1
|
Lee H, Cho HJ, Han Y, Lee SH. Mid- to long-term efficacy and safety of stem cell therapy for acute myocardial infarction: a systematic review and meta-analysis. Stem Cell Res Ther 2024; 15:290. [PMID: 39256845 PMCID: PMC11389242 DOI: 10.1186/s13287-024-03891-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/21/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND This comprehensive systematic review and meta-analysis investigated the mid- to long-term efficacy and safety of stem cell therapy in patients with acute myocardial infarction (AMI). METHODS The study encompassed 79 randomized controlled trials with 7103 patients, rendering it the most up-to-date and extensive analysis in this field. This study specifically focused on the impact of stem cell therapy on left ventricular ejection fraction (LVEF), major adverse cardiac events (MACE), and infarct size. RESULTS Stem cell therapy significantly improved LVEF at 6, 12, 24, and 36 months post-transplantation compared to control values, indicating its potential for long-term cardiac function enhancement. A trend toward reduced MACE occurrence was observed in the intervention groups, suggesting the potential of stem cell therapy to lower the risk of cardiovascular death, reinfarction, and stroke. Significant LVEF improvements were associated with long cell culture durations exceeding 1 week, particularly when combined with high injected cell quantities (at least 108 cells). No significant reduction in infarct size was observed. CONCLUSIONS This review highlights the potential of stem cell therapy as a promising therapeutic approach for patients with AMI, offering sustained LVEF improvement and a potential reduction in MACE risk. However, further research is required to optimize cell culture techniques, determine the optimal timing and dosage, and investigate procedural variations to maximize the efficacy and safety of stem cell therapy in this context.
Collapse
Affiliation(s)
- Hyeongsuk Lee
- College of Nursing, Research Institute of AI and Nursing Science, Gachon University, 191 Hambakmoero, Yeonsu-gu, Incheon, 21936, South Korea
| | - Hyun-Jai Cho
- Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Yeonjung Han
- College of Nursing, Research Institute of AI and Nursing Science, Gachon University, 191 Hambakmoero, Yeonsu-gu, Incheon, 21936, South Korea
| | - Seon Heui Lee
- College of Nursing, Research Institute of AI and Nursing Science, Gachon University, 191 Hambakmoero, Yeonsu-gu, Incheon, 21936, South Korea.
| |
Collapse
|
2
|
Olatunji G, Kokori E, Yusuf I, Ayanleke E, Damilare O, Afolabi S, Adetunji B, Mohammed S, Akinmoju O, Aboderin G, Aderinto N. Stem cell-based therapies for heart failure management: a narrative review of current evidence and future perspectives. Heart Fail Rev 2024; 29:573-598. [PMID: 37733137 DOI: 10.1007/s10741-023-10351-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/13/2023] [Indexed: 09/22/2023]
Abstract
Heart failure (HF) is a prevalent and debilitating global cardiovascular condition affecting around 64 million individuals, placing significant strain on healthcare systems and diminishing patients' quality of life. The escalating prevalence of HF underscores the urgent need for innovative therapeutic approaches that target the root causes and aim to restore normal cardiac function. Stem cell-based therapies have emerged as promising candidates, representing a fundamental departure from conventional treatments focused primarily on symptom management. This review explores the evolving landscape of stem cell-based therapies for HF management. It delves into the mechanisms of action, clinical evidence from both positive and negative outcomes, ethical considerations, and regulatory challenges. Key findings include the potential for improved cardiac function, enhanced quality of life, and long-term benefits associated with stem cell therapies. However, adverse events and patient vulnerabilities necessitate stringent safety assessments. Future directions in stem cell-based HF therapies include enhancing efficacy and safety through optimized stem cell types, delivery techniques, dosing strategies, and long-term safety assessments. Personalized medicine, combining therapies, addressing ethical and regulatory challenges, and expanding access while reducing costs are crucial aspects of the evolving landscape.
Collapse
Affiliation(s)
- Gbolahan Olatunji
- Department of Medicine and Surgery, University of Ilorin, Ilorin, Nigeria
| | - Emmanuel Kokori
- Department of Medicine and Surgery, University of Ilorin, Ilorin, Nigeria
| | - Ismaila Yusuf
- Department of Medicine and Surgery, Obafemi Awolowo University, Osun, Nigeria
| | - Emmanuel Ayanleke
- Department of Medicine and Surgery, University of Ilorin, Ilorin, Nigeria
| | - Olakanmi Damilare
- Department of Medicine and Surgery, Ladoke Akintola University Teaching Hospital, Ogbomoso, Nigeria
| | - Samson Afolabi
- Department of Medicine and Surgery, Ladoke Akintola University Teaching Hospital, Ogbomoso, Nigeria
| | - Busayo Adetunji
- Department of Medicine and Surgery, Ladoke Akintola University Teaching Hospital, Ogbomoso, Nigeria
| | - Saad Mohammed
- Al-Kindy College of Medicine, University of Baghdad, Baghdad, Iraq
| | | | - Gbolahan Aboderin
- Department of Medicine and Surgery, Ladoke Akintola University Teaching Hospital, Ogbomoso, Nigeria
| | - Nicholas Aderinto
- Department of Medicine and Surgery, Ladoke Akintola University Teaching Hospital, Ogbomoso, Nigeria.
| |
Collapse
|
3
|
Carvalho AB, Kasai-Brunswick TH, Campos de Carvalho AC. Advanced cell and gene therapies in cardiology. EBioMedicine 2024; 103:105125. [PMID: 38640834 PMCID: PMC11052923 DOI: 10.1016/j.ebiom.2024.105125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 04/21/2024] Open
Abstract
We review the evidence for the presence of stem/progenitor cells in the heart and the preclinical and clinical data using diverse cell types for the therapy of cardiac diseases. We highlight the failure of adult stem/progenitor cells to ameliorate heart function in most cardiac diseases, with the possible exception of refractory angina. The use of pluripotent stem cell-derived cardiomyocytes is analysed as a viable alternative therapeutic option but still needs further research at preclinical and clinical stages. We also discuss the use of direct reprogramming of cardiac fibroblasts into cardiomyocytes and the use of extracellular vesicles as therapeutic agents in ischemic and non-ischemic cardiac diseases. Finally, gene therapies and genome editing for the treatment of hereditary cardiac diseases, ablation of genes responsible for atherosclerotic disease, or modulation of gene expression in the heart are discussed.
Collapse
Affiliation(s)
- Adriana Bastos Carvalho
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Universidade Federal do RIo de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Tais Hanae Kasai-Brunswick
- Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Universidade Federal do RIo de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Antonio Carlos Campos de Carvalho
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Universidade Federal do RIo de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
4
|
Kim N, Chung WY, Cho JY. The role and medical prospects of long non-coding RNAs in cardiovascular disease. Heart Fail Rev 2023; 28:1437-1453. [PMID: 37796408 PMCID: PMC10575999 DOI: 10.1007/s10741-023-10342-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/23/2023] [Indexed: 10/06/2023]
Abstract
Cardiovascular disease (CVD) has reached epidemic proportions and is a leading cause of death worldwide. One of the long-standing goals of scientists is to repair heart tissue damaged by various forms of CVD such as cardiac hypertrophy, dilated cardiomyopathy, myocardial infarction, heart fibrosis, and genetic and developmental heart defects such as heart valve deformities. Damaged or defective heart tissue has limited regenerative capacity and results in a loss of functioning myocardium. Advances in transcriptomic profiling technology have revealed that long noncoding RNA (lncRNA) is transcribed from what was once considered "junk DNA." It has since been discovered that lncRNAs play a critical role in the pathogenesis of various CVDs and in myocardial regeneration. This review will explore how lncRNAs impact various forms of CVD as well as those involved in cardiomyocyte regeneration. Further, we discuss the potential of lncRNAs as a therapeutic modality for treating CVD.
Collapse
Affiliation(s)
- Najung Kim
- Department of Biochemistry, BK21 Plus and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, 08826, Seoul, Republic of Korea
- Comparative Medicine Disease Research Center, Seoul National University, 08826, Seoul, Republic of Korea
| | - Woo-Young Chung
- Department of Internal Medicine, Boramae Medical Center , Seoul National University College of Medicine, Seoul National University, Boramaero 5 Gil 20, Dongjak-Gu, Seoul, Korea
| | - Je-Yoel Cho
- Department of Biochemistry, BK21 Plus and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, 08826, Seoul, Republic of Korea.
- Comparative Medicine Disease Research Center, Seoul National University, 08826, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Amini H, Namjoo AR, Narmi MT, Mardi N, Narimani S, Naturi O, Khosrowshahi ND, Rahbarghazi R, Saghebasl S, Hashemzadeh S, Nouri M. Exosome-bearing hydrogels and cardiac tissue regeneration. Biomater Res 2023; 27:99. [PMID: 37803483 PMCID: PMC10559618 DOI: 10.1186/s40824-023-00433-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/18/2023] [Indexed: 10/08/2023] Open
Abstract
BACKGROUND In recent years, cardiovascular disease in particular myocardial infarction (MI) has become the predominant cause of human disability and mortality in the clinical setting. The restricted capacity of adult cardiomyocytes to proliferate and restore the function of infarcted sites is a challenging issue after the occurrence of MI. The application of stem cells and byproducts such as exosomes (Exos) has paved the way for the alleviation of cardiac tissue injury along with conventional medications in clinics. However, the short lifespan and activation of alloreactive immune cells in response to Exos and stem cells are the main issues in patients with MI. Therefore, there is an urgent demand to develop therapeutic approaches with minimum invasion for the restoration of cardiac function. MAIN BODY Here, we focused on recent data associated with the application of Exo-loaded hydrogels in ischemic cardiac tissue. Whether and how the advances in tissue engineering modalities have increased the efficiency of whole-based and byproducts (Exos) therapies under ischemic conditions. The integration of nanotechnology and nanobiology for designing novel smart biomaterials with therapeutic outcomes was highlighted. CONCLUSION Hydrogels can provide suitable platforms for the transfer of Exos, small molecules, drugs, and other bioactive factors for direct injection into the damaged myocardium. Future studies should focus on the improvement of physicochemical properties of Exo-bearing hydrogel to translate for the standard treatment options.
Collapse
Affiliation(s)
- Hassan Amini
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of General and Vascular Surgery, Tabriz University of Medical Sciences, Tabriz, 51548/53431, Iran
| | - Atieh Rezaei Namjoo
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Taghavi Narmi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Narges Mardi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samaneh Narimani
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ozra Naturi
- Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Nafiseh Didar Khosrowshahi
- Stem Cell and Tissue Engineering Research Laboratory, Sahand University of Technology, Tabriz, 51335-1996, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, 51548/53431, Iran.
| | - Solmaz Saghebasl
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, 51548/53431, Iran.
| | - Shahriar Hashemzadeh
- Department of General and Vascular Surgery, Tabriz University of Medical Sciences, Tabriz, 51548/53431, Iran.
| | - Mohammad Nouri
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
6
|
Leancă SA, Afrăsânie I, Crișu D, Matei IT, Duca ȘT, Costache AD, Onofrei V, Tudorancea I, Mitu O, Bădescu MC, Șerban LI, Costache II. Cardiac Reverse Remodeling in Ischemic Heart Disease with Novel Therapies for Heart Failure with Reduced Ejection Fraction. Life (Basel) 2023; 13:1000. [PMID: 37109529 PMCID: PMC10143569 DOI: 10.3390/life13041000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/03/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Despite the improvements in the treatment of coronary artery disease (CAD) and acute myocardial infarction (MI) over the past 20 years, ischemic heart disease (IHD) continues to be the most common cause of heart failure (HF). In clinical trials, over 70% of patients diagnosed with HF had IHD as the underlying cause. Furthermore, IHD predicts a worse outcome for patients with HF, leading to a substantial increase in late morbidity, mortality, and healthcare costs. In recent years, new pharmacological therapies have emerged for the treatment of HF, such as sodium-glucose cotransporter-2 inhibitors, angiotensin receptor-neprilysin inhibitors, selective cardiac myosin activators, and oral soluble guanylate cyclase stimulators, demonstrating clear or potential benefits in patients with HF with reduced ejection fraction. Interventional strategies such as cardiac resynchronization therapy, cardiac contractility modulation, or baroreflex activation therapy might provide additional therapeutic benefits by improving symptoms and promoting reverse remodeling. Furthermore, cardiac regenerative therapies such as stem cell transplantation could become a new therapeutic resource in the management of HF. By analyzing the existing data from the literature, this review aims to evaluate the impact of new HF therapies in patients with IHD in order to gain further insight into the best form of therapeutic management for this large proportion of HF patients.
Collapse
Affiliation(s)
- Sabina Andreea Leancă
- Cardiology Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Irina Afrăsânie
- Cardiology Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Daniela Crișu
- Cardiology Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
| | - Iulian Theodor Matei
- Cardiology Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Ștefania Teodora Duca
- Cardiology Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Alexandru Dan Costache
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
- Department of Cardiovascular Rehabilitation, Clinical Rehabilitation Hospital, 700661 Iași, Romania
| | - Viviana Onofrei
- Cardiology Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Ionuţ Tudorancea
- Cardiology Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
- Department of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Ovidiu Mitu
- Cardiology Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Minerva Codruța Bădescu
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
| | - Lăcrămioara Ionela Șerban
- Department of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Irina Iuliana Costache
- Cardiology Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| |
Collapse
|
7
|
Kishino Y, Fukuda K. Unlocking the Pragmatic Potential of Regenerative Therapies in Heart Failure with Next-Generation Treatments. Biomedicines 2023; 11:biomedicines11030915. [PMID: 36979894 PMCID: PMC10046277 DOI: 10.3390/biomedicines11030915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/28/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023] Open
Abstract
Patients with chronic heart failure (HF) have a poor prognosis due to irreversible impairment of left ventricular function, with 5-year survival rates <60%. Despite advances in conventional medicines for HF, prognosis remains poor, and there is a need to improve treatment further. Cell-based therapies to restore the myocardium offer a pragmatic approach that provides hope for the treatment of HF. Although first-generation cell-based therapies using multipotent cells (bone marrow-derived mononuclear cells, mesenchymal stem cells, adipose-derived regenerative cells, and c-kit-positive cardiac cells) demonstrated safety in preclinical models of HF, poor engraftment rates, and a limited ability to form mature cardiomyocytes (CMs) and to couple electrically with existing CMs, meant that improvements in cardiac function in double-blind clinical trials were limited and largely attributable to paracrine effects. The next generation of stem cell therapies uses CMs derived from human embryonic stem cells or, increasingly, from human-induced pluripotent stem cells (hiPSCs). These cell therapies have shown the ability to engraft more successfully and improve electromechanical function of the heart in preclinical studies, including in non-human primates. Advances in cell culture and delivery techniques promise to further improve the engraftment and integration of hiPSC-derived CMs (hiPSC-CMs), while the use of metabolic selection to eliminate undifferentiated cells will help minimize the risk of teratomas. Clinical trials of allogeneic hiPSC-CMs in HF are now ongoing, providing hope for vast numbers of patients with few other options available.
Collapse
Affiliation(s)
| | - Keiichi Fukuda
- Correspondence: ; Tel.: +81-3-5363-3874; Fax: +81-3-5363-3875
| |
Collapse
|
8
|
Kędziora A, Konstanty-Kalandyk J, Litwinowicz R, Mazur P, Kapelak B, Piątek J. Hybrid techniques for myocardial regeneration: state of the art and future perspectives. ADVANCES IN INTERVENTIONAL CARDIOLOGY 2022; 18:360-365. [PMID: 36967853 PMCID: PMC10031663 DOI: 10.5114/aic.2022.121124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/01/2022] [Indexed: 11/18/2022] Open
Abstract
Myocardium has a limited proliferative capacity, and adult hearts are considered incapable of regenerating after injury. A significant loss in the viable myocardium eventually diminishes the heart's ability to contract synchronously, leading to heart failure. Despite the development in interventional and pharmacological treatment for ischemic heart disease and heart failure, there is a significant number of highly symptomatic patients. For these individuals, treatments that stimulate myocardial regeneration can offer alleviation of dyspnea and angina and improvement in quality of life. Stem cells are known to promote neovascularization and endothelial repair. Various stem cell lines have been investigated over the years to establish those with the highest potential to differentiate into cardiomyocytes, including bone marrow-derived mononuclear cells, mesenchymal stromal cells, CD34+, CD133+, endothelial progenitor cells, and adipose-derived mesenchymal stromal cells. Stem cell studies were based on several delivery pathways: infusion into coronary vessels, direct injection into the injured region of the myocardium, and delivery within the novel bioengineered scaffolds. Acellular materials have also been investigated over the years. They demonstrate the therapeutic potential to promote angiogenesis and release of growth factors to improve the restoration of critical components of the extracellular matrix. This review summarizes hybrid cardiac regeneration treatments that combine novel bioengineering techniques with delivery approaches that cardiac surgeons can provide.
Collapse
Affiliation(s)
- Anna Kędziora
- Department of Cardiovascular Surgery and Transplantology, John Paul II Hospital, Krakow, Poland
- Jagiellonian University Medical College, Krakow, Poland
| | - Janusz Konstanty-Kalandyk
- Department of Cardiovascular Surgery and Transplantology, John Paul II Hospital, Krakow, Poland
- Jagiellonian University Medical College, Krakow, Poland
| | - Radosław Litwinowicz
- Jagiellonian University Medical College, Krakow, Poland
- Department of Cardiac Surgery, Regional Specialist Hospital, Grudziadz, Poland
| | - Piotr Mazur
- Department of Cardiovascular Surgery and Transplantology, John Paul II Hospital, Krakow, Poland
- Jagiellonian University Medical College, Krakow, Poland
- Department of Cardiac Surgery, Leipzig Heart Center, Leipzig, Germany
- Department of Cardiovascular Surgery, Mayo Clinic, Rochester MIN, USA
| | - Bogusław Kapelak
- Department of Cardiovascular Surgery and Transplantology, John Paul II Hospital, Krakow, Poland
- Jagiellonian University Medical College, Krakow, Poland
| | - Jacek Piątek
- Department of Cardiovascular Surgery and Transplantology, John Paul II Hospital, Krakow, Poland
- Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
9
|
Assessment of Myocardial Diastolic Dysfunction as a Result of Myocardial Infarction and Extracellular Matrix Regulation Disorders in the Context of Mesenchymal Stem Cell Therapy. J Clin Med 2022; 11:jcm11185430. [PMID: 36143077 PMCID: PMC9502668 DOI: 10.3390/jcm11185430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/05/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
The decline in cardiac contractility due to damage or loss of cardiomyocytes is intensified by changes in the extracellular matrix leading to heart remodeling. An excessive matrix response in the ischemic cardiomyopathy may contribute to the elevated fibrotic compartment and diastolic dysfunction. Fibroproliferation is a defense response aimed at quickly closing the damaged area and maintaining tissue integrity. Balance in this process is of paramount importance, as the reduced post-infarction response causes scar thinning and more pronounced left ventricular remodeling, while excessive fibrosis leads to impairment of heart function. Under normal conditions, migration of progenitor cells to the lesion site occurs. These cells have the potential to differentiate into myocytes in vitro, but the changed micro-environment in the heart after infarction does not allow such differentiation. Stem cell transplantation affects the extracellular matrix remodeling and thus may facilitate the improvement of left ventricular function. Studies show that mesenchymal stem cell therapy after infarct reduces fibrosis. However, the authors did not specify whether they meant the reduction of scarring as a result of regeneration or changes in the matrix. Research is also necessary to rule out long-term negative effects of post-acute infarct stem cell therapy.
Collapse
|
10
|
Liao R, Li Z, Wang Q, Lin H, Sun H. Revascularization of chronic total occlusion coronary artery and cardiac regeneration. Front Cardiovasc Med 2022; 9:940808. [PMID: 36093131 PMCID: PMC9455703 DOI: 10.3389/fcvm.2022.940808] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
Coronary chronic total occlusion (CTO) contributes to the progression of heart failure in patients with ischemic cardiomyopathy. Randomized controlled trials demonstrated that percutaneous coronary intervention (PCI) for CTO significantly improves angina symptoms and quality of life but fails to reduce clinical events compared with optimal medical therapy. Even so, intervening physicians strongly support CTO-PCI. Cardiac regeneration therapy after CTO-PCI should be a promising approach to improving the prognosis of ischemic cardiomyopathy. However, the relationship between CTO revascularization and cardiac regeneration has rarely been studied, and experimental studies on cardiac regeneration usually employ rodent models with permanent ligation of the coronary artery rather than reopening of the occlusive artery. Limited early-stage clinical trials demonstrated that cell therapy for cardiac regeneration in ischemic cardiomyopathy reduces scar size, reverses cardiac remodeling, and promotes angiogenesis. This review focuses on the status quo of CTO-PCI in ischemic cardiomyopathy and the clinical prospect of cardiac regeneration in this setting.
Collapse
Affiliation(s)
- Ruoxi Liao
- Department of Clinical Medicine, Dalian Medical University, Dalian, China
| | - Zhihong Li
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qiancheng Wang
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hairuo Lin
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Hairuo Lin, ,
| | - Huijun Sun
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
- Huijun Sun,
| |
Collapse
|
11
|
Gori T. Restenosis after Coronary Stent Implantation: Cellular Mechanisms and Potential of Endothelial Progenitor Cells (A Short Guide for the Interventional Cardiologist). Cells 2022; 11:cells11132094. [PMID: 35805178 PMCID: PMC9265311 DOI: 10.3390/cells11132094] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/26/2022] [Accepted: 06/28/2022] [Indexed: 02/05/2023] Open
Abstract
Coronary stents are among the most common therapies worldwide. Despite significant improvements in the biocompatibility of these devices throughout the last decades, they are prone, in as many as 10–20% of cases, to short- or long-term failure. In-stent restenosis is a multifactorial process with a complex and incompletely understood pathophysiology in which inflammatory reactions are of central importance. This review provides a short overview for the clinician on the cellular types responsible for restenosis with a focus on the role of endothelial progenitor cells. The mechanisms of restenosis are described, along with the cell-based attempts made to prevent it. While the focus of this review is principally clinical, experimental evidence provides some insight into the potential implications for prevention and therapy of coronary stent restenosis.
Collapse
Affiliation(s)
- Tommaso Gori
- German Center for Cardiac and Vascular Research (DZHK) Standort Rhein-Main, Department of Cardiology, University Medical Center Mainz, 55131 Mainz, Germany
| |
Collapse
|
12
|
Hosseinpour A, Kheshti F, Kazemi A, Attar A. Comparing the effect of bone marrow mono-nuclear cells with mesenchymal stem cells after acute myocardial infarction on improvement of left ventricular function: a meta-analysis of clinical trials. Stem Cell Res Ther 2022; 13:203. [PMID: 35578329 PMCID: PMC9109324 DOI: 10.1186/s13287-022-02883-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/03/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The effect of transplantation of bone-marrow mononuclear cells (BM-MNCs) and mesenchymal stem cells (MSCs) on ejection fraction (LVEF) has been studied in patients with acute myocardial infarction (AMI) in clinical trials. This raises the question that which type of cell may help improve LVEF better in AMI patients. No meta-analysis of clinical trials has yet addressed this question. METHODS Electronic databases were searched thoroughly to find eligible trials on the effects of transplantation of BM-MNCs and MSCs in patients with AMI. The primary outcome was improvement in LVEF. Data were synthesized using random-effects meta-analysis. For maximizing the credibility of subgroup analysis, we used the instrument for assessing the Credibility of Effect Modification of Analyses (ICEMAN) for meta-analyses. RESULTS A total of 36 trials (26 on BM-MNCs and 10 on MSCs) with 2489 patients (1466 were transplanted [1241 with BM-MNCs and 225 with MSCs] and 1023 as controls) were included. Both types of cells showed significant improvements in ejection fraction in short-term follow-up (BM-MNCs: WMD = 2.13%, 95% CI = 1.23 to 3.04, p < 0.001; MSCs: WMD = 3.71%, 95% CI = 2.32 to 5.09, p < 0.001), and according to ICEMAN criteria, MSCs are more effective. For selected population of patients who received stem cell transplantation in early course after AMI (less than 11 days), this effect was even more pronounced (BM-MNC: WMD = 3.07%, 95% CI = 1.97 to 4.17, p < 0.001, I2 = 40.7%; MSCs: WMD = 5.65%, 95% CI = 3.47 to 7.84, p < 0.001, I2 = 84.6%). CONCLUSION Our results showed that transplantation of MSCs after AMI might increase LVEF more than BM-MNCs; also, based on ICEMAN, there was likely effect modification between subgroups although uncertainty still remained.
Collapse
Affiliation(s)
- Alireza Hosseinpour
- Department of Cardiovascular Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Kheshti
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Asma Kazemi
- Nutrition Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Armin Attar
- Department of Cardiovascular Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
13
|
Botleroo RA, Bhandari R, Ahmed R, Kareem R, Gyawali M, Venkatesan N, Ogeyingbo OD, Elshaikh AO. Stem Cell Therapy for the Treatment of Myocardial Infarction: How Far Are We Now? Cureus 2021; 13:e17022. [PMID: 34522503 PMCID: PMC8425504 DOI: 10.7759/cureus.17022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 08/09/2021] [Indexed: 12/26/2022] Open
Abstract
Myocardial infarction is one of the leading causes of death worldwide. Poor functional recovery of the myocardium is noticed after an event of myocardial infarction. Researchers and clinicians around the world have been engaged to regenerate the damaged human heart for a long time. Stem cell therapy is an exciting newer therapy to treat cardiovascular diseases. Various types of stem cells have been used to revive the damaged myocardium after myocardial infarction, and they have overall demonstrated safety and moderate efficacy. The specific mechanisms by which these cells help in improving cardiac function are still not completely known. There is growing evidence that intracoronary bone marrow cell transplantation in patients with myocardial infarction beneficially affects the remodeling of the damaged myocardium. Our systematic review article aims to assess the effects and the future of stem cell therapy in patients with myocardial Infarction. We searched articles in PubMed, ScienceDirect, and Google Scholar. Thirty-one studies that included 2171 patients in total were analyzed. Most of these studies showed stem cell therapy is safe and well tolerated in patients, and modest improvements are seen in left ventricular functions with no major adverse effects. However, some studies showed no positive and clinically significant outcomes. So, more high-quality studies on a larger scale are required to support and confirm its efficacy in remodeling damaged myocardium after myocardial infarction. We should also perform studies to determine the timing of cell delivery that is best suited for stem cell therapy.
Collapse
Affiliation(s)
- Rinky A Botleroo
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Renu Bhandari
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA.,Internal Medicine, Manipal College of Medical Sciences, Pokhara, NPL
| | - Rowan Ahmed
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Roaa Kareem
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Mallika Gyawali
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Nanditha Venkatesan
- Internal Medicine, All India Institute of Medical Sciences, Raipur, IND.,Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Opemipo D Ogeyingbo
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA.,Internal Medicine, Saint James School of Medicine, Park Ridge, USA.,Public Health, Walden University, Minneapolis, USA
| | - Abeer O Elshaikh
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
14
|
Vilahur G, Nguyen PH, Badimon L. Impact of Diabetes Mellitus on the Potential of Autologous Stem Cells and Stem Cell-Derived Microvesicles to Repair the Ischemic Heart. Cardiovasc Drugs Ther 2021; 36:933-949. [PMID: 34251593 DOI: 10.1007/s10557-021-07208-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/25/2021] [Indexed: 10/20/2022]
Abstract
Ischemic heart disease remains the leading cause of morbidity and mortality worldwide. Despite the advances in medical management and catheter-based therapy, mortality remains high, as does the risk of developing heart failure. Regenerative therapies have been widely used as an alternative option to repair the damaged heart mainly because of their paracrine-related beneficial effects. Although cell-based therapy has been demonstrated as feasible and safe, randomized controlled trials and meta-analyses show little consistent benefit from treatments with adult-derived stem cells. Mounting evidence from our group and others supports that cardiovascular risk factors and comorbidities impair stem cell potential thus hampering their autologous use. This review aims to better understand the influence of diabetes on stem cell potential. For this purpose, we will first discuss the most recent advances in the mechanistic understanding of the effects of diabetes on stem cell phenotype, function, and molecular fingerprint to further elaborate on diabetes-induced alterations in stem cell extracellular vesicle profile. Although we acknowledge that multiple sources of stem or progenitor cells are used for regenerative purposes, we will focus on bone marrow hematopoietic stem/progenitor cells, mesenchymal stem cells residing in the bone marrow, and adipose tissue and briefly discuss endothelial colony-forming cells.
Collapse
Affiliation(s)
- Gemma Vilahur
- Cardiovascular-Program ICCC, IR-Hospital Santa Creu I Sant Pau, IIB Sant Pau, C/Sant Antoni Mª Claret 167, 08025, Barcelona, Spain.,Ciber CV - ISCIII, Madrid, Spain
| | - Phuong Hue Nguyen
- Cardiovascular-Program ICCC, IR-Hospital Santa Creu I Sant Pau, IIB Sant Pau, C/Sant Antoni Mª Claret 167, 08025, Barcelona, Spain
| | - Lina Badimon
- Cardiovascular-Program ICCC, IR-Hospital Santa Creu I Sant Pau, IIB Sant Pau, C/Sant Antoni Mª Claret 167, 08025, Barcelona, Spain. .,Ciber CV - ISCIII, Madrid, Spain. .,Cardiovascular Research Chair UAB, Barcelona, Spain.
| |
Collapse
|
15
|
Biagi D, Fantozzi ET, Campos-Oliveira JC, Naghetini MV, Ribeiro AF, Rodrigues S, Ogusuku I, Vanderlinde R, Christie MLA, Mello DB, de Carvalho ACC, Valadares M, Cruvinel E, Dariolli R. In Situ Maturated Early-Stage Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes Improve Cardiac Function by Enhancing Segmental Contraction in Infarcted Rats. J Pers Med 2021; 11:374. [PMID: 34064343 PMCID: PMC8147857 DOI: 10.3390/jpm11050374] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/21/2021] [Accepted: 04/30/2021] [Indexed: 02/05/2023] Open
Abstract
The scant ability of cardiomyocytes to proliferate makes heart regeneration one of the biggest challenges of science. Current therapies do not contemplate heart re-muscularization. In this scenario, stem cell-based approaches have been proposed to overcome this lack of regeneration. We hypothesize that early-stage hiPSC-derived cardiomyocytes (hiPSC-CMs) could enhance the cardiac function of rats after myocardial infarction (MI). Animals were subjected to the permanent occlusion of the left ventricle (LV) anterior descending coronary artery (LAD). Seven days after MI, early-stage hiPSC-CMs were injected intramyocardially. Rats were subjected to echocardiography pre-and post-treatment. Thirty days after the injections were administered, treated rats displayed 6.2% human cardiac grafts, which were characterized molecularly. Left ventricle ejection fraction (LVEF) was improved by 7.8% in cell-injected rats, while placebo controls showed an 18.2% deterioration. Additionally, cell-treated rats displayed a 92% and 56% increase in radial and circumferential strains, respectively. Human cardiac grafts maturate in situ, preserving proliferation with 10% