1
|
Li C, Chen XW, Liao LL, Gui YY, Yang JW, Zhang S, Yue JP, Zhou X, Ye JH, Lan Y, Yu DG. Nickel-Catalyzed Atroposelective Carbo-Carboxylation of Alkynes with CO 2: En Route to Axially Chiral Carboxylic Acids. Angew Chem Int Ed Engl 2025; 64:e202413305. [PMID: 39506458 DOI: 10.1002/anie.202413305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/20/2024] [Accepted: 11/04/2024] [Indexed: 11/08/2024]
Abstract
Precise synthesis of carboxylic acids via catalytic carboxylation with CO2 is highly appealing. Although considerable advancements have been achieved in difunctionalizing carboxylation of unsaturated hydrocarbons, the asymmetric variants are conspicuously underdeveloped, particularly in addressing axially chiral alkenes. Herein, we report the first catalytic atroposelective carboxylation of alkynes with CO2. A variety of valuable axially chiral carboxylic acids are obtained with good yields and high chemo-, regio-, Z/E and enantio-selectivities. Notably, an unexpected anti-selective carbo-carboxylation is observed in the sp2-hybrid carbo-electrophile-initiated reductive carboxylation of alkynes. Mechanistic studies including DFT calculation elucidate the origin of chiral induction and anti-selectivity in vinyl-carboxylation of alkynes.
Collapse
Affiliation(s)
- Chao Li
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Xiao-Wang Chen
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Li-Li Liao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, P. R. China
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing, 400030, P. R. China
| | - Yong-Yuan Gui
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, P. R. China
| | - Jing-Wei Yang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Shuo Zhang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Jun-Ping Yue
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Xiangge Zhou
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Jian-Heng Ye
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Yu Lan
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing, 400030, P. R. China
| | - Da-Gang Yu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| |
Collapse
|
2
|
Dang Y, Han J, Chmiel AF, Alektiar SN, Mikhael M, Guzei IA, Yeung CS, Wickens ZK. Alkene Carboxy-Alkylation via CO 2•. J Am Chem Soc 2024; 146:35035-35042. [PMID: 39665217 PMCID: PMC12062844 DOI: 10.1021/jacs.4c14421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Herein, we introduce a new platform for alkene carboxy-alkylation. This reaction is designed around CO2•- addition to alkenes followed by radical polar crossover, which enables alkylation through carbanion attack on carbonyl electrophiles. We discovered that CO2•- adds to alkenes faster than it reduces carbonyl electrophiles and that this reactivity can be exploited by accessing CO2•- via hydrogen atom transfer from formate. This photocatalytic system transforms vinylarenes and carbonyl compounds into a diverse array of substituted γ-lactone products. Furthermore, indoles can be engaged through dearomative carboxy-alkylation, delivering medicinally relevant C(sp3)-rich heterocyclic scaffolds. Mechanistic studies reveal that the active photocatalyst is generated in situ through a photochemically induced reaction between the precatalyst and DMSO. Overall, we have developed a three-component alkene carboxy-alkylation reaction enabled by the use of formate as the CO2•- precursor.
Collapse
Affiliation(s)
- Y Dang
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Jimin Han
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Alyah F. Chmiel
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Sara N. Alektiar
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Myriam Mikhael
- Discovery Chemistry, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, MA 02115, United States
| | - Ilia A. Guzei
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Charles S. Yeung
- Discovery Chemistry, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, MA 02115, United States
| | - Zachary K. Wickens
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
3
|
Yao Y, Bai J, Cheng P, Yang H, Sun J, Sun S. Base-promoted cascade 5- exo-dig annulation/carboxylation of o-(1-alkynyl)benzenesulfonamides with CO 2: divergent synthesis of mono- or gem-dicarboxylic esters. Chem Commun (Camb) 2024; 60:14850-14853. [PMID: 39585237 DOI: 10.1039/d4cc05239k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
A base-promoted cascade 5-exo-dig cyclization/carboxylation of o-alkynylsulfamides with CO2 has been accomplished, furnishing a variety of benzosultam-containing acrylates in good yields by using CO2 as the carboxylic source. Notably, in the case of substrates bearing a TMS-alkyne motif, the gem-dicarboxylation products were generated unprecedentedly.
