1
|
Hunt A, Ditri D, Chadha A, Keogh G, Thompson J, Loughborough W, McNeish I, Krell J, McDermott J, Tookman L, Ghaem-Maghami S. Homologous recombination deficiency testing in patients with high grade ovarian cancer: factors influencing test success. Future Oncol 2025; 21:341-347. [PMID: 39611711 PMCID: PMC11792859 DOI: 10.1080/14796694.2024.2433412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 11/20/2024] [Indexed: 11/30/2024] Open
Abstract
INTRODUCTION Testing for tumor BRCA mutations and homologous recombination deficiency (HRD) is recommended for all patients with advanced high-grade epithelial ovarian cancer. Delays in the HRD testing process can significantly affect the treatment offered to patients. METHODS HRD testing pathways and sampling processes were analyzed for tests sent from a tertiary gynae-oncology referral center between December 2020 and January 2023. RESULTS A total of 148 hRD tests were performed in 125 patients. The overall success rate of HRD testing was 69.6%. The success rates of obtaining results were: from diagnostic image-guided biopsy 66.7% (n = 40/60), at primary surgery 91.5% (n = 42/47), and at interval debulking surgery 51.2% (n = 21/41). The use of a larger 16-gauge needle used at image-guided biopsy produced a 100% success rate. Of 148 tests carried out, the median time for result was 28 days (range 14-158 days), with only 27% returned results in 21 or fewer days. In successful tests, 44.7% were classified as HRD-positive. 97% of patients with HRD-positive tumors treated at the center received a PARP inhibitor as part of their first-line maintenance treatment. CONCLUSIONS By optimizing the factors affecting HRD test success, we can obtain faster results and offer patients appropriate treatment at earlier time points to improve patient outcomes.
Collapse
Affiliation(s)
- Ashton Hunt
- Department of Gynaecological Oncology, Imperial College Healthcare NHS Trust, London, UK
| | - Daria Ditri
- Department of Gynaecological Oncology, Imperial College Healthcare NHS Trust, London, UK
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Ankit Chadha
- Department of Gynaecological Oncology, Imperial College Healthcare NHS Trust, London, UK
| | - Georgina Keogh
- Department of Gynaecological Oncology, Imperial College Healthcare NHS Trust, London, UK
| | - Jack Thompson
- Department of Gynaecological Oncology, Imperial College Healthcare NHS Trust, London, UK
| | | | - Iain McNeish
- Department of Gynaecological Oncology, Imperial College Healthcare NHS Trust, London, UK
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Jonathan Krell
- Department of Gynaecological Oncology, Imperial College Healthcare NHS Trust, London, UK
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Jacqueline McDermott
- Department of Gynaecological Oncology, Imperial College Healthcare NHS Trust, London, UK
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Laura Tookman
- Department of Gynaecological Oncology, Imperial College Healthcare NHS Trust, London, UK
| | - Sadaf Ghaem-Maghami
- Department of Gynaecological Oncology, Imperial College Healthcare NHS Trust, London, UK
- Department of Surgery and Cancer, Imperial College London, London, UK
| |
Collapse
|
2
|
Leung EYL, Robbins HL, Zaman S, Lal N, Morton D, Dew L, Williams AP, Wallis Y, Bell J, Raghavan M, Middleton G, Beggs AD. The potential clinical utility of Whole Genome Sequencing for patients with cancer: evaluation of a regional implementation of the 100,000 Genomes Project. Br J Cancer 2024; 131:1805-1813. [PMID: 39478124 PMCID: PMC11589591 DOI: 10.1038/s41416-024-02890-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 10/07/2024] [Accepted: 10/21/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND The 100,000 Genomes Project established infrastructure for Whole Genome Sequencing (WGS) in the United Kingdom. METHODS A retrospective study of cancer patients recruited to the 100,000 Genomes Project by the West Midlands Genomics Medicine Centre, evaluating clinical relevance of results. RESULTS After excluding samples with no sequencing data (1678/4851; 34.6%), 3166 sample sets (germline and somatic) from 3067 participants were sequenced. Results of 1256 participants (41.0%) were interpreted (excluding participants who died (308/3067; 10.0%) or were clinically excluded (1503/3067; 49.0%)). Of these, 323 (25.7%) had no variants in genes which may alter management (Domain 1 genes). Of the remaining 933 participants, 552 (59.2%) had clinical recommendations made (718 recommendations in total). These included therapeutic recommendations (377/933; 40.4%), such as clinical trial, unlicensed or licensed therapies or high TMB recommendations, and germline variants warranting clinical genetics review (85/933; 9.1%). At the last follow up, 20.2% of all recommendations were followed (145/718). However, only a small proportion of therapeutic recommendations were followed (5.1%, 25/491). CONCLUSIONS The 100,000 Genomes Project has established infrastructure and regional experience to support personalised cancer care. The majority of those with successful sequencing had actionable variants. Ensuring GTAB recommendations are followed will maximise benefits for patients.
Collapse
Affiliation(s)
- Elaine Y L Leung
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Helen L Robbins
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Shafquat Zaman
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Neeraj Lal
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Dion Morton
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Lisa Dew
- Central and South Genomic Medicine Service Alliance, Birmingham, UK
| | - Anthony P Williams
- The Wessex NHS Genomics Medicine Centre (WGMC), the University of Southampton, Southampton, UK
| | - Yvonne Wallis
- The West Midlands Regional Genomics Laboratory (WMRGL), Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Jennie Bell
- The West Midlands Regional Genomics Laboratory (WMRGL), Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Manoj Raghavan
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Gary Middleton
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Andrew D Beggs
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
3
|
Go K, Makino Y, Takeuchi Y, Minamiguchi S, Takada S, Sano N, Tanji M, Mineharu Y, Hojo M, Haga H, Arakawa Y. Intracranial pleomorphic liposarcoma misclassified as a pleomorphic xanthoastrocytoma by a DNA methylation classifier: illustrative case. JOURNAL OF NEUROSURGERY. CASE LESSONS 2024; 8:CASE24465. [PMID: 39496157 PMCID: PMC11539281 DOI: 10.3171/case24465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 08/21/2024] [Indexed: 11/06/2024]
Abstract
BACKGROUND Recently, it has been shown that DNA methylation arrays and German Cancer Research Center (Deutsches Krebsforschungszentrum) methylation classifiers are useful aids in brain tumor diagnosis for cases in which histopathological diagnosis is difficult. However, not enough is known about diagnostic aids for intracranial liposarcoma (LPS). OBSERVATIONS An 18-year-old woman with a history of natural killer/T-cell lymphoma, which had been treated with a bone marrow transplant and total body irradiation at age 11 years, presented with diplopia. Magnetic resonance imaging revealed a brain tumor in the posterior left temporal lobe, which was removed by craniotomy. The tumor was initially diagnosed as pleomorphic xanthoastrocytoma through histopathological and DNA methylation examination. She also had a soft tissue tumor in her left thigh, which was removed. It contained spindle cells with oval nuclei and highly pleomorphic cells and was diagnosed as radiation-induced LPS. Histopathological re-examination of the brain tumor led to a final diagnosis of pleomorphic LPS. LESSONS In this report, the authors describe the case of a patient with an intracranial pleomorphic LPS that was initially classified as a pleomorphic xanthoastrocytoma by a DNA methylation classifier. Although DNA methylation classifiers are useful as diagnostic aids in cases in which definitive pathology is difficult to determine, there is a risk of misdiagnosis in some types of tumors. https://thejns.org/doi/10.3171/CASE24465.
