1
|
Adilbekova B, Scaccabarozzi AD, Faber H, Nugraha MI, Bruevich V, Kaltsas D, Naphade DR, Wehbe N, Emwas AH, Alshareef HN, Podzorov V, Martín J, Tsetseris L, Anthopoulos TD. Enhancing the Electrical Conductivity and Long-Term Stability of PEDOT:PSS Electrodes through Sequential Treatment with Nitric Acid and Cesium Chloride. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405094. [PMID: 39097951 DOI: 10.1002/adma.202405094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/17/2024] [Indexed: 08/06/2024]
Abstract
Solution-processable poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) is an important polymeric conductor used extensively in organic flexible, wearable, and stretchable optoelectronics. However, further enhancing its conductivity and long-term stability while maintaining its superb mechanical properties remains challenging. Here, a novel post-treatment approach to enhance the electrical properties and stability of sub-20-nm-thin PEDOT:PSS films processed from solution is introduced. The approach involves a sequential post-treatment with HNO3 and CsCl, resulting in a remarkable enhancement of the electrical conductivity of PEDOT:PSS films to over 5500 S cm-1, along with improved carrier mobility. The post-treated films exhibit remarkable air stability, retaining over 85% of their initial conductivity even after 270 days of storage. Various characterization techniques, including X-ray photoelectron spectroscopy, atomic force microscopy, Raman spectroscopy, Hall effect measurements, and grazing incidence wide angle X-ray scattering, coupled with density functional theory calculations, provide insights into the structural changes and interactions responsible for these improvements. To demonstrate the potential for practical applications, the ultrathin PEDOT:PSS films are connected to an inorganic light-emitting diode with a battery, showcasing their suitability as transparent electrodes. This work presents a promising approach for enhancing the electrical conductivity of PEDOT:PSS while offering a comprehensive understanding of the underlying mechanisms that can guide further advances.
Collapse
Affiliation(s)
- Begimai Adilbekova
- Department of Material Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Alberto D Scaccabarozzi
- Center for Nano Science and Technology (CNST), Istituto Italiano di Tecnologia (IIT), Via Raffaele Rubattino, 81, Milan, 20134, Italy
- Department of Physics, Politecnico di Milano, Edificio 8, Piazza Leonardo da Vinci, 32, Milano, 20133, Italy
| | - Hendrik Faber
- Department of Material Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Mohamad Insan Nugraha
- Department of Material Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
- Research Center for Nanotechnology Systems, National Research and Innovation Agency (BRIN), South Tangerang, Banten, 15314, Indonesia
| | - Vladimir Bruevich
- Department of Physics and Astronomy, Rutgers, The State University of New Jersey, 136 Frelinghuysen Road, Piscataway, NJ, 08854-8019, USA
| | - Dimitris Kaltsas
- Department of Physics, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Athens, 15718, Greece
| | - Dipti R Naphade
- Department of Material Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Nimer Wehbe
- Imaging and Characterization Core Lab, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Abdul-Hamid Emwas
- Imaging and Characterization Core Lab, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Husam N Alshareef
- Department of Material Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Vitaly Podzorov
- Department of Physics and Astronomy, Rutgers, The State University of New Jersey, 136 Frelinghuysen Road, Piscataway, NJ, 08854-8019, USA
| | - Jaime Martín
- Centro de Investigación en Tecnoloxías Navais e Industriais (CITENI), Universidade da Coruña, Campus de Esteiro s/n, Ferrol, 15403, Spain
| | - Leonidas Tsetseris
- Department of Physics, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Athens, 15718, Greece
| | - Thomas D Anthopoulos
- Department of Material Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
- Henry Royce Institute, Photon Science Institute, Department of Electrical and Electronic Engineering, The University of Manchester, Manchester, M13 9PL, UK
| |
Collapse
|
2
|
Wu X, Zheng X, Chen T, Zhang S, Zhou Y, Wang M, Chen T, Wang Y, Bi Z, Fu W, Du M, Ma W, Zuo L, Chen H. High-Performance Intrinsically Stretchable Organic Photovoltaics Enabled by Robust Silver Nanowires/S-PH1000 Hybrid Transparent Electrodes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406879. [PMID: 39177117 DOI: 10.1002/adma.202406879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/20/2024] [Indexed: 08/24/2024]
Abstract
Intrinsically stretchable organic photovoltaics (is-OPVs) hold significant promise for integration into self-powered wearable electronics. However, their potential is hindered by the lack of sufficient consistency between optoelectronic and mechanical properties. This is primarily due to the limited availability of stretchable transparent electrodes (STEs) that possess both high conductivity and stretchability. Here, a hybrid STE with exceptional conductivity, stretchability, and thermal stability is presented. Specifically, STEs are composed of the modified PH1000 (referred to as S-PH1000) and silver nanowires (AgNWs). The S-PH1000 endows the STE with good stretchability and smoothens the surface, while the AgNWs enhance the charge transport. The resulting hybrid STEs enable is-OPVs to a remarkable power conversion efficiency (PCE) of 16.32%, positioning them among the top-performing is-OPVs. With 10% elastomer, the devices retain 82% of the initial PCE after 500 cycles at 20% strain. Additionally, OPVs equipped with these STEs exhibit superior thermal stability compared to those using indium tin oxide electrodes, maintaining 75% of the initial PCE after annealing at 85 °C for 390 h. The findings underscore the suitability of the designed hybrid electrodes for efficient and stable is-OPVs, offering a promising avenue for the future application of OPVs.
Collapse
Affiliation(s)
- Xiaoling Wu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Xiangjun Zheng
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Tianyi Chen
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Sen Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Ying Zhou
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Mengting Wang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Tingjun Chen
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Yiming Wang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - ZhaoZhao Bi
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Weifei Fu
- Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, P. R. China
| | - Miao Du
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Wei Ma
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Lijian Zuo
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
- Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, P. R. China
| | - Hongzheng Chen
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
- Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, P. R. China
| |
Collapse
|
3
|
Moeed S, Bousbih R, Ayub AR, Jafar NNA, Aljohani M, Jabir MS, Amin MA, Zubair H, Majdi H, Waqas M, Hadia NMA, Khera RA. A theoretical investigation for improving the performance of non-fullerene organic solar cells through side-chain engineering of BTR non-fused-ring electron acceptors. J Mol Graph Model 2024; 131:108792. [PMID: 38797085 DOI: 10.1016/j.jmgm.2024.108792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024]
Abstract
In the current quantum chemical study, indacenodithiophene donor core-based the end-capped alterations of the reference chromophore BTR drafted eight A2-A1-D-A1-A2 type small non-fullerene acceptors. All the computational simulations were executed under MPW1PW91/6-31G (d, p) level of DFT. The UV-Vis absorption, open circuit voltage, electron affinity, ionization potential, the density of states, reorganization energy, orbital analysis, and non-covalent interactions were studied and compared with BTR. Several molecules of our modeled series BT1-BT8 have shown distinctive features that are better than those of the BTR. The open circuit voltage (VOC) of BT5 has a favorable impact, allowing it to replace BTR in the field of organic solar cells. The charge carrier motilities for proposed molecules generated extraordinary findings when matched to the reference one (BTR). Further charge transmission was confirmed by creating the complex with a PM6 donor molecule. The remarkable dipole moment contributes to the formation of non-covalent bond interactions with chloroform, resulting in superior charge mobility. Based on these findings, it can be said that every tailored molecule has the potential to surpass chromophore molecule (BTR) in OSCs. So, all tailored molecules may enhance the efficiency of photovoltaic cells due to the involvement of potent terminal electron-capturing acceptor2 moieties. Considering these obtained results, these newly presented molecules can be regarded for developing efficient solar devices in the future.