Collapse
Affiliation(s)
- Yang Yao
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Junxue Bai
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Peidong Cheng
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Han Yang
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Jianwei Sun
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
- Department of Chemistry, the Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Song Sun
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
4
|
Liu Y, Xue GH, He Z, Yue JP, Pan M, Song L, Zhang W, Ye JH, Yu DG. Visible-Light Photoredox-Catalyzed Direct Carboxylation of Tertiary C(sp 3)-H Bonds with CO 2: Facile Synthesis of All-Carbon Quaternary Carboxylic Acids. J Am Chem Soc 2024. [PMID: 39374105 DOI: 10.1021/jacs.4c09558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Direct carboxylation of C-H bonds with CO2 represents an attractive strategy to synthesize valuable carboxylic acids with high atom, step, and redox economy. Although great progress has been achieved in this field, catalytic carboxylation of tertiary C(sp3)-H bonds still remains challenging due to their inherent inertness and significant steric hindrance. Herein, we report a direct carboxylation of tertiary benzylic C(sp3)-H bonds with CO2 via visible-light photoredox catalysis. Various all-carbon quaternary carboxylic acids, which are of significant importance in medicinal chemistry, are successfully obtained with high yields. This direct carboxylation is characterized by good functional group tolerance, broad substrate scope, and mild operational conditions. Furthermore, our methodology enables the efficient and rapid synthesis of key drug or bioactive molecules, such as carbetapentane, caramiphen, and PRE-084 (σ1 receptor agonist), and facilitates various functionalizations of C(sp2)-H bonds using the directing ability of target carboxylic acids, thus highlighting its practical applications. Mechanistic studies indicate that a carbanion, which serves as the key intermediate to react with CO2, is catalytically generated via a single electron reduction of a benzylic radical through a consecutive photoinduced electron transfer process.
Collapse
Affiliation(s)
- Yi Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Guan-Hua Xue
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Zhen He
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Jun-Ping Yue
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Min Pan
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Lei Song
- College of Carbon Neutrality Future Technology, Sichuan University, Chengdu 610065, P. R. China
| | - Wei Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Jian-Heng Ye
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Da-Gang Yu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
- State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| |
Collapse
|
5
|
Brunetti A, Garbini M, Autuori G, Zanardi C, Bertuzzi G, Bandini M. Electrochemical Synthesis of Itaconic Acid Derivatives via Chemodivergent Single and Double Carboxylation of Allenes with CO 2. Chemistry 2024; 30:e202401754. [PMID: 38923037 DOI: 10.1002/chem.202401754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
Leveraging electrochemistry, a new synthesis of non-natural derivatives of itaconic acid is proposed by utilizing carbon dioxide (CO2) as a valuable C1 synthon. An electrochemical cross-electrophile coupling between allenoates and CO2 was targeted, allowing for the synthesis of both mono- and di-carboxylation products in a catalyst- and additive-free environment (yields up to 87 %, 30 examples). Elaboration of the model mono-carboxylation product, and detailed cyclovoltammetric, as well as mechanistic analyses complete the present investigation.
Collapse
Affiliation(s)
- Andrea Brunetti
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum, Università di Bologna, via P. Gobetti, 85, 40129, Bologna, Italy
- Center for Chemical Catalysis, C3, Alma Mater Studiorum, Università di Bologna, via P. Gobetti, 85, 40129, Bologna, Italy
| | - Mauro Garbini
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum, Università di Bologna, via P. Gobetti, 85, 40129, Bologna, Italy
- Center for Chemical Catalysis, C3, Alma Mater Studiorum, Università di Bologna, via P. Gobetti, 85, 40129, Bologna, Italy
| | - Giuseppe Autuori
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum, Università di Bologna, via P. Gobetti, 85, 40129, Bologna, Italy
| | - Chiara Zanardi
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, via Torino, 155, 30170, Venezia (Mestre), Italy
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), via P. Gobetti 101, 40129, Bologna, Italy
| | - Giulio Bertuzzi
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum, Università di Bologna, via P. Gobetti, 85, 40129, Bologna, Italy
- Center for Chemical Catalysis, C3, Alma Mater Studiorum, Università di Bologna, via P. Gobetti, 85, 40129, Bologna, Italy
| | - Marco Bandini
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum, Università di Bologna, via P. Gobetti, 85, 40129, Bologna, Italy
- Center for Chemical Catalysis, C3, Alma Mater Studiorum, Università di Bologna, via P. Gobetti, 85, 40129, Bologna, Italy
| |
Collapse
|
6
|
Pavlovic L, Carvalho B, Hopmann KH. Revisiting the Mechanism of Asymmetric Ni-Catalyzed Reductive Carbo-Carboxylation with CO 2: The Additives Affect the Product Selectivity. Chemistry 2024; 30:e202401631. [PMID: 38924598 DOI: 10.1002/chem.202401631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/10/2024] [Accepted: 06/25/2024] [Indexed: 06/28/2024]
Abstract
The mechanistic details of the asymmetric Ni-catalyzed reductive cyclization/carboxylation of alkenes with CO2 have been revisited using DFT methods. Emphasis was put on the enantioselectivity and the mechanistic role of Lewis acid additives and in situ formed salts. Our results show that oxidative addition of the substrate is rate-limiting, with the formed Ni(II)-aryl intermediate preferring a triplet spin state. After reduction to Ni(I), enantioselective cyclization of the substrate occurs, followed by inner sphere carboxylation. Our proposed mechanism reproduces the experimentally observed enantiomeric excess and identifies critical C-H/O and C-H/N interactions that affect the selectivity. Further, our results highlight the beneficial effect of Lewis acids on CO2 insertion and suggest that in situ formed salts influence if the 5-exo or 6-endo product will be formed.
