements in luciferin derivatives with red-shifted emission spectra, mutant luciferase-luciferin pairs, and the diagnostic and therapeutic application of BLI based on firefly luciferin-luciferase system. The development and application of BLI will expand our knowledge of the occurrence and development of diseases and shed light on the diagnosis and treatment of various diseases.
Collapse
Affiliation(s)
- Shufeng Li
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Zhiyang Ruan
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Hang Zhang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| | - Haiwei Xu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| |
Collapse
|
12
|
Nakayama J, Saito R, Hayashi Y, Kitada N, Tamaki S, Han Y, Semba K, Maki SA. High Sensitivity In Vivo Imaging of Cancer Metastasis Using a Near-Infrared Luciferin Analogue seMpai. Int J Mol Sci 2020; 21:ijms21217896. [PMID: 33114327 PMCID: PMC7660630 DOI: 10.3390/ijms21217896] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 01/24/2023] Open
Abstract
Bioluminescence imaging (BLI) is useful to monitor cell movement and gene expression in live animals. However, D-luciferin has a short wavelength (560 nm) which is absorbed by tissues and the use of near-infrared (NIR) luciferin analogues enable high sensitivity in vivo BLI. The AkaLumine-AkaLuc BLI system (Aka-BLI) can detect resolution at the single-cell level; however, it has a clear hepatic background signal. Here, to enable the highly sensitive detection of bioluminescence from the surrounding liver tissues, we focused on seMpai (C15H16N3O2S) which has been synthesized as a luciferin analogue and has high luminescent abilities as same as AkaLumine. We demonstrated that seMpai BLI could detect micro-signals near the liver without any background signal. The solution of seMpai was neutral; therefore, seMpai imaging did not cause any adverse effect in mice. seMpai enabled a highly sensitive in vivo BLI as compared to previous techniques. Our findings suggest that the development of a novel mutated luciferase against seMpai may enable a highly sensitive BLI at the single-cell level without any background signal. Novel seMpai BLI system can be used for in vivo imaging in the fields of life sciences and medicine.
Collapse
Affiliation(s)
- Jun Nakayama
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo 162-8480, Japan; (Y.H.); (Y.H.); (K.S.)
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo 104-0045, Japan
- Correspondence: ; Tel./Fax: +81-3-5369-7320
| | - Ryohei Saito
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan;
- Department of Engineering Science, Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo 182-8585, Japan; (N.K.); (S.T.); (S.A.M.)
- Center for Neuroscience and Biomedical Engineering, The University of Electro-Communications, Tokyo 182-8585, Japan
| | - Yusuke Hayashi
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo 162-8480, Japan; (Y.H.); (Y.H.); (K.S.)
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Nobuo Kitada
- Department of Engineering Science, Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo 182-8585, Japan; (N.K.); (S.T.); (S.A.M.)
- Center for Neuroscience and Biomedical Engineering, The University of Electro-Communications, Tokyo 182-8585, Japan
| | - Shota Tamaki
- Department of Engineering Science, Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo 182-8585, Japan; (N.K.); (S.T.); (S.A.M.)
- Center for Neuroscience and Biomedical Engineering, The University of Electro-Communications, Tokyo 182-8585, Japan
| | - Yuxuan Han
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo 162-8480, Japan; (Y.H.); (Y.H.); (K.S.)
| | - Kentaro Semba
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo 162-8480, Japan; (Y.H.); (Y.H.); (K.S.)
- Department of Cell Factory, Translational Research Center, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Shojiro A. Maki
- Department of Engineering Science, Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo 182-8585, Japan; (N.K.); (S.T.); (S.A.M.)
- Center for Neuroscience and Biomedical Engineering, The University of Electro-Communications, Tokyo 182-8585, Japan
| |
Collapse
|
13
|
Abstract
Bioluminescence (BL) is an excellent optical readout platform that has great potential to be utilized in various bioassays and molecular imaging. The advantages of BL-based bioassays include the long dynamic range, minimal background, high signal-to-noise ratios, biocompatibility for use in cell-based assays, no need of external light source for excitation, simplicity in the measurement system, and versatility in the assay design. The recent intensive research in BL has greatly diversified the available luciferase-luciferin systems in the bioassay toolbox. However, the wide variety does not promise their successful utilization in various bioassays as new tools. This is mainly due to complexity and confusion with the diversity, and the unavailability of defined standards. This review is intended to provide an overview of recent basic developments and applications in BL studies, and showcases the bioanalytical utilities. We hope that this review can be used as an instant reference on BL and provides useful guidance for readers in narrowing down their potential options in their own assay designs.
Collapse
Affiliation(s)
- Sung-Bae Kim
- Research Institute for Environmental Management Technology, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Ramasamy Paulmurugan
- Molecular Imaging Program at Stanford, Bio-X Program, Stanford University School of Medicine
| |
Collapse
|
14
|
Kitada N, Saito R, Obata R, Iwano S, Karube K, Miyawaki A, Hirano T, Maki SA. Development of near-infrared firefly luciferin analogue reacted with wild-type and mutant luciferases. Chirality 2020; 32:922-931. [PMID: 32367573 PMCID: PMC7383472 DOI: 10.1002/chir.23236] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 02/06/2023]
Abstract
Interestingly, only the D-form of firefly luciferin produces light by luciferin-luciferase (L-L) reaction. Certain firefly luciferin analogues with modified structures maintain bioluminescence (BL) activity; however, all L-form luciferin analogues show no BL activity. To this date, our group has developed luciferin analogues with moderate BL activity that produce light of various wavelengths. For in vivo bioluminescence imaging, one of the important factors for detection sensitivity is tissue permeability of the number of photons emitted by L-L reaction, and the wavelengths of light in the near-infrared (NIR) range (700-900 nm) are most appropriate for the purpose. Some NIR luciferin analogues by us had performance for in vivo experiments to make it possible to detect photons from deep target tissues in mice with high sensitivity, whereas only a few of them can produce NIR light by the L-L reactions with wild-type luciferase and/or mutant luciferase. Based on the structure-activity relationships, we designed and synthesized here a luciferin analogue with the 5-allyl-6-dimethylamino-2-naphthylethenyl moiety. This analogue exhibited NIR BL emissions with wild-type luciferase (λmax = 705 nm) and mutant luciferase AlaLuc (λmax = 655 nm).
Collapse
Affiliation(s)
- Nobuo Kitada
- Department of Engineering Science, Graduate School of Informatics and Engineering,, The University of Electro-Communications, Chofu, Japan.,Center for Neuroscience and Biomedical Engineering, The University of Electro-Communications, Chofu, Japan
| | - Ryohei Saito
- Department of Engineering Science, Graduate School of Informatics and Engineering,, The University of Electro-Communications, Chofu, Japan.,School of Pharmacy, Tokyo University of Pharmacy and Life Science, Tokyo, Japan
| | - Rika Obata
- Department of Engineering Science, Graduate School of Informatics and Engineering,, The University of Electro-Communications, Chofu, Japan
| | - Satoshi Iwano
- Laboratory for Cell Function and Dynamics, Center for Brain Science, Saitama, Japan
| | - Kazuma Karube
- Department of Engineering Science, Graduate School of Informatics and Engineering,, The University of Electro-Communications, Chofu, Japan
| | - Atsushi Miyawaki
- Laboratory for Cell Function and Dynamics, Center for Brain Science, Saitama, Japan
| | - Takashi Hirano
- Department of Engineering Science, Graduate School of Informatics and Engineering,, The University of Electro-Communications, Chofu, Japan
| | - Shojiro A Maki
- Department of Engineering Science, Graduate School of Informatics and Engineering,, The University of Electro-Communications, Chofu, Japan.,Center for Neuroscience and Biomedical Engineering, The University of Electro-Communications, Chofu, Japan
| |
Collapse
|