Collapse
Affiliation(s)
- Kohichi Go
- Departments of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yasuhide Makino
- Departments of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yasuhide Takeuchi
- Diagnostic Pathology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Sachiko Minamiguchi
- Diagnostic Pathology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shigeki Takada
- Departments of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Noritaka Sano
- Departments of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masahiro Tanji
- Departments of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yohei Mineharu
- Departments of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masato Hojo
- Departments of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Neurosurgery, Shiga General Hospital, Shiga, Japan
| | - Hironori Haga
- Diagnostic Pathology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yoshiki Arakawa
- Departments of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
4
|
Watkins JA, Trotman J, Tadross JA, Harrington J, Hatcher H, Horan G, Prewett S, Wong HH, McDonald S, Tarpey P, Roberts T, Su J, Tischkowitz M, Armstrong R, Amary F, Sosinsky A. Introduction and impact of routine whole genome sequencing in the diagnosis and management of sarcoma. Br J Cancer 2024; 131:860-869. [PMID: 38997407 PMCID: PMC11368954 DOI: 10.1038/s41416-024-02721-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/26/2024] [Accepted: 05/10/2024] [Indexed: 07/14/2024] Open
Abstract
BACKGROUND Sarcomas are diverse neoplasms with highly variable histological appearances in which diagnosis is often challenging and management options for metastatic/unresectable disease limited. Many sarcomas have distinctive molecular alterations, but the range of alterations is large, variable in type and rapidly increasing, meaning that testing by limited panels is unable to capture the broad spectrum of clinically pertinent genomic drivers required. Paired whole genome sequencing (WGS) in contrast allows comprehensive assessment of small variants, copy number and structural variants along with mutational signature analysis and germline testing. METHODS Introduction of WGS as a diagnostic standard for all eligible patients with known or suspected soft tissue sarcoma over a 2-year period at a soft tissue sarcoma treatment centre. RESULTS WGS resulted in a refinement in the diagnosis in 37% of cases, identification of a target for personalised therapy in 33% of cases, and a germline alteration in 4% of cases. CONCLUSION Introduction of WGS poses logistical and training challenges, but offers significant benefits to this group of patients.
Collapse
Affiliation(s)
- James A Watkins
- East Genomics Laboratory Hub, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
- Department of Histopathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
| | - Jamie Trotman
- East Genomics Laboratory Hub, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - John A Tadross
- East Genomics Laboratory Hub, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Department of Histopathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- MRC Metabolic Diseases Unit, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Jennifer Harrington
- Department of Oncology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Helen Hatcher
- Department of Oncology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Gail Horan
- Department of Oncology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Sarah Prewett
- Department of Oncology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Han H Wong
- Department of Oncology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Sarah McDonald
- Department of Histopathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Patrick Tarpey
- East Genomics Laboratory Hub, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Thomas Roberts
- East Genomics Laboratory Hub, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Jing Su
- East Genomics Laboratory Hub, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Marc Tischkowitz
- Department of Medical Genetics, National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Ruth Armstrong
- Department of Medical Genetics, National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Fernanda Amary
- Department of Histopathology, Royal National Orthopaedic Hospital, Stanmore, UK
| | | |
Collapse
|
5
|
Öfverholm I, Wallander K, Haglund C, Chellappa V, Wejde J, Gellerbring A, Wirta V, Renevey A, Caceres E, Tsagkozis P, Mayrhofer M, Papakonstantinou A, Linder-Stragliotto C, Bränström R, Larsson O, Lindberg J, Lin Y, Haglund de Flon F. Comprehensive Genomic Profiling Alters Clinical Diagnoses in a Significant Fraction of Tumors Suspicious of Sarcoma. Clin Cancer Res 2024; 30:2647-2658. [PMID: 38573684 DOI: 10.1158/1078-0432.ccr-24-0384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/13/2024] [Accepted: 04/01/2024] [Indexed: 04/05/2024]
Abstract
PURPOSE Tumor classification is a key component in personalized cancer care. For soft-tissue and bone tumors, this classification is currently based primarily on morphology assessment and IHC staining. However, these standard-of-care methods can pose challenges for pathologists. We therefore assessed how whole-genome and whole-transcriptome sequencing (WGTS) impacted tumor classification and clinical management when interpreted together with histomorphology. EXPERIMENTAL DESIGN We prospectively evaluated WGTS in routine diagnostics of 200 soft-tissue and bone tumors suspicious for malignancy, including DNA and RNA isolation from the tumor, and DNA isolation from a peripheral blood sample or any non-tumor tissue. RESULTS On the basis of specific genomic alterations or absence of presumed findings, WGTS resulted in reclassification of 7% (13/197) of the histopathologic diagnoses. Four cases were downgraded from low-grade sarcomas to benign lesions, and two cases were reclassified as metastatic malignant melanomas. Fusion genes associated with specific tumor entities were found in 30 samples. For malignant soft-tissue and bone tumors, we identified treatment relevant variants in 15% of cases. Germline pathogenic variants associated with a hereditary cancer syndrome were found in 22 participants (11%). CONCLUSIONS WGTS provides an important dimension of data that aids in the classification of soft-tissue and bone tumors, correcting a significant fraction of clinical diagnoses, and identifies molecular targets relevant for precision medicine. However, genetic findings need to be evaluated in their morphopathologic context, just as germline findings need to be evaluated in the context of patient phenotype and family history.
Collapse
Affiliation(s)
- Ingegerd Öfverholm
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Karin Wallander
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Cecilia Haglund
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden
| | - Venkatesh Chellappa
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Johan Wejde
- Department of Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Gellerbring
- Science for Life Laboratory, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Valtteri Wirta
- Science for Life Laboratory, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, School of Chemistry, Biotechnology and Health, Royal Institute of Technology, Stockholm, Sweden
- Genomic Medicine Center Karolinska, Karolinska University Hospital, Stockholm, Sweden
| | - Annick Renevey
- Science for Life Laboratory, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Eva Caceres
- Science for Life Laboratory, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Genomic Medicine Center Karolinska, Karolinska University Hospital, Stockholm, Sweden
| | - Panagiotis Tsagkozis
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Markus Mayrhofer
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Andri Papakonstantinou
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Breast Cancer, Endocrine Tumors and Sarcoma, Karolinska University Hospital, Stockholm, Sweden
| | | | - Robert Bränström
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Breast Cancer, Endocrine Tumors and Sarcoma, Karolinska University Hospital, Stockholm, Sweden
| | - Olle Larsson
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Johan Lindberg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Yingbo Lin
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Felix Haglund de Flon
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
6
|
Nakhod V, Krivenko A, Butkova T, Malsagova K, Kaysheva A. Advances in Molecular and Genetic Technologies and the Problems Related to Their Application in Personalized Medicine. J Pers Med 2024; 14:555. [PMID: 38929775 PMCID: PMC11204801 DOI: 10.3390/jpm14060555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/03/2024] [Accepted: 05/10/2024] [Indexed: 06/28/2024] Open
Abstract
Advances in the global personalized medicine market are directly related to innovations and developments in molecular and genetic technologies. This review focuses on the key trends in the development of these technologies in the healthcare sector. The existing global developments having an impact on the evolution of the personalized medicine market are reviewed. Efficient measures to support the development of molecular and genetic technologies are proposed.
