1
|
Zhang DY, Xu Z, Li JY, Mao S, Wang H. Graphene-Assisted Electron-Based Imaging of Individual Organic and Biological Macromolecules: Structure and Transient Dynamics. ACS NANO 2025; 19:120-151. [PMID: 39723464 DOI: 10.1021/acsnano.4c12083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Characterizing the structures, interactions, and dynamics of molecules in their native liquid state is a long-existing challenge in chemistry, molecular science, and biophysics with profound scientific significance. Advanced transmission electron microscopy (TEM)-based imaging techniques with the use of graphene emerged as promising tools, mainly due to their performance on spatial and temporal resolution. This review focuses on the various approaches to achieving high-resolution imaging of individual molecules and their transient interactions. We highlight the crucial role of graphene grids in cryogenic electron microscopy for achieving Ångstrom-level resolution for resolving molecular structures and the importance of graphene liquid cells in liquid-phase TEM for directly observing dynamics with subnanometer resolution at a frame rate of several frames per second, as well as the cross-talks of the two imaging modes. To understand the chemistry and physics encoded in these molecular movies, incorporating machine learning algorithms for image analysis provides a promising approach that further bolsters the resolution adventure. Besides reviewing the recent advances and methodologies in TEM imaging of individual molecules using graphene, this review also outlines future directions to improve these techniques and envision problems in molecular science, chemistry, and biology that could benefit from these experiments.
Collapse
Affiliation(s)
- De-Yi Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Key Laboratory of Polymer Chemistry & Physics, National Biomedical Imaging Center, Peking University, Beijing 100871, People's Republic of China
| | - Zhipeng Xu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Key Laboratory of Polymer Chemistry & Physics, National Biomedical Imaging Center, Peking University, Beijing 100871, People's Republic of China
| | - Jia-Ye Li
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Key Laboratory of Polymer Chemistry & Physics, National Biomedical Imaging Center, Peking University, Beijing 100871, People's Republic of China
| | - Sheng Mao
- College of Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Huan Wang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Key Laboratory of Polymer Chemistry & Physics, National Biomedical Imaging Center, Peking University, Beijing 100871, People's Republic of China
| |
Collapse
|
2
|
Baskaran D, Behera US, Byun HS. Assessment of Solubility Behavior of a Copolymer in Supercritical CO 2 and Organic Solvents: Neural Network Prediction and Statistical Analysis. ACS OMEGA 2024; 9:40941-40955. [PMID: 39372018 PMCID: PMC11447862 DOI: 10.1021/acsomega.4c06212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/08/2024] [Accepted: 09/11/2024] [Indexed: 10/08/2024]
Abstract
In the industrial sector, understanding the behavior of block copolymers in supercritical solvents is crucial. While qualitative agreement with polymer solubility curves has been evaluated using complex theoretical models in many cases, quantitative predictions remain challenging. This study aimed to create a rapid and accurate artificial neural network (ANN) model to predict the lower critical solubility and upper critical solubility space of an atypical block copolymer, poly(styrene-co-octafluoropentyl methacrylate) (PSOM), in different supercritical solvent systems over a wide range of temperatures (51.75-182.05 °C) and high pressure (3.28-200.86 MPa). The experimental data set used in this study included one copolymer, five supercritical solvents, one cosolvent, and one initiator. It consisted of seven unique copolymer-solvent combinations (252 cloud point pressures) used to predict the model quantitatively and qualitatively. To predict the PSOM-solvent interactions, the study considered two different input systems: a six-variable system, a five-variable system, and one target output. Initially, we used a three-layer feed-forward neural network to select the best learning algorithm (Levenberg-Marquardt) from 14 different algorithms, considering one sample PSOM-solvent system. Then, the network topology was optimized by varying hidden neuron numbers from 2 to 80 for all seven PSOM-solvent combination systems. The predicted cloud point pressures were in excellent agreement with the experimental cloud point pressures, confirming the model's accuracy. It is clear from the results of a minimum mean square error (≤1.90 × 10-27) and maximum linear regression R 2 (≥0.99) during training, validation, and testing of all the data sets. Further, the ANN model accuracy was tested by statistical analysis, confirming the model's ability to accurately capture the miscibility regions of polymers, enabling efficient processing of various polymer materials. This data-driven approach facilitates the prediction of coexistence curves for other polymers and complex macromolecular systems.
Collapse
Affiliation(s)
- Divya Baskaran
- Department of Chemical and Biomolecular
Engineering, Chonnam National University, Yeosu, Jeonnam 59626, S. Korea
| | - Uma Sankar Behera
- Department of Chemical and Biomolecular
Engineering, Chonnam National University, Yeosu, Jeonnam 59626, S. Korea
| | - Hun-Soo Byun
- Department of Chemical and Biomolecular
Engineering, Chonnam National University, Yeosu, Jeonnam 59626, S. Korea
| |
Collapse
|
3
|
Xie J, Shi AC. Phase Behavior of Binary Blends of Diblock Copolymers: Progress and Opportunities. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:11491-11509. [PMID: 37535849 DOI: 10.1021/acs.langmuir.3c01175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
The phase behavior of binary blends of diblock copolymers has been examined extensively in the past decades. Experimental and theoretical studies have demonstrated that mixing two different block copolymers provides an efficient and versatile route to regulate their self-assembled morphologies. A good understanding of the principles governing the self-assembly of block copolymer blends has been obtained from the study of A1B1/A2B2 diblock copolymer blends. The second (A2B2) diblocks could act synergistically as fillers and cosurfactants to regulate the domain size and interfacial properties, resulting in the formation of ordered phases not found in the parent (A1B1 or A2B2) diblock copolymer melts. The study of A1B1/A2B2 block copolymer blends further provides a solid foundation for future research on more complex block copolymer blends.
Collapse
Affiliation(s)
- Jiayu Xie
- Department of Physics & Astronomy, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - An-Chang Shi
- Department of Physics & Astronomy, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| |
Collapse
|
4
|
Shi J, Huang X, Li W. The impact of intramolecular polydispersity on the self-assembly of AB n miktoarm star copolymers. Phys Chem Chem Phys 2023; 25:20032-20041. [PMID: 37462012 DOI: 10.1039/d3cp00994g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
The self-assembly behaviors of ABn miktoarm star copolymers as one typical type of asymmetric architecture have been studied well in the past few decades due to their deflected phase boundaries. In particular, recently, they have attracted renewed theoretical interest due to their expanded spherical phase region that stabilizes complex Frank-Kasper spherical phases. However, previous theoretical studies have never considered ABn copolymers with unequal arm lengths, which is more or less the case for synthesized copolymers. In this work, we investigate the self-assembly behaviors of ABn miktoarm star copolymers with unequal B-arms using self-consistent field theory. We propose an intramolecular polydispersity index (iĐ) to quantify the distribution of unequal B-blocks. Accordingly, we further propose a simple quantity of an effective arm number nequ = n/iĐ for quantitatively comparing the phase boundaries between various ABn copolymer samples with different arm numbers or different distributions of B-blocks. Our results indicate that different ABn copolymers with equal nequ exhibit similar phase diagrams. On the other hand, we also found that the phase boundaries of two different samples with same nequ are not exactly overlapped. We speculate that the effect of spontaneous curvature may be mainly controlled by nequ, but the packing frustration of B-blocks may also be dependent on the other quantities that are closely related to the shape of the distribution of B-arms, such as higher order polydispersity indexes.
Collapse
Affiliation(s)
- Jiahao Shi
- State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.
| | - Xianbo Huang
- National-certified Enterprise Technology Center, Kingfa Science and Technology Co., Ltd, Science City, Guangzhou 510663, China.
| | - Weihua Li
- State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.
| |
Collapse
|
5
|
Zhao B, Dong Q, Yang W, Xu Y. Theoretical Study of Phase Behaviors of Symmetric Linear B 1A 1B 2A 2B 3 Pentablock Copolymer. Molecules 2023; 28:molecules28083536. [PMID: 37110770 PMCID: PMC10146716 DOI: 10.3390/molecules28083536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/08/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023] Open
Abstract
The nanostructures that are self-assembled from block copolymer systems have attracted interest. Generally, it is believed that the dominating stable spherical phase is body-centered cubic (BCC) in linear AB-type block copolymer systems. The question of how to obtain spherical phases with other arrangements, such as the face-centered cubic (FCC) phase, has become a very interesting scientific problem. In this work, the phase behaviors of a symmetric linear B1A1B2A2B3 (fA1 = fA2, fB1 = fB3) pentablock copolymer are studied using the self-consistent field theory (SCFT), from which the influence of the relative length of the bridging B2-block on the formation of ordered nanostructures is revealed. By calculating the free energy of the candidate ordered phases, we determine that the stability regime of the BCC phase can be replaced by the FCC phase completely by tuning the length ratio of the middle bridging B2-block, demonstrating the key role of B2-block in stabilizing the spherical packing phase. More interestingly, the unusual phase transitions between the BCC and FCC spherical phases, i.e., BCC → FCC → BCC → FCC → BCC, are observed as the length of the bridging B2-block increases. Even though the topology of the phase diagrams is less affected, the phase windows of the several ordered nanostructures are dramatically changed. Specifically, the changing of the bridging B2-block can significantly adjust the asymmetrical phase regime of the Fddd network phase.
Collapse
Affiliation(s)
- Bin Zhao
- Department of Physics, Taizhou University, Taizhou 318000, China
| | - Qingshu Dong
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Wei Yang
- Department of Physics, Taizhou University, Taizhou 318000, China
| | - Yuci Xu
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| |
Collapse
|
6
|
Living Crystallization-Driven Self-Assembly of Oligo(p-phenylene vinylene)-Containing Block Copolymers: Impact of Branched Structure of Alkyl Side Chain of π-Conjugated Segment. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-023-2893-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
7
|
Zhao F, Dong Q, Li Q, Liu M, Li W. Emergence and Stability of Exotic “Binary” HCP-Type Spherical Phase in Binary AB/AB Blends. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Fengmei Zhao
- State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Qingshu Dong
- State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Qingyun Li
- State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Meijiao Liu
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Weihua Li
- State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
8
|
Li L, Xu Z, Li W. Emergence of Connected Binary Spherical Structures from the Self-assembly of an AB 2C Four-Arm Star Terpolymer. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Luyang Li
- State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Zhanwen Xu
- State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Weihua Li
- State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
9
|
Zhang L, Yang J, Li W. Emergence of Multi-strand Helices from the Self-Assembly of AB-Type Multiblock Copolymer under Cylindrical Confinement. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lixun Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Junying Yang
- State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Weihua Li
- State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
10
|
Li Q, Woo D, Kim JK, Li W. Truly “Inverted” Cylinders and Spheres Formed in the A(AB) 3/AC Blends of B/C Hydrogen Bonding Interactions. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Qingyun Li
- State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200438, P. R. China
| | - Dokyung Woo
- National Creative Research Initiative Center for Smart Block Copolymers, Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Kyungbuk 790-784, Republic of Korea
| | - Jin-Kon Kim
- National Creative Research Initiative Center for Hybrid Nano Materials by High-level Architectural Design of Block Copolymer, Pohang University of Science and Technology, Pohang, Kyungbuk 790-784, Republic of Korea
| | - Weihua Li
- State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200438, P. R. China
| |
Collapse
|
11
|
Zhang X, Li W. Periodic Patchy Spheres Self-Assembled by A mBCA n' Multiblock Terpolymers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:4407-4414. [PMID: 35352945 DOI: 10.1021/acs.langmuir.2c00139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We have designed AmBCAn' multiblock terpolymers and studied their self-assembly using self-consistent field theory, aiming to generate the periodically arranged patchy spheres and thus to clarify the regulation mechanism of the number of patches. A number of two-dimensional phase diagrams are constructed for three typical architectures A2BCA2', A2BCA3', and A3BCA2'. Four kinds of stable patchy spheres with the number of patches as 2 (S2), 4 (S4), 5 (S5), and 6 (S6) are obtained. These phases follow a common transition sequence of S2 → S4 → S5 → S6 along with the increasing of the volume fraction of C-block (fC), which forms the core sphere patched with B-domains. Moreover, the S6 phase exhibits the widest stability window, while S5 has the narrowest one. The increased arms of A'-blocks in A2BCA3' architecture deflect the phase boundaries toward large fC and accordingly expand the regions of these patchy spheres due to the amplified effect of spontaneous curvature. In contrast, the increased arms of A-blocks in A3BCA2' remarkably expands the window of S6 but narrows those of the other patchy spheres, which is mainly caused by increased packing frustration resulting from the reduced extension of the more divided A-blocks. The widest window of the S6 phase reaches ΔfC ∼ 0.13, which is readily accessed by experiment. Our work not only demonstrates a self-assembly strategy to engineer the patchy spheres, but also sheds light on the regulation mechanism of the patchy number.
Collapse
Affiliation(s)
- Xiaohui Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Weihua Li
- State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| |
Collapse
|