Collapse
Affiliation(s)
- Ljiljana Pavlovic
- Department of Chemistry, UiT The Arctic University of Norway, N-9017, Tromsø, Norway
| | - Bjørn Carvalho
- Department of Chemistry, UiT The Arctic University of Norway, N-9017, Tromsø, Norway
- Hylleraas Center for Quantum Molecular Sciences, UiT The Arctic University of Norway, N-9017, Tromsø, Norway
| | - Kathrin H Hopmann
- Department of Chemistry, UiT The Arctic University of Norway, N-9017, Tromsø, Norway
| |
Collapse
|
7
|
Yang H, Yang Q, Yao Y, Gu P, Sun J, Sun S. Visible-Light-Promoted Cascade Carboxylation/Arylation of Unactivated Alkenes with CO 2 for the Synthesis of Carboxylated Indole-Fused Heterocycles. Org Lett 2024; 26:6341-6346. [PMID: 39024314 DOI: 10.1021/acs.orglett.4c01967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Described here is a visible-light-promoted cascade carboxylation/arylation of indole-tethered unactivated alkenes with CO2 to access various carboxylated indole-fused heterocycles. This reaction is initiated by the addition of a CO2 radical anion to the alkene motif toward an alkyl carbon radical, followed by its addition to the aromatic ring, and then rearomatization to afford the final products. This reaction provides a facile and sustainable protocol for the construction of carboxylated indole-fused heterocycles using CO2 as the carboxylic source.
Collapse
Affiliation(s)
- Han Yang
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Qi Yang
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Yang Yao
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Peiyang Gu
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Jianwei Sun
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong SAR, China
| | - Song Sun
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
8
|
Watanabe T, Lorwongkamol P, Saga Y, Kosugi K, Kambe T, Kondo M, Masaoka S. Photocatalytic Three-Component Acylcarboxylation of Alkenes with CO 2. Org Lett 2024; 26:6491-6496. [PMID: 39023907 DOI: 10.1021/acs.orglett.4c02295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
γ-Keto acid is a valuable chemical motif in a wide range of fields including organic, biological, and medicinal chemistry. However, its single-step synthesis is challenging because of the mismatch of the carbonyl polarity and low tolerance of carboxylic acids. Herein, we report the single-step syntheses of γ-keto acids using alkenes and CO2. Our photocatalytic system enabled the transformation of alkenes under mild conditions in high yields (up to 95%) with broad substrate generality (35 examples).
Collapse
Affiliation(s)
- Taito Watanabe
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Phurinat Lorwongkamol
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yutaka Saga
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| | - Kento Kosugi
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Tetsuya Kambe
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Center For Future Innovation (CFi), Department of Applied Chemistry, Faculty of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Mio Kondo
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Shigeyuki Masaoka
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
9
|
Zhou L, Li L, Zhang S, Kuang XK, Zhou YY, Tang Y. Catalytic Regio- and Enantioselective Remote Hydrocarboxylation of Unactivated Alkenes with CO 2. J Am Chem Soc 2024; 146:18823-18830. [PMID: 38950377 DOI: 10.1021/jacs.4c05217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
The catalytic regio- and enantioselective hydrocarboxylation of alkenes with carbon dioxide is a straightforward strategy to construct enantioenriched α-chiral carboxylic acids but remains a big challenge. Herein we report the first example of catalytic highly enantio- and site-selective remote hydrocarboxylation of a wide range of readily available unactivated alkenes with abundant and renewable CO2 under mild conditions enabled by the SaBOX/Ni catalyst. The key to this success is utilizing the chiral SaBOX ligand, which combines with nickel to simultaneously control both chain-walking and the enantioselectivity of carboxylation. This process directly furnishes a range of different alkyl-chain-substituted or benzo-fused α-chiral carboxylic acids bearing various functional groups in high yields and regio- and enantioselectivities. Furthermore, the synthetic utility of this methodology was demonstrated by the concise synthesis of the antiplatelet aggregation drug (R)-indobufen from commercial starting materials.
Collapse
Affiliation(s)
- Li Zhou
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China
| | - Liping Li
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Sudong Zhang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Xiao-Kang Kuang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - You-Yun Zhou
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Yong Tang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China
| |
Collapse
|
10
|
Yang H, Yao Y, Yang Q, Yao Y, Sun J, Sun S. Visible Light Photoredox-Catalyzed Formyl/Carboxylation of Activated Alkenes with Glyoxylic Acid Acetals and CO 2. Org Lett 2024; 26:4194-4199. [PMID: 38747692 DOI: 10.1021/acs.orglett.4c00841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
A photoredox-catalyzed sequential α-formyl/carboxylation of alkenes with glyoxylic acid acetals and CO2 has been developed to afford a range of masked γ-formyl esters in good yields, which could be readily transformed into diverse compounds, such as γ-formyl ester, hemiacetal, and 1,4-diol. This reaction features mild conditions, readily available starting materials, and operational simplicity.
Collapse
Affiliation(s)
- Han Yang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Yang Yao
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Qi Yang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Yingming Yao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Scince, Dushu Lake Campus, Soochow University, Suzhou 215123, China
| | - Jianwei Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
- Department of Chemistry, the Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Song Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
11
|
Zhang F, Wu XY, Gao PP, Zhang H, Li Z, Ai S, Li G. Visible-light-driven alkene dicarboxylation with formate and CO 2 under mild conditions. Chem Sci 2024; 15:6178-6183. [PMID: 38665514 PMCID: PMC11041354 DOI: 10.1039/d3sc04431a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 03/18/2024] [Indexed: 04/28/2024] Open
Abstract
Low-cost formate salt was used as the reductant and part of the carboxyl source in a visible-light-driven dicarboxylation of diverse alkenes, including simple styrenes. The highly competing hydrocarboxylation side reaction was successfully overridden. Good yields of products were obtained under mild reaction conditions at ambient temperature and pressure of CO2. The dual role of formate salt may stimulate the discovery of a range of new transformations under mild and friendly conditions.
Collapse
Affiliation(s)
- Fulin Zhang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhang Jiang Institute for Advanced Study, Shanghai Jiao Tong University Shanghai 200240 China
| | - Xiao-Yang Wu
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhang Jiang Institute for Advanced Study, Shanghai Jiao Tong University Shanghai 200240 China
| | - Pan-Pan Gao
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhang Jiang Institute for Advanced Study, Shanghai Jiao Tong University Shanghai 200240 China
| | - Hao Zhang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhang Jiang Institute for Advanced Study, Shanghai Jiao Tong University Shanghai 200240 China
| | - Zhu Li
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhang Jiang Institute for Advanced Study, Shanghai Jiao Tong University Shanghai 200240 China
| | - Shangde Ai
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhang Jiang Institute for Advanced Study, Shanghai Jiao Tong University Shanghai 200240 China
| | - Gang Li
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhang Jiang Institute for Advanced Study, Shanghai Jiao Tong University Shanghai 200240 China
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS) 155 West Yang-Qiao Road Fuzhou Fujian 350002 China
| |
Collapse
|
12
|
Gui YY, Chen XW, Mo XY, Yue JP, Yuan R, Liu Y, Liao LL, Ye JH, Yu DG. Cu-Catalyzed Asymmetric Dicarboxylation of 1,3-Dienes with CO 2. J Am Chem Soc 2024; 146:2919-2927. [PMID: 38277794 DOI: 10.1021/jacs.3c14146] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
Dicarboxylic acids and derivatives are important building blocks in organic synthesis, biochemistry, and the polymer industry. Although catalytic dicarboxylation with CO2 represents a straightforward and sustainable route to dicarboxylic acids, it is still highly challenging and limited to generation of achiral or racemic dicarboxylic acids. To date, catalytic asymmetric dicarboxylation with CO2 to give chiral dicarboxylic acids has not been reported. Herein, we report the first asymmetric dicarboxylation of 1,3-dienes with CO2 via Cu catalysis. This strategy provides an efficient and environmentally benign route to chiral dicarboxylic acids with high regio-, chemo-, and enantioselectivities. The copper self-relay catalysis, that is, Cu-catalyzed boracarboxylation of 1,3-dienes to give carboxylated allyl boronic ester intermediates and subsequent carboxylation of C-B bonds to give dicarboxylates, is key to the success of this dicarboxylation. Moreover, this protocol exhibits broad substrate scope, good functional group tolerance, easy product derivatizations, and facile synthesis of chiral liquid crystalline polyester and drug-like scaffolds.
Collapse
Affiliation(s)
- Yong-Yuan Gui
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, P. R. China
| | - Xiao-Wang Chen
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Xiao-Yan Mo
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, P. R. China
| | - Jun-Ping Yue
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Rong Yuan
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, P. R. China
| | - Yi Liu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Li-Li Liao
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Jian-Heng Ye
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Da-Gang Yu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
13
|
Vega KB, de Oliveira ALC, König B, Paixão MW. Visible-Light-Induced Synthesis of 1,2-Dicarboxyl Compounds from Carbon Dioxide, Carbamoyl-dihydropyridine, and Styrene. Org Lett 2024; 26:860-865. [PMID: 38252019 DOI: 10.1021/acs.orglett.3c04015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
β-Amidated carboxylic acids, or succinamic acid derivatives, constitute a valuable chemical scaffold with broad applications in pharmaceuticals, agrochemicals, and polymer sciences. Herein, we report a redox-neutral multicomponent reaction for the synthesis of succinamic acid derivatives in good yields. This protocol involves styrene, CO2 and 1,4-carbamoyl-dihydropyridine as radical precursors. The method exhibits a broad substrate scope under mild reaction conditions, including late-stage functionalization. Moreover, by employing 13CO2, the method enables the synthesis of labeled 1,2-dicarboxylic compounds.
Collapse
Affiliation(s)
- Kimberly Benedetti Vega
- Laboratory for Sustainable Organic Synthesis and Catalysis, Department of Chemistry, Federal University of São Carlos (UFSCar), 13565-905 São Carlos, São Paulo, Brazil
- Institut für Organische Chemie, Universität Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - André Luiz Carvalho de Oliveira
- Laboratory for Sustainable Organic Synthesis and Catalysis, Department of Chemistry, Federal University of São Carlos (UFSCar), 13565-905 São Carlos, São Paulo, Brazil
| | - Burkhard König
- Institut für Organische Chemie, Universität Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Márcio Weber Paixão
- Laboratory for Sustainable Organic Synthesis and Catalysis, Department of Chemistry, Federal University of São Carlos (UFSCar), 13565-905 São Carlos, São Paulo, Brazil
| |
Collapse
|
14
|
Gao W, Yang Q, Yang H, Yao Y, Bai J, Sun J, Sun S. Visible-Light Photoredox-Catalyzed Intermolecular α-Aminomethyl/Carboxylative Dearomatization of Indoles with CO 2 and α-Aminoalkyl Radical Precursors. Org Lett 2024. [PMID: 38179973 DOI: 10.1021/acs.orglett.3c03755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Disclosed here is a visible-light photoredox-catalyzed intermolecular sequential α-aminomethyl/carboxylative dearomatization of indoles with CO2 and α-aminoalkyl radical precursors, affording a series of functionalized indoline-3-carboxylic acids and lactams in good yields with high regioselectivity. This multicomponent reaction provides a green and facile method for the synthesis of diverse functionalized indolines by using CO2 as the carboxylic and carbonyl source.
Collapse
Affiliation(s)
- Wanxu Gao
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Qi Yang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Han Yang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Yang Yao
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Junxue Bai
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Jianwei Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
- Department of Chemistry, the Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Song Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
15
|
Giovanelli R, Lombardi L, Pedrazzani R, Monari M, Reis MC, López CS, Bertuzzi G, Bandini M. Nickel Catalyzed Carbonylation/Carboxylation Sequence via Double CO 2 Incorporation. Org Lett 2023; 25:6969-6974. [PMID: 37669466 PMCID: PMC10546374 DOI: 10.1021/acs.orglett.3c02394] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Indexed: 09/07/2023]
Abstract
A carbonylation-carboxylation synthetic sequence, via double CO2 fixation, is described. The productive merger of a Ni-catalyzed cross-electrophile coupling manifold, with the use of AlCl3, triggered a cascade reaction with the formation of three consecutive C-C bonds in a single operation. This strategy traces an unprecedented synthetic route to ketones under Lewis acid assisted carbon dioxide valorization. Computational insights revealed a unique double function of AlCl3, and labeling (13CO2) experiments validate the genuine incorporation of CO2 in both functional groups.
Collapse
Affiliation(s)
- Riccardo Giovanelli
- Dipartimento
di Chimica “Giacomo Ciamician”, Alma Mater Studiorum − Università di Bologna, Via P. Gobetti 85, 40129, Bologna, Italy
- Center
for Chemical Catalysis − C3, Dipartimento di Chimica “Giacomo
Ciamician”, Alma Mater Studiorum
− Università di Bologna, Via P. Gobetti 85, 40129, Bologna, Italy
| | - Lorenzo Lombardi
- Dipartimento
di Chimica “Giacomo Ciamician”, Alma Mater Studiorum − Università di Bologna, Via P. Gobetti 85, 40129, Bologna, Italy
| | - Riccardo Pedrazzani
- Dipartimento
di Chimica “Giacomo Ciamician”, Alma Mater Studiorum − Università di Bologna, Via P. Gobetti 85, 40129, Bologna, Italy
- Center
for Chemical Catalysis − C3, Dipartimento di Chimica “Giacomo
Ciamician”, Alma Mater Studiorum
− Università di Bologna, Via P. Gobetti 85, 40129, Bologna, Italy
| | - Magda Monari
- Dipartimento
di Chimica “Giacomo Ciamician”, Alma Mater Studiorum − Università di Bologna, Via P. Gobetti 85, 40129, Bologna, Italy
- Center
for Chemical Catalysis − C3, Dipartimento di Chimica “Giacomo
Ciamician”, Alma Mater Studiorum
− Università di Bologna, Via P. Gobetti 85, 40129, Bologna, Italy
| | - Marta Castiñeira Reis
- Departamento
de Química Orgánica, Universidad
de Vigo, As Lagoas-Marcosende, 36310, Vigo, Spain
| | - Carlos Silva López
- Departamento
de Química Orgánica, Universidad
de Vigo, As Lagoas-Marcosende, 36310, Vigo, Spain
| | - Giulio Bertuzzi
- Dipartimento
di Chimica “Giacomo Ciamician”, Alma Mater Studiorum − Università di Bologna, Via P. Gobetti 85, 40129, Bologna, Italy
- Center
for Chemical Catalysis − C3, Dipartimento di Chimica “Giacomo
Ciamician”, Alma Mater Studiorum
− Università di Bologna, Via P. Gobetti 85, 40129, Bologna, Italy
| | - Marco Bandini
- Dipartimento
di Chimica “Giacomo Ciamician”, Alma Mater Studiorum − Università di Bologna, Via P. Gobetti 85, 40129, Bologna, Italy
- Center
for Chemical Catalysis − C3, Dipartimento di Chimica “Giacomo
Ciamician”, Alma Mater Studiorum
− Università di Bologna, Via P. Gobetti 85, 40129, Bologna, Italy
| |
Collapse
|
16
|
Zhang W, Chen Z, Jiang YX, Liao LL, Wang W, Ye JH, Yu DG. Arylcarboxylation of unactivated alkenes with CO 2 via visible-light photoredox catalysis. Nat Commun 2023; 14:3529. [PMID: 37316537 DOI: 10.1038/s41467-023-39240-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/31/2023] [Indexed: 06/16/2023] Open
Abstract