Collapse
Affiliation(s)
- Sidra Moeed
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - R Bousbih
- Department of Physics, Faculty of Science, University of Tabuk, 71491, Tabuk, Saudi Arabia
| | - Ali Raza Ayub
- Key Laboratory of Clusters Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Nadhir N A Jafar
- Al-Zahraa Center for Medical and Pharmaceutical Research Sciences (ZCMRS), Al-Zahraa University for Women, Karbala, 56001, Iraq
| | - Mohammed Aljohani
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Majid S Jabir
- Department of Applied Sciences, University of Technology, Iraq
| | - Mohammed A Amin
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Hira Zubair
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Hasan Majdi
- Department of Chemical Engineering and Petroleum Industries, Al-Mustaqbal University College, Babylon, 51001, Iraq
| | - Muhammad Waqas
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - N M A Hadia
- Department of Physics, College of Science, Jouf University, Sakaka, 2014, Al-Jouf, Saudi Arabia
| | - Rasheed Ahmad Khera
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan.
| |
Collapse
|
4
|
Ding Y, Xiong S, Sun L, Wang Y, Zhou Y, Li Y, Peng J, Fukuda K, Someya T, Liu R, Zhang X. Metal nanowire-based transparent electrode for flexible and stretchable optoelectronic devices. Chem Soc Rev 2024; 53:7784-7827. [PMID: 38953906 DOI: 10.1039/d4cs00080c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
High-quality transparent electrodes are indispensable components of flexible optoelectronic devices as they guarantee sufficient light transparency and electrical conductivity. Compared to commercial indium tin oxide, metal nanowires are considered ideal candidates as flexible transparent electrodes (FTEs) owing to their superior optoelectronic properties, excellent mechanical flexibility, solution treatability, and higher compatibility with semiconductors. However, certain key challenges associated with material preparation and device fabrication remain for the practical application of metal nanowire-based electrodes. In this review, we discuss state-of-the-art solution-processed metal nanowire-based FTEs and their applications in flexible and stretchable optoelectronic devices. Specifically, the important properties of FTEs and a cost-benefit analysis of existing technologies are introduced, followed by a summary of the synthesis strategy, key properties, and fabrication technologies of the nanowires. Subsequently, we explore the applications of metal-nanowire-based FTEs in different optoelectronic devices including solar cells, photodetectors, and light-emitting diodes. Finally, the current status, future challenges, and emerging strategies in this field are presented.
Collapse
Affiliation(s)
- Yu Ding
- Soochow Institute of Energy and Material Innovations, Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Institute of Functional Nano and Soft Materials (FUNSOM) and College of Energy, Soochow University, Suzhou 215006, P. R. China.
| | - Sixing Xiong
- Center for Emergent Matter Science (CEMS), RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | - Lulu Sun
- Thin-Film Device Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yiying Wang
- Soochow Institute of Energy and Material Innovations, Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Institute of Functional Nano and Soft Materials (FUNSOM) and College of Energy, Soochow University, Suzhou 215006, P. R. China.
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215006, P. R. China
| | - Yinhua Zhou
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Yaowen Li
- College of Chemistry, Soochow University, Suzhou 215123, P. R. China
| | - Jun Peng
- Soochow Institute of Energy and Material Innovations, Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Institute of Functional Nano and Soft Materials (FUNSOM) and College of Energy, Soochow University, Suzhou 215006, P. R. China.
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215006, P. R. China
| | - Kenjiro Fukuda
- Center for Emergent Matter Science (CEMS), RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
- Thin-Film Device Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Takao Someya
- Center for Emergent Matter Science (CEMS), RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
- Thin-Film Device Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Ruiyuan Liu
- Soochow Institute of Energy and Material Innovations, Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Institute of Functional Nano and Soft Materials (FUNSOM) and College of Energy, Soochow University, Suzhou 215006, P. R. China.
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215006, P. R. China
| | - Xiaohong Zhang
- Soochow Institute of Energy and Material Innovations, Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Institute of Functional Nano and Soft Materials (FUNSOM) and College of Energy, Soochow University, Suzhou 215006, P. R. China.