Collapse
Affiliation(s)
- Valeriya Nakhod
- Institute of Biomedical Chemistry, 10 bld. 8, Pogodinskaya str., 119121 Moscow, Russia
| | | | | | | | | |
Collapse
|
7
|
Edsjö A, Gisselsson D, Staaf J, Holmquist L, Fioretos T, Cavelier L, Rosenquist R. Current and emerging sequencing-based tools for precision cancer medicine. Mol Aspects Med 2024; 96:101250. [PMID: 38330674 DOI: 10.1016/j.mam.2024.101250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/22/2024] [Indexed: 02/10/2024]
Abstract
Current precision cancer medicine is dependent on the analyses of a plethora of clinically relevant genomic aberrations. During the last decade, next-generation sequencing (NGS) has gradually replaced most other methods for precision cancer diagnostics, spanning from targeted tumor-informed assays and gene panel sequencing to global whole-genome and whole-transcriptome sequencing analyses. The shift has been impelled by a clinical need to assess an increasing number of genomic alterations with diagnostic, prognostic and predictive impact, including more complex biomarkers (e.g. microsatellite instability, MSI, and homologous recombination deficiency, HRD), driven by the parallel development of novel targeted therapies and enabled by the rapid reduction in sequencing costs. This review focuses on these sequencing-based methods, puts their emergence in a historic perspective, highlights their clinical utility in diagnostics and decision-making in pediatric and adult cancer, as well as raises challenges for their clinical implementation. Finally, the importance of applying sensitive tools for longitudinal monitoring of treatment response and detection of measurable residual disease, as well as future avenues in the rapidly evolving field of sequencing-based methods are discussed.
Collapse
Affiliation(s)
- Anders Edsjö
- Department of Clinical Genetics, Pathology and Molecular Diagnostics, Office for Medical Services, Region Skåne, Lund, Sweden; Division of Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden.
| | - David Gisselsson
- Department of Clinical Genetics, Pathology and Molecular Diagnostics, Office for Medical Services, Region Skåne, Lund, Sweden; Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Johan Staaf
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Medicon Village, Lund, Sweden
| | - Louise Holmquist
- Department of Clinical Genetics, Pathology and Molecular Diagnostics, Office for Medical Services, Region Skåne, Lund, Sweden
| | - Thoas Fioretos
- Department of Clinical Genetics, Pathology and Molecular Diagnostics, Office for Medical Services, Region Skåne, Lund, Sweden; Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden; Clinical Genomics Lund, Science for Life Laboratory, Lund University, Lund, Sweden
| | - Lucia Cavelier
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
| | - Richard Rosenquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden; Genomic Medicine Center Karolinska, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
8
|
Sosinsky A, Ambrose J, Cross W, Turnbull C, Henderson S, Jones L, Hamblin A, Arumugam P, Chan G, Chubb D, Noyvert B, Mitchell J, Walker S, Bowman K, Pasko D, Buongermino Pereira M, Volkova N, Rueda-Martin A, Perez-Gil D, Lopez J, Pullinger J, Siddiq A, Zainy T, Choudhury T, Yavorska O, Fowler T, Bentley D, Kingsley C, Hing S, Deans Z, Rendon A, Hill S, Caulfield M, Murugaesu N. Insights for precision oncology from the integration of genomic and clinical data of 13,880 tumors from the 100,000 Genomes Cancer Programme. Nat Med 2024; 30:279-289. [PMID: 38200255 PMCID: PMC10803271 DOI: 10.1038/s41591-023-02682-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 11/02/2023] [Indexed: 01/12/2024]
Abstract
The Cancer Programme of the 100,000 Genomes Project was an initiative to provide whole-genome sequencing (WGS) for patients with cancer, evaluating opportunities for precision cancer care within the UK National Healthcare System (NHS). Genomics England, alongside NHS England, analyzed WGS data from 13,880 solid tumors spanning 33 cancer types, integrating genomic data with real-world treatment and outcome data, within a secure Research Environment. Incidence of somatic mutations in genes recommended for standard-of-care testing varied across cancer types. For instance, in glioblastoma multiforme, small variants were present in 94% of cases and copy number aberrations in at least one gene in 58% of cases, while sarcoma demonstrated the highest occurrence of actionable structural variants (13%). Homologous recombination deficiency was identified in 40% of high-grade serous ovarian cancer cases with 30% linked to pathogenic germline variants, highlighting the value of combined somatic and germline analysis. The linkage of WGS and longitudinal life course clinical data allowed the assessment of treatment outcomes for patients stratified according to pangenomic markers. Our findings demonstrate the utility of linking genomic and real-world clinical data to enable survival analysis to identify cancer genes that affect prognosis and advance our understanding of how cancer genomics impacts patient outcomes.
Collapse
Affiliation(s)
| | | | - William Cross
- School of Life Sciences, University of Westminster, London, UK
| | - Clare Turnbull
- Genomics England, London, UK
- Institute of Cancer Research, London, UK
| | | | - Louise Jones
- Genomics England, London, UK
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Angela Hamblin
- Genomics England, London, UK
- Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, Oxford, UK
| | | | | | | | - Boris Noyvert
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Tom Fowler
- Genomics England, London, UK
- William Harvey Research Institute and the Barts Cancer Institute, Queen Mary University of London, London, UK
| | | | | | | | | | | | - Sue Hill
- Genomics Unit, NHS England, London, UK
| | - Mark Caulfield
- Genomics England, London, UK.
- William Harvey Research Institute and the Barts Cancer Institute, Queen Mary University of London, London, UK.
| | - Nirupa Murugaesu
- Genomics England, London, UK.
- Guy's & St Thomas' NHS Foundation Trust, London, UK.
| |
Collapse
|
9
|
Wallander K, Öfverholm I, Boye K, Tsagkozis P, Papakonstantinou A, Lin Y, Haglund de Flon F. Sarcoma care in the era of precision medicine. J Intern Med 2023; 294:690-707. [PMID: 37643281 DOI: 10.1111/joim.13717] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Sarcoma subtype classification is currently mainly based upon histopathological morphology. Molecular analyses have emerged as an efficient addition to the diagnostic workup and sarcoma care. Knowledge about the sarcoma genome increases, and genetic events that can either support a histopathological diagnosis or suggest a differential diagnosis are identified, as well as novel therapeutic targets. In this review, we present diagnostic, therapeutic, and prognostic molecular markers that are, or might soon be, used clinically. For sarcoma diagnostics, there are specific fusions highly supportive or pathognomonic for a diagnostic entity-for instance, SYT::SSX in synovial sarcoma. Complex karyotypes also give diagnostic information-for example, supporting dedifferentiation rather than low-grade central osteosarcoma or well-differentiated liposarcoma when detected in combination with MDM2/CDK4 amplification. Molecular treatment predictive sarcoma markers are available for gastrointestinal stromal tumor (GIST) and locally aggressive benign mesenchymal tumors. The molecular prognostic markers for sarcomas in clinical practice are few. For solitary fibrous tumor, the type of NAB2::STAT6 fusion is associated with the outcome, and the KIT/PDGFRA pathogenic variant in GISTs can give prognostic information. With the exploding availability of sequencing technologies, it becomes increasingly important to understand the strengths and limitations of those methods and their context in sarcoma diagnostics. It is reasonable to believe that most sarcoma treatment centers will increase the use of massive-parallel sequencing soon. We conclude that the context in which the genetic findings are interpreted is of importance, and the interpretation of genomic findings requires considering tumor histomorphology.