Photocatalytic carboxylation of alkenes with CO2 is a promising and sustainable strategy to synthesize high value-added carboxylic acids. However, it is challenging and rarely investigated for unactivated alkenes due to their low reactivities. Herein, we report a visible-light photoredox-catalyzed arylcarboxylation of unactivated alkenes with CO2, delivering a variety of tetrahydronaphthalen-1-ylacetic acids, indan-1-ylacetic acids, indolin-3-ylacetic acids, chroman-4-ylacetic acids and thiochroman-4-ylacetic acids in moderate-to-good yields. This reaction features high chemo- and regio-selectivities, mild reaction conditions (1 atm, room temperature), broad substrate scope, good functional group compatibility, easy scalability and facile derivatization of products. Mechanistic studies indicate that in situ generation of carbon dioxide radical anion and following radical addition to unactivated alkenes might be involved in the process.
Collapse
Affiliation(s)
- Wei Zhang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhen Chen
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Yuan-Xu Jiang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Li-Li Liao
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400030, P. R. China
| | - Wei Wang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Jian-Heng Ye
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Da-Gang Yu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China.
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China.
| |
Collapse
|
17
|
Wang MM, Lu SM, Li C. Regioselective hydroesterification of alkenes and alkenylphenols utilizing CO 2 and hydrosilane. Chem Sci 2023; 14:5483-5489. [PMID: 37234880 PMCID: PMC10207877 DOI: 10.1039/d3sc01114c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/13/2023] [Indexed: 05/28/2023] Open
Abstract
As an important and attractive C1 building block, the diversified exploitation of CO2 in chemical transformations possesses significant research and application value. Herein, an effective palladium-catalyzed intermolecular hydroesterification of a wide range of alkenes with CO2 and PMHS is described, successfully generating diverse esters with up to 98% yield and up to 100% linear-selectivity. In addition, the palladium-catalyzed intramolecular hydroesterification of alkenylphenols with CO2 and PMHS is also developed to construct a variety of 3-substituted-benzofuran-2(3H)-ones with up to 89% yield under mild conditions. In both systems, CO2 functions as an ideal CO source with the assistance of PMHS, thus smoothly participating in a series of alkoxycarbonylation processes.
Collapse
Affiliation(s)
- Meng-Meng Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Sheng-Mei Lu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy Dalian 116023 China
| | - Can Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
18
|
Chen L, Qu Q, Ran CK, Wang W, Zhang W, He Y, Liao LL, Ye JH, Yu DG. Photocatalytic Carboxylation of C-N Bonds in Cyclic Amines with CO 2 by Consecutive Visible-Light-Induced Electron Transfer. Angew Chem Int Ed Engl 2023; 62:e202217918. [PMID: 36680762 DOI: 10.1002/anie.202217918] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023]
Abstract
Visible-light photocatalytic carboxylation with CO2 is highly important. However, it still remains challenging for reluctant substrates with low reduction potentials. Herein, we report a novel photocatalytic carboxylation of C-N bonds in cyclic amines with CO2 via consecutive photo-induced electron transfer (ConPET). It is also the first photocatalytic reductive ring-opening reaction of azetidines, pyrrolidines and piperidines. This strategy is practical to transform a variety of easily available cyclic amines to valuable β-, γ-, δ- and ϵ-amino acids in moderate-to-excellent yields. Moreover, the method also features mild and transition-metal-free conditions, high selectivity, good functional-group tolerance, facile scalability and product derivations. Mechanistic studies indicate that the ConPET might be the key to generating highly reactive photocatalysts, which enable the reductive activation of cyclic amines to generate carbon radicals and carbanions as the key intermediates.
Collapse
Affiliation(s)
- Lin Chen
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Quan Qu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Chuan-Kun Ran
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Wei Wang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Wei Zhang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Yi He
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Li-Li Liao
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400030, P. R. China
| | - Jian-Heng Ye
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Da-Gang Yu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China.,State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
19
|
Pintus A, Mantovani S, Kovtun A, Bertuzzi G, Melucci M, Bandini M. Recyclable GO-Arginine Hybrids for CO 2 Fixation into Cyclic Carbonates. Chemistry 2023; 29:e202202440. [PMID: 36260641 DOI: 10.1002/chem.202202440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Indexed: 11/30/2022]
Abstract
New covalently modified GO-guanidine materials have been realized in a gram-scale synthesis and purified by an innovative microfiltration. The use of these composites in the fixation of CO2 into cyclic carbonates is demonstrated. Mild operating conditions, high yields (up to 85 %), wide scope (15 examples) and recoverability/reusability (up to 5 cycles) of the material account for the efficiency of the protocol. Dedicated control experiments shed light on the activation modes exerted by GO-l-arginine during the ring-opening/closing synthetic sequence.
Collapse
Affiliation(s)
- Angela Pintus
- Istituto per la Sintesi Organica e Fotoreattività (ISOF)-CNR, via Gobetti 101, 40129, Bologna, Italy
| | - Sebastiano Mantovani
- Istituto per la Sintesi Organica e Fotoreattività (ISOF)-CNR, via Gobetti 101, 40129, Bologna, Italy
| | - Alessandro Kovtun
- Istituto per la Sintesi Organica e Fotoreattività (ISOF)-CNR, via Gobetti 101, 40129, Bologna, Italy
| | - Giulio Bertuzzi
- Dipartimento di Chimica, "Giacomo Ciamcian", Alma Mater Studiorum-Università di Bologna, via Selmi 2, 40126, Bologna, Italy.,Center for Chemical Catalysis-C3, Alma Mater Studiorum-Università di Bologna, via Selmi 2, 40126, Bologna, Italy
| | - Manuela Melucci
- Istituto per la Sintesi Organica e Fotoreattività (ISOF)-CNR, via Gobetti 101, 40129, Bologna, Italy
| | - Marco Bandini
- Dipartimento di Chimica, "Giacomo Ciamcian", Alma Mater Studiorum-Università di Bologna, via Selmi 2, 40126, Bologna, Italy.,Center for Chemical Catalysis-C3, Alma Mater Studiorum-Università di Bologna, via Selmi 2, 40126, Bologna, Italy
| |
Collapse
|
20
|
Wang L, Li T, Perveen S, Zhang S, Wang X, Ouyang Y, Li P. Nickel-Catalyzed Enantioconvergent Carboxylation Enabled by a Chiral 2,2'-Bipyridine Ligand. Angew Chem Int Ed Engl 2022; 61:e202213943. [PMID: 36300599 DOI: 10.1002/anie.202213943] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Indexed: 11/24/2022]
Abstract
In contrast to previous approaches to chiral α-aryl carboxylic acids that based on reactions using hazardous gases, pressurized setup and mostly noble metal catalysts, in this work, a nickel-catalyzed general, efficient and highly enantioselective carboxylation reaction of racemic benzylic (pseudo)halides under mild conditions using atmospheric CO2 has been developed. A unique chiral 2,2'-bipyridine ligand named Me-SBpy featuring compact polycyclic skeleton enabled both high reactivity and stereoselectivity. The utility of this method has been demonstrated by synthesis of various chiral α-aryl carboxylic acids (30 examples, up to 95 % yield and 99 : 1 er), including profen family anti-inflammatory drugs and transformations using the acids as key intermediates. Based on mechanistic experimental results, a plausible catalytic cycle involving Ni-complex/radical equilibrium and Lewis acid-assisted CO2 activation has been proposed.
Collapse
Affiliation(s)
- Linghua Wang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| | - Tao Li
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| | - Saima Perveen
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Shuai Zhang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| | - Xicheng Wang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| | - Yizhao Ouyang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| | - Pengfei Li
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China.,School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.,State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
21
|
Yang Z, Shen C, Dong K. Hydroxyl group‐enabled highly efficient ligand for Pd‐catalyzed telomerization of 1,3‐butadiene with
CO
2
. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Zhengyi Yang
- Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, and Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 P. R. China
| | - Chaoren Shen
- Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, and Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 P. R. China
| | - Kaiwu Dong
- Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, and Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 P. R. China
| |
Collapse
|
22
|
Sha Y, Bai J, Li M, Gao W, Yang Q, Sun J, Sun S. Base-Promoted 5- exo- dig Cyclization of o-Alkynylamides or 2-En-4-ynamides with CO 2 toward Fully Substituted Acrylates. Org Lett 2022; 24:5715-5720. [PMID: 35921535 DOI: 10.1021/acs.orglett.2c02123] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A base-promoted sequential cyclization and carboxylation of o-alkynylamides or 2-en-4-ynamides with CO2 has been achieved with high efficiency, stereoselectivity, and regioselectivity. This approach begins with 5-exo-dig cyclization followed by trapping the resulting vinyl anion with CO2 and MeI, which provides a convenient access to diverse cyclic and fully substituted acrylates with CO2 as the carboxylic source.
Collapse
Affiliation(s)
- Yu Sha
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Junxue Bai
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Miao Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Wanxu Gao
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Qi Yang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Jianwei Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.,Department of Chemistry, the Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong SAR, China
| | - Song Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
23
|
Lombardi L, Cerveri A, Ceccon L, Pedrazzani R, Monari M, Bertuzzi G, Bandini M. Merging C-C σ-bond activation of cyclobutanones with CO 2 fixation via Ni-catalysis. Chem Commun (Camb) 2022; 58:4071-4074. [PMID: 35262541 DOI: 10.1039/d2cc00149g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A carboxylative Ni-catalyzed tandem C-C σ-bond activation of cyclobutanones followed by CO2-electrophilic trapping is documented as a direct route to synthetically valuable 3-indanone-1-acetic acids. The protocol shows an adequate functional group tolerance and useful chemical outcomes (yield up to 76%) when AlCl3 is adopted as an additive. Manipulations of the targeted cyclic scaffolds and a mechanistic proposal based on experimental evidence complete the investigation.
Collapse
Affiliation(s)
- Lorenzo Lombardi
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum, Università di Bologna, via Selmi 2, Bologna 40126, Italy. .,Center for Chemical Catalysis - C3, Alma Mater Studiorum - Università di Bologna, via Selmi 2, Bologna, 40126, Italy
| | - Alessandro Cerveri
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum, Università di Bologna, via Selmi 2, Bologna 40126, Italy.
| | - Leonardo Ceccon
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum, Università di Bologna, via Selmi 2, Bologna 40126, Italy.
| | - Riccardo Pedrazzani
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum, Università di Bologna, via Selmi 2, Bologna 40126, Italy. .,Center for Chemical Catalysis - C3, Alma Mater Studiorum - Università di Bologna, via Selmi 2, Bologna, 40126, Italy
| | - Magda Monari
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum, Università di Bologna, via Selmi 2, Bologna 40126, Italy. .,Center for Chemical Catalysis - C3, Alma Mater Studiorum - Università di Bologna, via Selmi 2, Bologna, 40126, Italy
| | - Giulio Bertuzzi
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum, Università di Bologna, via Selmi 2, Bologna 40126, Italy. .,Center for Chemical Catalysis - C3, Alma Mater Studiorum - Università di Bologna, via Selmi 2, Bologna, 40126, Italy
| | - Marco Bandini
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum, Università di Bologna, via Selmi 2, Bologna 40126, Italy. .,Center for Chemical Catalysis - C3, Alma Mater Studiorum - Università di Bologna, via Selmi 2, Bologna, 40126, Italy
| |
Collapse
|
24
|
Liao LL, Wang ZH, Cao KG, Sun GQ, Zhang W, Ran CK, Li Y, Chen L, Cao GM, Yu DG. Electrochemical Ring-Opening Dicarboxylation of Strained Carbon-Carbon Single Bonds with CO 2: Facile Synthesis of Diacids and Derivatization into Polyesters. J Am Chem Soc 2022; 144:2062-2068. [PMID: 35084189 DOI: 10.1021/jacs.1c12071] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Diacids are important monomers in the polymer industry to construct valuable materials. Dicarboxylation of unsaturated bonds, such as alkenes and alkynes, with CO2 has been demonstrated as a promising synthetic method. However, dicarboxylation of C─C single bonds with CO2 has rarely been investigated. Herein we report a novel electrochemical ring-opening dicarboxylation of C─C single bonds in strained rings with CO2. Structurally diverse glutaric acid and adipic acid derivatives were synthesized from substituted cyclopropanes and cyclobutanes in moderate to high yields. In contrast to oxidative ring openings, this is also the first realization of an electroreductive ring-opening reaction of strained rings, including commercialized ones. Control experiments suggested that radical anions and carbanions might be the key intermediates in this reaction. Moreover, this process features high step and atom economy, mild reaction conditions (1 atm, room temperature), good chemoselectivity and functional group tolerance, low electrolyte concentration, and easy derivatization of the products. Furthermore, we conducted polymerization of the corresponding diesters with diols to obtain a potential UV-shielding material with a self-healing function and a fluorine-containing polyester, whose performance tests showed promising applications.
Collapse
Affiliation(s)
- Li-Li Liao
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China
| | - Zhe-Hao Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Ke-Gong Cao
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China
| | - Guo-Quan Sun
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China
| | - Wei Zhang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China
| | - Chuan-Kun Ran
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China
| | - Yiwen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Li Chen
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China
| | - Guang-Mei Cao
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China
| | - Da-Gang Yu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China.,Beijing National Laboratory for Molecular Sciences, Beijing 100190, People's Republic of China
| |
Collapse
|
25
|
Ran CK, Niu YN, Song L, Wei MK, Cao YF, Luo SP, Yu YM, Liao LL, Yu DG. Visible-Light Photoredox-Catalyzed Carboxylation of Activated C(sp3)─O Bonds with CO2. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04921] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Chuan-Kun Ran
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Ya-Nan Niu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology; State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources; Key Laboratory of Advanced Functional Materials, Autonomous Region; Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi, Xinjiang 830046, P. R. China
| | - Lei Song
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Ming-Kai Wei
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Yi-Fei Cao
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Shu-Ping Luo
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Yu-Ming Yu
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology; State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources; Key Laboratory of Advanced Functional Materials, Autonomous Region; Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi, Xinjiang 830046, P. R. China
| | - Li-Li Liao
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Da-Gang Yu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|