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215006, P. R. China
| |
Collapse
|
5
|
Yang N, Cui Y, Xiao Y, Chen Z, Zhang T, Yu Y, Ren J, Wang W, Ma L, Hou J. Completely Non-Fused Low-Cost Acceptor Enables Organic Photovoltaic Cells with 17 % Efficiency. Angew Chem Int Ed Engl 2024; 63:e202403753. [PMID: 38523070 DOI: 10.1002/anie.202403753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
To meet the industrial requirements of organic photovoltaic (OPV) cells, it is imperative to accelerate the development of cost-effective materials. Thiophene-benzene-thiophene central unit-based acceptors possess the advantage of low synthetic cost, while their power conversion efficiency (PCE) is relatively low. Here, by incorporating a para-substituted benzene unit and 1st-position branched alkoxy chains with large steric hindrance, a completely non-fused non-fullerene acceptor, TBT-26, was designed and synthesized. The narrow band gap of 1.38 eV ensures the effective utilization of sunlight. The favorable phase separation morphology of TBT-26-based blend film facilitates the efficient exciton dissociation and charge transport in corresponding OPV cell. Therefore, the TBT-26-based small-area cell achieves an impressive PCE of 17.0 %, which is the highest value of completely non-fused OPV cells. Additionally, we successfully demonstrated the scalability of this design by fabricating a 28.8 cm2 module with a high PCE of 14.3 %. Overall, our work provides a practical molecular design strategy for developing high-performance and low-cost acceptors, paving the way for industrial applications of OPV technology.
Collapse
Affiliation(s)
- Ni Yang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yong Cui
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yang Xiao
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhihao Chen
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Tao Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yue Yu
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junzhen Ren
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenxuan Wang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lijiao Ma
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jianhui Hou
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
6
|
Yang N, Cui Y, Zhang T, An C, Chen Z, Xiao Y, Yu Y, Wang Y, Hao XT, Hou J. Molecular Design of Fully Nonfused Acceptors for Efficient Organic Photovoltaic Cells. J Am Chem Soc 2024; 146:9205-9215. [PMID: 38523309 DOI: 10.1021/jacs.4c00090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
The nonfused thiophene-benzene-thiophene (TBT) unit offers advantages in obtaining low-cost organic photovoltaic (OPV) materials due to its simple structure. However, OPV cells, including TBT-based acceptors, exhibit significantly lower energy conversion efficiencies. Here, we introduce a novel approach involving the design and synthesis of three TBT-based acceptors by substituting different position-branched side chains on the TBT unit. In comparison to TBT-10 and TBT-11, TBT-13, which exclusively incorporates α-position branched side chains with a large steric hindrance, demonstrates a more planar and stable conformation. When blended with the donor PBQx-TF, TBT-13-based blend film achieves favorable π-π stacking and aggregation characteristics, resulting in excellent charge transfer performance in the corresponding device. Due to the simultaneous enhancements in short-circuit current density and fill factor, the TBT-13-based OPV cell obtains an outstanding efficiency of 16.1%, marking the highest value for the cells based on fully nonfused acceptors. Our work provides a practical molecular design strategy for high-performance and low-cost OPV materials.
Collapse
Affiliation(s)
- Ni Yang
- Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Cui
- Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Tao Zhang
- Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cunbin An
- Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhihao Chen
- Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yang Xiao
- Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yue Yu
- Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yafei Wang
- Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Tao Hao
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Shandong 250100, China
| | - Jianhui Hou
- Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Rehman F, Waqas M, Imran M, Ibrahim MAA, Iqbal J, Khera RA, Hadia NMA, Al-Saeedi SI, Shaban M. Approach toward Low Energy Loss in Symmetrical Nonfullerene Acceptor Molecules Inspired by Insertion of Different π-Spacers for Developing Efficient Organic Solar Cells. ACS OMEGA 2023; 8:43792-43812. [PMID: 38027352 PMCID: PMC10666235 DOI: 10.1021/acsomega.3c05665] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/16/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023]
Abstract
In this quantum approach, by adding bridge/π-spacer fragments between the donor and acceptor parts of a newly constructed DF-PCIC (A-D-A type) molecule, it is the aim to improve the photovoltaic characteristics of organic solar cells (OSCs). After π-spacer insertion into the reference molecule (DF-R), six new molecules (DF-M1 to DF-M6) were designed. The optoelectronic attributes of newly inspected molecules were theoretically calculated using MPW1PW91/6-31G(d,p) level of theory. All newly proposed molecules possessed a lower band gap (Eg), a higher value of absorption, lower reorganization energy, greater dipole moment, and lower energies of excitations than the DF-R molecule. The frontier molecular orbital study proclaimed that the DF-M1 molecule has the lowest band gap of 1.62 eV in comparison to the 2.41 eV value of DF-R. Absorption properties represented that DF-M1 and DF-M2 molecules show the highest absorption values of up to 1006 and 1004 nm, respectively, in the near-infrared region. Regarding the reorganization energy, DF-M2 has the lowest value of λe (0.0683896 eV) and the lowest value of λh (0.1566471 eV). DF-M2 and DF-M5 manifested greater dipole moments with the values of 5.514665 and 7.143434 D, respectively. The open circuit voltage (VOC) of all the acceptors was calculated with J61, a donor complex. DF-M4 and DF-M6 molecules showed higher values of VOC and fill factor than the DF-R molecule. Based on the given results, it was supposed that all the newly presented molecules might prove themselves to be better than the reference and thus might be of great interest to experimentalists. Thus, they are suggested to be used to develop proficient OSC devices with improved photovoltaic prospects in the near future.
Collapse
Affiliation(s)
- Faseh
ur Rehman
- Department
of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Muhammad Waqas
- Department
of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Muhammad Imran
- Chemistry
Department, Faculty of Science, King Khalid
University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Mahmoud A. A. Ibrahim
- Chemistry
Department, Faculty of Science, Minia University, Minia 61519, Egypt
- School
of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa
| | - Javed Iqbal
- Department
of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Rasheed Ahmad Khera
- Department
of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - N. M. A. Hadia
- Physics
Department, College of Science, Jouf University, P.O. Box 2014, Sakaka 72388, Al-Jouf, Saudi Arabia
| | - Sameerah I. Al-Saeedi
- Department
of Chemistry, Collage of Science, Princess
Nourah Bint Abdulrahman University, P.O.Box
84428, Riyadh 11671, Saudi Arabia
| | - Mohamed Shaban
- Department
of Physics, Faculty of Science, Islamic
University of Madinah, Madinah 42351, Saudi Arabia
- Nanophotonics
and Applications (NPA) Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
| |
Collapse
|
8
|
Raza A, Mehmood RF, Rashid EU, Nasr S, Yahia IS, Iqbal J, Alatawi NS, Khera RA. Amplifying the photovoltaic properties of phenylene dithiophene core based non-fused ring by engineering the terminal acceptors modification to enhance the efficiency of organic solar cells. J Mol Graph Model 2023; 124:108563. [PMID: 37480831 DOI: 10.1016/j.jmgm.2023.108563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/24/2023]
Abstract
In this study, a series of eight non-fused rings-based semiconducting acceptors (AR1-AR8) were computationally developed by making modifications to the parent molecule (PTICO). In this study, a DFT analysis was conducted at an accurately chosen level of theory to gather a comprehensive inventory of the optoelectronic characteristics of AR1-AR8 and PTICO. The findings indicate that all recently developed molecules exhibit a bathochromic shift in their maximum UV-visible absorbance (λmax) with a smaller band gap (Eg). AR1 has demonstrated the most significant red shift in UV-visible absorbance and possesses the smallest Eg when compared to other recently developed acceptors. AR2 acceptor has shown the best results both as electron and hole-transporting materials owing to its smallest value of reorganization energy for electrons and holes. J61 donor was engaged to calculate the open-circuit voltage (VOC) and the highest VOC with maximum FF % value was observed in AR4. The investigation of charge transfer was also conducted utilizing J61 in conjunction with the AR4 acceptor. Natural transition orbitals (NTO) have also been inspected to recognize the percentage electron transport contribution (% ETC) from the ground state to the first excites state (S0 to S1). The findings of this research suggest that the modified acceptors exhibit potential for practical implementation in the development of organic solar cells that possess improved photovoltaic performance.
Collapse
Affiliation(s)
- Ahmad Raza
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Rana Farhat Mehmood
- Department of Chemistry, University of Education, Township, Lahore, 54770, Pakistan D Research, Pakistan
| | - Ehsan Ullah Rashid
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Samia Nasr
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, 61413, P.O. Box 9004, Saudi Arabia; Chemistry Department, Faculty of Science, King Khalid University, Abha, 61413, P.O. Box 9004, Saudi Arabia
| | - I S Yahia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, 61413, P.O. Box 9004, Saudi Arabia; Laboratory of Nano-Smart Materials for Science and Technology (LNSMST), Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia; Center of Medical and Bio-Allied Health Sciences Research (CMBHSR), Ajman University, Ajman, P.O. Box 346, United Arab Emirates
| | - Javed Iqbal
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan.
| | - Naifa S Alatawi
- Physics Department, Faculty of Science, University of Tabuk, Tabuk, 71421, Saudi Arabia
| | - Rasheed Ahmad Khera
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan.
| |
Collapse
|
9
|
Duan X, Liu C, Cai Y, Ye L, Xue J, Yang Y, Ma W, Sun Y. Longitudinal Through-Hole Architecture for Efficient and Thickness-Insensitive Semitransparent Organic Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302927. [PMID: 37178458 DOI: 10.1002/adma.202302927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/02/2023] [Indexed: 05/15/2023]
Abstract
Semi-transparent organic solar cells (ST-OSCs) have great potential for application in vehicle- or building-integrated solar energy harvesting. Ultrathin active layers and electrodes are typically utilized to guarantee high power conversion efficiency (PCE) and high average visible transmittance (AVT) simultaneously; however, such ultrathin parts are unsuitable for industrial high-throughput manufacturing. In this study, ST-OSCs are fabricated using a longitudinal through-hole architecture to achieve functional region division and to eliminate the dependence on ultrathin films. A complete circuit that vertically corresponds to the silver grid is responsible for obtaining high PCE, and the longitudinal through-holes embedded in it allow most of the light to pass through,where the overall transparency is associated with the through-hole specification rather than the thicknesses of active layer and electrode. Excellent photovoltaic performance over a wide range of transparency (9.80-60.03%), with PCEs ranging from 6.04% to 15.34% is achieved. More critically, this architecture allows printable 300-nm-thick devices to achieve a record-breaking light utilization efficiency (LUE) of 3.25%, and enables flexible ST-OSCs to exhibit better flexural endurance by dispersing the extrusion stress into the through-holes. This study paves the way for fabricating high-performance ST-OSCs and shows great promise for the commercialization of organic photovoltaics.
Collapse
Affiliation(s)
- Xiaopeng Duan
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Chunhui Liu
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Yunhao Cai
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Linglong Ye
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Jingwei Xue
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yinuo Yang
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Wei Ma
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yanming Sun
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| |
Collapse
|
10
|
Palei S, Murali G, Kim CH, In I, Lee SY, Park SJ. A Review on Interface Engineering of MXenes for Perovskite Solar Cells. NANO-MICRO LETTERS 2023; 15:123. [PMID: 37160615 PMCID: PMC10169986 DOI: 10.1007/s40820-023-01083-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/21/2023] [Indexed: 05/11/2023]
Abstract
With an excellent power conversion efficiency of 25.7%, closer to the Shockley-Queisser limit, perovskite solar cells (PSCs) have become a strong candidate for a next-generation energy harvester. However, the lack of stability and reliability in PSCs remained challenging for commercialization. Strategies, such as interfacial and structural engineering, have a more critical influence on enhanced performance. MXenes, two-dimensional materials, have emerged as promising materials in solar cell applications due to their metallic electrical conductivity, high carrier mobility, excellent optical transparency, wide tunable work function, and superior mechanical properties. Owing to different choices of transition elements and surface-terminating functional groups, MXenes possess the feature of tuning the work function, which is an essential metric for band energy alignment between the absorber layer and the charge transport layers for charge carrier extraction and collection in PSCs. Furthermore, adopting MXenes to their respective components helps reduce the interfacial recombination resistance and provides smooth charge transfer paths, leading to enhanced conductivity and operational stability of PSCs. This review paper aims to provide an overview of the applications of MXenes as components, classified according to their roles as additives (into the perovskite absorber layer, charge transport layers, and electrodes) and themselves alone or as interfacial layers, and their significant importance in PSCs in terms of device performance and stability. Lastly, we discuss the present research status and future directions toward its use in PSCs.