Collapse
Affiliation(s)
- Karin Wallander
- Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | | | - Kjetil Boye
- Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Panagiotis Tsagkozis
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Andri Papakonstantinou
- Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Breast Cancer, Endocrine Tumors and Sarcoma, Karolinska University Hospital and Karolinska Comprehensive Cancer Centre, Stockholm, Sweden
| | - Yingbo Lin
- Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Felix Haglund de Flon
- Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Pathology and Cancer diagnostics, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
10
|
Beird HC, Wu CC, Nakazawa M, Ingram D, Daniele JR, Lazcano R, Little L, Davies C, Daw NC, Wani K, Wang WL, Song X, Gumbs C, Zhang J, Rubin B, Conley A, Flanagan AM, Lazar AJ, Futreal PA. Complete loss of TP53 and RB1 is associated with complex genome and low immune infiltrate in pleomorphic rhabdomyosarcoma. HGG ADVANCES 2023; 4:100224. [PMID: 37593416 PMCID: PMC10428123 DOI: 10.1016/j.xhgg.2023.100224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/14/2023] [Indexed: 08/19/2023] Open
Abstract
Rhabdomyosarcoma accounts for roughly 1% of adult sarcomas, with pleomorphic rhabdomyosarcoma (PRMS) as the most common subtype. Survival outcomes remain poor for patients with PRMS, and little is known about the molecular drivers of this disease. To better characterize PRMS, we performed a broad array of genomic and immunostaining analyses on 25 patient samples. In terms of gene expression and methylation, PRMS clustered more closely with other complex karyotype sarcomas than with pediatric alveolar and embryonal rhabdomyosarcoma. Immune infiltrate levels in PRMS were among the highest observed in multiple sarcoma types and contrasted with low levels in other rhabdomyosarcoma subtypes. Lower immune infiltrate was associated with complete loss of both TP53 and RB1. This comprehensive characterization of the genetic, epigenetic, and immune landscape of PRMS provides a roadmap for improved prognostications and therapeutic exploration.
Collapse
Affiliation(s)
- Hannah C. Beird
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chia-Chin Wu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Michael Nakazawa
- Department of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Davis Ingram
- Department of Translational and Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Joseph R. Daniele
- TRACTION Platform, Division of Therapeutics Discovery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Rossana Lazcano
- Department of Translational and Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Latasha Little
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Christopher Davies
- Research Department of Pathology, UCL Cancer Institute, London WC1E 6DD, UK
| | - Najat C. Daw
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Khalida Wani
- Department of Translational and Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Wei-Lien Wang
- Department of Translational and Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xingzhi Song
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Curtis Gumbs
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jianhua Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Brian Rubin
- Institute Chair, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Anthony Conley
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Adrienne M. Flanagan
- Research Department of Pathology, UCL Cancer Institute, London WC1E 6DD, UK
- Royal National Orthopaedic Hospital NHS Trust, Stanmore, Middlesex HA7 4LP, UK
| | - Alexander J. Lazar
- Department of Translational and Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - P. Andrew Futreal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
11
|
Oh S, Joo HJ, Sohn JW, Park S, Jang JS, Seong J, Park KJ, Lee SH. Cloud-based digital healthcare development for precision medical hospital information system. Per Med 2023; 20:435-444. [PMID: 37811595 DOI: 10.2217/pme-2023-0074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Aim: This study aims to develop a cloud-based digital healthcare system for precision medical hospital information systems (P-HIS). Methods: In 2020, international standardization of P-HIS clinical terms and codes was performed. In 2021, South Korea's first tertiary hospital cloud was established and implemented successfully. Results: P-HIS was applied at Korea's first tertiary general hospital. Common data model-compatible precision medicine/medical service solutions were developed for medical support. Ultrahigh-quality medical data for precision medicine were acquired and built using big data. Joint global commercialization and dissemination/spreading were achieved using the P-HIS consortium and global common data model-based observational medical outcome partnership network. Conclusion: To provide personalized precision medical services in the future, establishing and using big medical data is essential.
Collapse
Affiliation(s)
- SeJun Oh
- Human Behavior & Genetic Institute, Associate Research Center, Korea University, Seoul, 02841, Republic of Korea
| | - Hyung Joon Joo
- Division of Cardiology, Cardiovascular Center, Korea University Anam Hospital, Korea University of College of Medicine, Seoul, 02841, Republic of Korea
| | - Jang Wook Sohn
- Division of Infectious Disease, Department of Internal Medicine, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Sangsoo Park
- Division of Global Sport Studies, Korea University Sejong Campus, Sejong, 30019, Republic of Korea
| | - Jin Su Jang
- Human Behavior & Genetic Institute, Associate Research Center, Korea University, Seoul, 02841, Republic of Korea
| | - Jiwon Seong
- Korea University Medicine Center, Seoul, Biomedical Research Institute, Seoul, 02841, Republic of Korea
- Huniverse, Seoul, 02566, Republic of Korea
| | | | - Sang Heon Lee
- Department of Physical Medicine and Rehabilitation, Korea University Medical Center, Seoul, 02841, Republic of Korea
| |
Collapse
|
12
|
Rulten SL, Grose RP, Gatz SA, Jones JL, Cameron AJM. The Future of Precision Oncology. Int J Mol Sci 2023; 24:12613. [PMID: 37628794 PMCID: PMC10454858 DOI: 10.3390/ijms241612613] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/03/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
Our understanding of the molecular mechanisms underlying cancer development and evolution have evolved rapidly over recent years, and the variation from one patient to another is now widely recognized. Consequently, one-size-fits-all approaches to the treatment of cancer have been superseded by precision medicines that target specific disease characteristics, promising maximum clinical efficacy, minimal safety concerns, and reduced economic burden. While precision oncology has been very successful in the treatment of some tumors with specific characteristics, a large number of patients do not yet have access to precision medicines for their disease. The success of next-generation precision oncology depends on the discovery of new actionable disease characteristics, rapid, accurate, and comprehensive diagnosis of complex phenotypes within each patient, novel clinical trial designs with improved response rates, and worldwide access to novel targeted anticancer therapies for all patients. This review outlines some of the current technological trends, and highlights some of the complex multidisciplinary efforts that are underway to ensure that many more patients with cancer will be able to benefit from precision oncology in the near future.
Collapse
Affiliation(s)
| | - Richard P. Grose
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK; (R.P.G.); (J.L.J.)
| | - Susanne A. Gatz
- Cancer Research UK Clinical Trials Unit (CRCTU), Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
| | - J. Louise Jones
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK; (R.P.G.); (J.L.J.)
| | - Angus J. M. Cameron
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK; (R.P.G.); (J.L.J.)
| |
Collapse
|
13
|
Cuppen E, Elemento O, Rosenquist R, Nikic S, IJzerman M, Zaleski ID, Frederix G, Levin LÅ, Mullighan CG, Buettner R, Pugh TJ, Grimmond S, Caldas C, Andre F, Custers I, Campo E, van Snellenberg H, Schuh A, Nakagawa H, von Kalle C, Haferlach T, Fröhling S, Jobanputra V. Implementation of Whole-Genome and Transcriptome Sequencing Into Clinical Cancer Care. JCO Precis Oncol 2022; 6:e2200245. [PMID: 36480778 PMCID: PMC10166391 DOI: 10.1200/po.22.00245] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/30/2022] [Accepted: 09/21/2022] [Indexed: 12/13/2022] Open
Abstract
PURPOSE The combination of whole-genome and transcriptome sequencing (WGTS) is expected to transform diagnosis and treatment for patients with cancer. WGTS is a comprehensive precision diagnostic test that is starting to replace the standard of care for oncology molecular testing in health care systems around the world; however, the implementation and widescale adoption of this best-in-class testing is lacking. METHODS Here, we address the barriers in integrating WGTS for cancer diagnostics and treatment selection and answer questions regarding utility in different cancer types, cost-effectiveness and affordability, and other practical considerations for WGTS implementation. RESULTS We review the current studies implementing WGTS in health care systems and provide a synopsis of the clinical evidence and insights into practical considerations for WGTS implementation. We reflect on regulatory, costs, reimbursement, and incidental findings aspects of this test. CONCLUSION WGTS is an appropriate comprehensive clinical test for many tumor types and can replace multiple, cascade testing approaches currently performed. Decreasing sequencing cost, increasing number of clinically relevant aberrations and discovery of more complex biomarkers of treatment response, should pave the way for health care systems and laboratories in implementing WGTS into clinical practice, to transform diagnosis and treatment for patients with cancer.
Collapse
Affiliation(s)
- Edwin Cuppen
- Hartwig Medical Foundation, Amsterdam, the Netherlands
- Center for Molecular Medicine and Oncode Institute, University Medical Center, Utrecht, the Netherlands
| | - Olivier Elemento
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY
| | - Richard Rosenquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics, Karolinska University Hospital, Solna, Sweden
| | - Svetlana Nikic
- Illumina Productos de España, S.L.U., Plaza Pablo Ruiz Picasso, Madrid, Spain
| | - Maarten IJzerman
- Erasmus School of Health Policy & Management, Erasmus University, Rotterdam, the Netherlands
- Centre for Cancer Research, University of Melbourne, Melbourne, Australia
| | - Isabelle Durand Zaleski
- Université de Paris, CRESS, INSERM, INRA, URCEco, AP-HP, Hôpital de l'Hôtel Dieu, Paris, France
| | - Geert Frederix
- Julius Center for Health Sciences and Primary Care, University Medical Center, Utrecht, the Netherlands
| | - Lars-Åke Levin
- Department of Health, Medicine and Caring Sciences (HMV), Linköping University, Linköping, Sweden
| | | | | | - Trevor J. Pugh
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Sean Grimmond
- Centre for Cancer Research, University of Melbourne, Melbourne, Australia
| | - Carlos Caldas
- Cancer Research UK Cambridge Institute and Department of Oncology, University of Cambridge, Cambridge, United Kingdom
| | | | | | - Elias Campo
- Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red, Cáncer (CIBERONC), Madrid, Spain
- Hematopathology Unit, Hospital Clínic of Barcelona, Barcelona, Spain
- University of Barcelona, Barcelona, Spain
| | | | - Anna Schuh
- University of Oxford, Oxford, United Kingdom
| | - Hidewaki Nakagawa
- Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Christof von Kalle
- Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Clinical Study Center, Berlin, Germany
| | | | - Stefan Fröhling
- Division of Translational Medical Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Vaidehi Jobanputra
- New York Genome Center; Department of Pathology, Columbia University Irving Medical Center, New York, NY
| |
Collapse
|
14
|
Roohani S, Ehret F, Perez E, Capper D, Jarosch A, Flörcken A, Märdian S, Zips D, Kaul D. Sarcoma classification by DNA methylation profiling in clinical everyday life: the Charité experience. Clin Epigenetics 2022; 14:149. [PMID: 36380356 PMCID: PMC9667620 DOI: 10.1186/s13148-022-01365-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Sarcomas are a heterogeneous group of rare malignant tumors with more than 100 subtypes. Accurate diagnosis remains challenging due to a lack of characteristic molecular or histomorphological hallmarks. A DNA methylation-based tumor profiling classifier for sarcomas (known as sarcoma classifier) from the German Cancer Research Center (Deutsches Krebsforschungszentrum) is now employed in selected cases to guide tumor classification and treatment decisions at our institution. Data on the usage of the classifier in daily clinical routine are lacking. METHODS In this single-center experience, we describe the clinical course of five sarcoma cases undergoing thorough pathological and reference pathological examination as well as DNA methylation-based profiling and their impact on subsequent treatment decisions. We collected data on the clinical course, DNA methylation analysis, histopathology, radiological imaging, and next-generation sequencing. RESULTS Five clinical cases involving DNA methylation-based profiling in 2021 at our institution were included. All patients' DNA methylation profiles were successfully matched to a methylation profile cluster of the sarcoma classifier's dataset. In three patients, the classifier reassured diagnosis or aided in finding the correct diagnosis in light of contradictory data and differential diagnoses. In two patients with intracranial tumors, the classifier changed the diagnosis to a novel diagnostic tumor group. CONCLUSIONS The sarcoma classifier is a valuable diagnostic tool that should be used after comprehensive clinical and histopathological evaluation. It may help to reassure the histopathological diagnosis or indicate the need for thorough reassessment in cases where it contradicts previous findings. However, certain limitations (non-classifiable cases, misclassifications, unclear degree of sample purity for analysis and others) currently preclude wide clinical application. The current sarcoma classifier is therefore not yet ready for a broad clinical routine. With further refinements, this promising tool may be implemented in daily clinical practice in selected cases.
Collapse
Affiliation(s)
- Siyer Roohani
- grid.6363.00000 0001 2218 4662Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiation Oncology, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Felix Ehret
- grid.6363.00000 0001 2218 4662Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiation Oncology, Augustenburger Platz 1, 13353 Berlin, Germany ,grid.484013.a0000 0004 6879 971XBerlin Institute of Health at Charité – Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany ,grid.7497.d0000 0004 0492 0584Charité - Universitätsmedizin Berlin, Berlin, German Cancer Consortium (DKTK), partner site Berlin, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Eilís Perez
- grid.6363.00000 0001 2218 4662Department of Neuropathology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‑Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - David Capper
- grid.7497.d0000 0004 0492 0584Charité - Universitätsmedizin Berlin, Berlin, German Cancer Consortium (DKTK), partner site Berlin, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany ,grid.6363.00000 0001 2218 4662Department of Neuropathology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‑Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Armin Jarosch
- grid.6363.00000 0001 2218 4662Institute of Pathology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Anne Flörcken
- grid.7497.d0000 0004 0492 0584Charité - Universitätsmedizin Berlin, Berlin, German Cancer Consortium (DKTK), partner site Berlin, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany ,grid.6363.00000 0001 2218 4662Department of Hematology, Oncology and Tumor Immunology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Sven Märdian
- grid.6363.00000 0001 2218 4662Centre for Musculoskeletal Surgery, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Daniel Zips
- grid.6363.00000 0001 2218 4662Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiation Oncology, Augustenburger Platz 1, 13353 Berlin, Germany ,grid.7497.d0000 0004 0492 0584Charité - Universitätsmedizin Berlin, Berlin, German Cancer Consortium (DKTK), partner site Berlin, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - David Kaul
- grid.6363.00000 0001 2218 4662Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiation Oncology, Augustenburger Platz 1, 13353 Berlin, Germany ,grid.7497.d0000 0004 0492 0584Charité - Universitätsmedizin Berlin, Berlin, German Cancer Consortium (DKTK), partner site Berlin, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
15
|
Cross W, Lyskjær I, Lesluyes T, Hargreaves S, Strobl AC, Davies C, Waise S, Hames-Fathi S, Oukrif D, Ye H, Amary F, Tirabosco R, Gerrand C, Baker T, Barnes D, Steele C, Alexandrov L, Bond G, Cool P, Pillay N, Van Loo P, Flanagan AM. A genetic model for central chondrosarcoma evolution correlates with patient outcome. Genome Med 2022; 14:99. [PMID: 36042521 PMCID: PMC9426036 DOI: 10.1186/s13073-022-01084-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 07/07/2022] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Central conventional chondrosarcoma (CS) is the most common subtype of primary malignant bone tumour in adults. Treatment options are usually limited to surgery, and prognosis is challenging. These tumours are characterised by the presence and absence of IDH1 and IDH2 mutations, and recently, TERT promoter alterations have been reported in around 20% of cases. The effect of these mutations on clinical outcome remains unclear. The purpose of this study was to determine if prognostic accuracy can be improved by the addition of genomic data, and specifically by examination of IDH1, IDH2, and TERT mutations. METHODS In this study, we combined both archival samples and data sourced from the Genomics England 100,000 Genomes Project (n = 356). Mutations in IDH1, IDH2, and TERT were profiled using digital droplet PCR (n = 346), whole genome sequencing (n=68), or both (n = 64). Complex events and other genetic features were also examined, along with methylation array data (n = 84). We correlated clinical features and patient outcomes with our genetic findings. RESULTS IDH2-mutant tumours occur in older patients and commonly present with high-grade or dedifferentiated disease. Notably, TERT mutations occur most frequently in IDH2-mutant tumours, although have no effect on survival in this group. In contrast, TERT mutations are rarer in IDH1-mutant tumours, yet they are associated with a less favourable outcome in this group. We also found that methylation profiles distinguish IDH1- from IDH2-mutant tumours. IDH wild-type tumours rarely exhibit TERT mutations and tend to be diagnosed in a younger population than those with tumours harbouring IDH1 and IDH2 mutations. A major genetic feature of this group is haploidisation and subsequent genome doubling. These tumours evolve less frequently to dedifferentiated disease and therefore constitute a lower risk group. CONCLUSIONS Tumours with IDH1 or IDH2 mutations or those that are IDHwt have significantly different genetic pathways and outcomes in relation to TERT mutation. Diagnostic testing for IDH1, IDH2, and TERT mutations could therefore help to guide clinical monitoring and prognostication.
Collapse
Affiliation(s)
- William Cross
- Research Department of Pathology, University College London, UCL Cancer Institute, London, UK
| | - Iben Lyskjær
- Research Department of Pathology, University College London, UCL Cancer Institute, London, UK
- Medical Genomics Research Group, University College London, UCL Cancer Institute, London, UK
| | | | - Steven Hargreaves
- Research Department of Pathology, University College London, UCL Cancer Institute, London, UK
| | | | - Christopher Davies
- Research Department of Pathology, University College London, UCL Cancer Institute, London, UK
- Department of Histopathology, Royal National Orthopaedic Hospital, Stanmore, UK
| | - Sara Waise
- The Francis Crick Institute, London, UK
- Cancer Sciences Unit, University of Southampton, Southampton, UK
| | - Shadi Hames-Fathi
- Research Department of Pathology, University College London, UCL Cancer Institute, London, UK
| | - Dahmane Oukrif
- Research Department of Pathology, University College London, UCL Cancer Institute, London, UK
| | - Hongtao Ye
- Department of Histopathology, Royal National Orthopaedic Hospital, Stanmore, UK
| | - Fernanda Amary
- Department of Histopathology, Royal National Orthopaedic Hospital, Stanmore, UK
| | - Roberto Tirabosco
- Department of Histopathology, Royal National Orthopaedic Hospital, Stanmore, UK
| | - Craig Gerrand
- Bone Tumour Unit, Royal National Orthopaedic Hospital, Stanmore, UK
| | | | - David Barnes
- Institute of Cancer and Genomic Sciences, Birmingham University, Birmingham, UK
| | - Christopher Steele
- Research Department of Pathology, University College London, UCL Cancer Institute, London, UK
| | | | - Gareth Bond
- Institute of Cancer and Genomic Sciences, Birmingham University, Birmingham, UK
| | - Paul Cool
- Robert Jones & Agnes Hunt Orthopaedic Hospital NHS Foundation Trust, Oswestry, UK
- Keele University, Keele, UK
| | - Nischalan Pillay
- Research Department of Pathology, University College London, UCL Cancer Institute, London, UK
- Department of Histopathology, Royal National Orthopaedic Hospital, Stanmore, UK
| | | | - Adrienne M Flanagan
- Research Department of Pathology, University College London, UCL Cancer Institute, London, UK.
- Department of Histopathology, Royal National Orthopaedic Hospital, Stanmore, UK.
| |
Collapse
|
16
|
van der Graaf W, Tesselaar M, McVeigh T, Oyen W, Fröhling S. Biology-Guided Precision Medicine in Rare Cancers: Lessons from Sarcomas and Neuroendocrine Tumours. Semin Cancer Biol 2022; 84:228-241. [DOI: 10.1016/j.semcancer.2022.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 05/19/2022] [Accepted: 05/19/2022] [Indexed: 11/26/2022]
|
17
|
Hou YCC, Neidich JA, Duncavage EJ, Spencer DH, Schroeder MC. Clinical whole-genome sequencing in cancer diagnosis. Hum Mutat 2022; 43:1519-1530. [PMID: 35471774 DOI: 10.1002/humu.24381] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/24/2022] [Accepted: 04/04/2022] [Indexed: 11/10/2022]
Abstract
Characterizing the genomic landscape of cancers is a routine part of clinical care that began with the discovery of the Philadelphia chromosome and has since coevolved with genomic technologies. Genomic analysis of tumors at the nucleotide level using DNA sequencing has revolutionized the understanding of cancer biology and identified new molecular drivers of disease that have led to therapeutic advances and improved patient outcomes. However, the application of next-generation sequencing in the clinical laboratory has generally been limited until very recently to targeted analysis of selected genes. Recent technological innovations and reductions in sequencing costs are now able to deliver the long-promised goal of tumor whole-genome sequencing as a practical clinical assay.
Collapse
Affiliation(s)
- Ying-Chen C Hou
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Julie A Neidich
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Eric J Duncavage
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - David H Spencer
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA.,Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA.,McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Molly C Schroeder
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
18
|
Arifi S. Personalised pharmacotherapy options for soft tissue sarcomas. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2022. [DOI: 10.1080/23808993.2022.2038562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Samia Arifi
- Department of medical oncology, Hassan II University Hospital, Faculty of Medicine and Pharmacy, University of Sidi Mohamed Ben Abdellah, Fez, Morocco
| |
Collapse
|
19
|
Schipper LJ, Monkhorst K, Samsom KG, Bosch LJ, Snaebjornsson P, van Boven H, Roepman P, van der Kolk LE, van Houdt WJ, van der Graaf WT, Meijer GA, Voest EE. Clinical Impact of Prospective Whole Genome Sequencing in Sarcoma Patients. Cancers (Basel) 2022; 14:436. [PMID: 35053600 PMCID: PMC8773512 DOI: 10.3390/cancers14020436] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 12/21/2022] Open
Abstract
With more than 70 different histological sarcoma subtypes, accurate classification can be challenging. Although characteristic genetic events can largely facilitate pathological assessment, large-scale molecular profiling generally is not part of regular diagnostic workflows for sarcoma patients. We hypothesized that whole genome sequencing (WGS) optimizes clinical care of sarcoma patients by detection of diagnostic and actionable genomic characteristics, and of underlying hereditary conditions. WGS of tumor and germline DNA was incorporated in the diagnostic work-up of 83 patients with a (presumed) sarcomas in a tertiary referral center. Clinical follow-up data were collected prospectively to assess impact of WGS on clinical decision making. In 12/83 patients (14%), the genomic profile led to revision of cancer diagnosis, with change of treatment plan in eight. All twelve patients had undergone multiple tissue retrieval procedures and immunohistopathological assessments by regional and expert pathologists prior to WGS analysis. Actionable biomarkers with therapeutic potential were identified for 30/83 patients. Pathogenic germline variants were present in seven patients. In conclusion, unbiased genomic characterization with WGS identifies genomic biomarkers with direct clinical implications for sarcoma patients. Given the diagnostic complexity and high unmet need for new treatment opportunities in sarcoma patients, WGS can be an important extension of the diagnostic arsenal of pathologists.
Collapse
Affiliation(s)
- Luuk J. Schipper
- Department of Molecular Oncology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands;
- Oncode Institute, 3521 AL Utrecht, The Netherlands
| | - Kim Monkhorst
- Department of Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands; (K.M.); (K.G.S.); (L.J.W.B.); (P.S.); (H.v.B.); (G.A.M.)
| | - Kris G. Samsom
- Department of Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands; (K.M.); (K.G.S.); (L.J.W.B.); (P.S.); (H.v.B.); (G.A.M.)
| | - Linda J.W. Bosch
- Department of Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands; (K.M.); (K.G.S.); (L.J.W.B.); (P.S.); (H.v.B.); (G.A.M.)
| | - Petur Snaebjornsson
- Department of Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands; (K.M.); (K.G.S.); (L.J.W.B.); (P.S.); (H.v.B.); (G.A.M.)
| | - Hester van Boven
- Department of Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands; (K.M.); (K.G.S.); (L.J.W.B.); (P.S.); (H.v.B.); (G.A.M.)
| | - Paul Roepman
- Hartwig Medical Foundation, 1098 XH Amsterdam, The Netherlands;
| | - Lizet E. van der Kolk
- Family Cancer Clinic, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands;
| | - Winan J. van Houdt
- Department of Surgical Oncology, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands;
| | | | - Gerrit A. Meijer
- Department of Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands; (K.M.); (K.G.S.); (L.J.W.B.); (P.S.); (H.v.B.); (G.A.M.)
| | - Emile E. Voest
- Department of Molecular Oncology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands;
- Oncode Institute, 3521 AL Utrecht, The Netherlands
- Department of Medical Oncology, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands;
| |
Collapse
|
20
|
Lyskjær I, Davies C, Strobl A, Hindley J, James S, Lalam RK, Cross W, Hide G, Rankin KS, Jeys L, Tirabosco R, Stevenson J, Genomics England Research Consortium, O’Donnell P, Cool P, Flanagan AM. Circulating tumour DNA is a promising biomarker for risk stratification of central chondrosarcoma with IDH1/2 and GNAS mutations. Mol Oncol 2021; 15:3679-3690. [PMID: 34528398 PMCID: PMC8637565 DOI: 10.1002/1878-0261.13102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/26/2021] [Accepted: 09/14/2021] [Indexed: 11/17/2022] Open
Abstract
Chondrosarcoma (CS) is a rare tumour type and the most common primary malignant bone cancer in adults. The prognosis, currently based on tumour grade, imaging and anatomical location, is not reliable, and more objective biomarkers are required. We aimed to determine whether the level of circulating tumour DNA (ctDNA) in the blood of CS patients could be used to predict outcome. In this multi-institutional study, we recruited 145 patients with cartilaginous tumours, of which 41 were excluded. ctDNA levels were assessed in 83 of the remaining 104 patients, whose tumours harboured a hotspot mutation in IDH1/2 or GNAS. ctDNA was detected pre-operatively in 31/83 (37%) and in 12/31 (39%) patients postoperatively. We found that detection of ctDNA was more accurate than pathology for identification of high-grade tumours and was associated with a poor prognosis; ctDNA was never associated with CS grade 1/atypical cartilaginous tumours (ACT) in the long bones, in neoplasms sited in the small bones of the hands and feet or in tumours measuring less than 80 mm. Although the results are promising, they are based on a small number of patients, and therefore, introduction of this blood test into clinical practice as a complementary assay to current standard-of-care protocols would allow the assay to be assessed more stringently and developed for a more personalised approach for the treatment of patients with CS.
Collapse
Affiliation(s)
- Iben Lyskjær
- Research Department of PathologyUniversity College LondonUCL Cancer InstituteLondonUK
- Medical Genomics Research GroupUniversity College LondonUCL Cancer InstituteLondonUK
| | - Christopher Davies
- Research Department of PathologyUniversity College LondonUCL Cancer InstituteLondonUK
- Department of HistopathologyRoyal National Orthopaedic HospitalStanmoreUK
| | - Anna‐Christina Strobl
- Research Department of PathologyUniversity College LondonUCL Cancer InstituteLondonUK
- Department of HistopathologyRoyal National Orthopaedic HospitalStanmoreUK
| | - Joanna Hindley
- Department of HistopathologyRoyal National Orthopaedic HospitalStanmoreUK
| | - Steven James
- Department of Musculoskeletal ImagingRoyal Orthopaedic HospitalBirminghamUK
| | - Radhesh K. Lalam
- Department of RadiologyRoyal National Orthopaedic HospitalStanmoreUK
| | - William Cross
- Research Department of PathologyUniversity College LondonUCL Cancer InstituteLondonUK
| | - Geoff Hide
- North of England Bone and Soft Tissue Tumour ServiceFreeman HospitalNewcastleUK
| | - Kenneth S. Rankin
- North of England Bone and Soft Tissue Tumour ServiceFreeman HospitalNewcastleUK
- Newcastle Centre for CancerNewcastle UniversityUK
| | - Lee Jeys
- Orthopaedic DepartmentRoyal Orthopaedic Hospital NHS Foundation TrustBirminghamUK
| | - Roberto Tirabosco
- Department of HistopathologyRoyal National Orthopaedic HospitalStanmoreUK
| | - Jonathan Stevenson
- Department of Orthopaedic Oncology and ArthroplastyRoyal Orthopaedic Hospital NHS Foundation TrustBirminghamUK
| | | | - Paul O’Donnell
- Research Department of PathologyUniversity College LondonUCL Cancer InstituteLondonUK
- Department of RadiologyRoyal National Orthopaedic HospitalStanmoreUK
| | - Paul Cool
- Robert Jones & Agnes Hunt Orthopaedic Hospital NHS Foundation TrustOswestryUK
- Keele UniversityUK
| | - Adrienne M. Flanagan
- Research Department of PathologyUniversity College LondonUCL Cancer InstituteLondonUK
- Department of HistopathologyRoyal National Orthopaedic HospitalStanmoreUK
| |
Collapse
|
21
|
Lyskjær I, De Noon S, Tirabosco R, Rocha AM, Lindsay D, Amary F, Ye H, Schrimpf D, Stichel D, Sill M, Koelsche C, Pillay N, Von Deimling A, Beck S, Flanagan AM. DNA methylation-based profiling of bone and soft tissue tumours: a validation study of the 'DKFZ Sarcoma Classifier'. J Pathol Clin Res 2021; 7:350-360. [PMID: 33949149 PMCID: PMC8185366 DOI: 10.1002/cjp2.215] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/26/2021] [Accepted: 03/18/2021] [Indexed: 01/01/2023]
Abstract
Diagnosing bone and soft tissue neoplasms remains challenging because of the large number of subtypes, many of which lack diagnostic biomarkers. DNA methylation profiles have proven to be a reliable basis for the classification of brain tumours and, following this success, a DNA methylation-based sarcoma classification tool from the Deutsches Krebsforschungszentrum (DKFZ) in Heidelberg has been developed. In this study, we assessed the performance of their classifier on DNA methylation profiles of an independent data set of 986 bone and soft tissue tumours and controls. We found that the 'DKFZ Sarcoma Classifier' was able to produce a diagnostic prediction for 55% of the 986 samples, with 83% of these predictions concordant with the histological diagnosis. On limiting the validation to the 820 cases with histological diagnoses for which the DKFZ Classifier was trained, 61% of cases received a prediction, and the histological diagnosis was concordant with the predicted methylation class in 88% of these cases, findings comparable to those reported in the DKFZ Classifier paper. The classifier performed best when diagnosing mesenchymal chondrosarcomas (CHSs, 88% sensitivity), chordomas (85% sensitivity), and fibrous dysplasia (83% sensitivity). Amongst the subtypes least often classified correctly were clear cell CHSs (14% sensitivity), malignant peripheral nerve sheath tumours (27% sensitivity), and pleomorphic liposarcomas (29% sensitivity). The classifier predictions resulted in revision of the histological diagnosis in six of our cases. We observed that, although a higher tumour purity resulted in a greater likelihood of a prediction being made, it did not correlate with classifier accuracy. Our results show that the DKFZ Classifier represents a powerful research tool for exploring the pathogenesis of sarcoma; with refinement, it has the potential to be a valuable diagnostic tool.
Collapse
Affiliation(s)
- Iben Lyskjær
- Research Department of PathologyUniversity College London, UCL Cancer InstituteLondonUK
- Medical Genomics Research GroupUniversity College London, UCL Cancer InstituteLondonUK
| | - Solange De Noon
- Research Department of PathologyUniversity College London, UCL Cancer InstituteLondonUK
- Department of HistopathologyRoyal National Orthopaedic HospitalStanmoreUK
| | - Roberto Tirabosco
- Department of HistopathologyRoyal National Orthopaedic HospitalStanmoreUK
| | - Ana Maia Rocha
- Research Department of PathologyUniversity College London, UCL Cancer InstituteLondonUK
- Department of HistopathologyRoyal National Orthopaedic HospitalStanmoreUK
| | - Daniel Lindsay
- Research Department of PathologyUniversity College London, UCL Cancer InstituteLondonUK
- Department of HistopathologyRoyal National Orthopaedic HospitalStanmoreUK
| | - Fernanda Amary
- Research Department of PathologyUniversity College London, UCL Cancer InstituteLondonUK
- Department of HistopathologyRoyal National Orthopaedic HospitalStanmoreUK
| | - Hongtao Ye
- Department of HistopathologyRoyal National Orthopaedic HospitalStanmoreUK
| | - Daniel Schrimpf
- Department of NeuropathologyUniversity of HeidelbergHeidelbergGermany
- Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK)German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Damian Stichel
- Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK)German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Martin Sill
- Hopp‐Children's Cancer Center (KiTZ)HeidelbergGermany
- Division of Pediatric Neurooncology, German Cancer Consortium (DKTK)German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Christian Koelsche
- Department of NeuropathologyUniversity of HeidelbergHeidelbergGermany
- Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK)German Cancer Research Center (DKFZ)HeidelbergGermany
- Department of General PathologyUniversity of HeidelbergHeidelbergGermany
| | - Nischalan Pillay
- Research Department of PathologyUniversity College London, UCL Cancer InstituteLondonUK
| | - Andreas Von Deimling
- Department of NeuropathologyUniversity of HeidelbergHeidelbergGermany
- Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK)German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Stephan Beck
- Medical Genomics Research GroupUniversity College London, UCL Cancer InstituteLondonUK
| | - Adrienne M Flanagan
- Research Department of PathologyUniversity College London, UCL Cancer InstituteLondonUK
- Department of HistopathologyRoyal National Orthopaedic HospitalStanmoreUK
| |
Collapse
|
22
|
Veenstra TD. Omics in Systems Biology: Current Progress and Future Outlook. Proteomics 2021; 21:e2000235. [PMID: 33320441 DOI: 10.1002/pmic.202000235] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/25/2020] [Indexed: 12/16/2022]
Abstract
Biological research has undergone tremendous changes over the past three decades. Research used to almost exclusively focus on a single aspect of a single molecule per experiment. Modern technologies have enabled thousands of molecules to be simultaneously analyzed and the way that these molecules influence each other to be discerned. The change is so dramatic that it has given rise to a whole new descriptive suffix (i.e., omics) to describe these fields of study. While genomics was arguably the initial driver of this new trend, it quickly spread to other biological entities resulting in the creation of transcriptomics, proteomics, metabolomics, etc. The development of these "big four omics" created a wave of other omic fields, such as epigenomics, glycomics, lipidomics, microbiomics, and even foodomics; all with the purpose of comprehensively studying all the molecular entities or processes within their respective domain. The large number of omic fields that are invented even led to the term "panomics" as a way to classify them all under one category. Ultimately, all of these omic fields are setting the foundation for developing systems biology; in which the focus will be on determining the complex interactions that occur within biological systems.
Collapse
|