Collapse
Affiliation(s)
- Srikanta Palei
- Department of Chemistry, Inha University, 100 Inharo, Incheon, 22212, South Korea
| | - G Murali
- Department of Polymer Science and Engineering, Department of IT-Energy Convergence (BK21 Four), Chemical Industry Institute, Korea National University of Transportation, Chungju, 27469, South Korea
| | - Choong-Hee Kim
- Department of Chemistry, Inha University, 100 Inharo, Incheon, 22212, South Korea
| | - Insik In
- Department of Polymer Science and Engineering, Department of IT-Energy Convergence (BK21 Four), Chemical Industry Institute, Korea National University of Transportation, Chungju, 27469, South Korea.
| | - Seul-Yi Lee
- Department of Chemistry, Inha University, 100 Inharo, Incheon, 22212, South Korea.
| | - Soo-Jin Park
- Department of Chemistry, Inha University, 100 Inharo, Incheon, 22212, South Korea.
| |
Collapse
|
11
|
Rani M, Hadia NMA, Shawky AM, Mehmood RF, Hameed S, Zahid S, Iqbal J, Alatawi NS, Ahmed A, Khera RA. Novel A-π-D-π-A type non-fullerene acceptors of dithienyl diketopyrropopyrrole derivatives to enhance organic photovoltaic applications: a DFT study. RSC Adv 2023; 13:1640-1658. [PMID: 36712641 PMCID: PMC9833106 DOI: 10.1039/d2ra07291b] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/16/2022] [Indexed: 01/13/2023] Open
Abstract
To boost the photovoltaic attributes of organic photovoltaic cells, seven dithienyl diketopyrropopyrrole (TDPP) donor-based A-π-D-π-A (acceptor-bridge-donor-bridge-acceptor) type molecules (TM1-TM7) were formulated by modifying the electron accepting ends of the reference molecule (TMR). Optical and quantum chemical parameters of seven synthesized molecules were investigated using density functional theory with the MPW1PW91/6-31G(d,p) functional. Several parameters that can be used to measure and improve the efficiency of solar cells have been analyzed and summed up. These parameters include binding energy of exciton, excitation energy of electron, reorganization energies, dipole moment, molecular electrostatic potential, charge mobility, wavelength of maximum absorption, open circuit voltage, short circuit current, fill factor, density of states, transition density matrices, as well as iso-surface and non-covalent interactions. Thus, all of our proposed structures are perceived to be superior to the reference in terms of the maximum possible solar energy yield in solar cells with bulk heterojunctions, as determined by analyses of our designed molecules for the aforementioned parameters.
Collapse
Affiliation(s)
- Mafia Rani
- Department of Chemistry, University of AgricultureFaisalabad 38000Pakistan
| | - N. M. A. Hadia
- Physics Department, College of Science, Jouf UniversityP.O. Box 2014SakakaAl-JoufSaudi Arabia
| | - Ahmed M. Shawky
- Science and Technology Unit (STU), Umm Al-Qura UniversityMakkah 21955Saudi Arabia
| | - Rana Farhat Mehmood
- Department of Chemistry, Division of Science and Technology, University of EducationTownshipLahore 54770Pakista
| | - Shanza Hameed
- Department of Chemistry, University of AgricultureFaisalabad 38000Pakistan
| | - Saba Zahid
- Department of Chemistry, University of AgricultureFaisalabad 38000Pakistan
| | - Javed Iqbal
- Department of Chemistry, University of AgricultureFaisalabad 38000Pakistan,Department of Chemistry, College of Science, University of BahrainSakhir, P. O. Box 32038Bahrain
| | - Naifa S. Alatawi
- Physics Department, Faculty of Science, University of TabukTabuk 71421Saudi Arabia
| | - Asma Ahmed
- Department of Computer Science Faculty of Computer and Information Technology, University of TabukTabukSaudi Arabia
| | | |
Collapse
|
12
|
Li J, Li H, Ma L, Zhang S, Hou J. Design and Synthesis of
N
‐Alkylaniline‐Substituted
Low
Band‐Gap
Electron Acceptors for Photovoltaic Application. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Jiayao Li
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Hao Li
- School of Chemistry and Biology Engineering, University of Science and Technology Beijing Beijing 100083 China
| | - Lijiao Ma
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Shaoqing Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- School of Chemistry and Biology Engineering, University of Science and Technology Beijing Beijing 100083 China
| | - Jianhui Hou
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
13
|
Yang Y, Duan S, Zhao H. Advances in constructing silver nanowire-based conductive pathways for flexible and stretchable electronics. NANOSCALE 2022; 14:11484-11511. [PMID: 35912705 DOI: 10.1039/d2nr02475f] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
With their soaring technological demand, flexible and stretchable electronics have attracted many researchers' attention for a variety of applications. The challenge which was identified a decade ago and still remains, however, is that the conventional electrodes based on indium tin oxide (ITO) are not suitable for ultra-flexible electronic devices. The main reason is that ITO is brittle and expensive, limiting device performance and application. Thus, it is crucial to develop new materials and processes to construct flexible and stretchable electrodes with superior quality for next-generation soft devices. Herein, various types of conductive nanomaterials as candidates for flexible and stretchable electrodes are briefly reviewed. Among them, silver nanowire (AgNW) is selected as the focus of this review, on account of its excellent conductivity, superior flexibility, high technological maturity, and significant presence in the research community. To fabricate a reliable AgNW-based conductive network for electrodes, different processing technologies are introduced, and the corresponding characteristics are compared and discussed. Furthermore, this review summarizes strategies and the latest progress in enhancing the conductive pathway. Finally, we showcase some exemplary applications and provide some perspectives about the remaining technical challenges for future research.
Collapse
Affiliation(s)
- Yuanhang Yang
- Virginia Commonwealth University, Department of Mechanical and Nuclear Engineering, BioTech One, 800 East Leigh Street, Richmond, VA 23219, USA.
| | - Shun Duan
- Virginia Commonwealth University, Department of Mechanical and Nuclear Engineering, BioTech One, 800 East Leigh Street, Richmond, VA 23219, USA.
- State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hong Zhao
- Virginia Commonwealth University, Department of Mechanical and Nuclear Engineering, BioTech One, 800 East Leigh Street, Richmond, VA 23219, USA.
| |
Collapse
|
14
|
A Review on the Materials Science and Device Physics of Semitransparent Organic Photovoltaics. ENERGIES 2022. [DOI: 10.3390/en15134639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In this review, the current state of materials science and the device physics of semitransparent organic solar cells is summarized. Relevant synthetic strategies to narrow the band gap of organic semiconducting molecules are outlined, and recent developments in the polymer donor and near-infrared absorbing acceptor materials are discussed. Next, an overview of transparent electrodes is given, including oxides, multi-stacks, thin metal, and solution processed electrodes, as well as considerations that are unique to ST-OPVs. The remainder of this review focuses on the device engineering of ST-OPVs. The figures of merit and the theoretical limitations of ST-OPVs are covered, as well as strategies to improve the light utilization efficiency. Lastly, the importance of creating an in-depth understanding of the device physics of ST-OPVs is emphasized and the existing works that answer fundamental questions about the inherent changes in the optoelectronic processes in transparent devices are presented in a condensed way. This last part outlines the changes that are unique for devices with increased transparency and the resulting implications, serving as a point of reference for the systematic development of next-generation ST-OPVs.
Collapse
|
15
|
Liang Q, Hu Z, Yao J, Yin Y, Wei P, Chen Z, Li W, Liu J. Recent advances in intermixed phase of organic solar cells: Characterization, regulating strategies and device applications. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Qiuju Liang
- Northwestern Polytechnical University Xi'an China
| | - Zhangbo Hu
- Northwestern Polytechnical University Xi'an China
| | - Jianhong Yao
- Northwestern Polytechnical University Xi'an China
| | - Yukai Yin
- Northwestern Polytechnical University Xi'an China
| | - Puxin Wei
- Northwestern Polytechnical University Xi'an China
| | - Zhikang Chen
- Northwestern Polytechnical University Xi'an China
| | - Wangchang Li
- Northwestern Polytechnical University Xi'an China
| | - Jiangang Liu
- Northwestern Polytechnical University Xi'an China
| |
Collapse
|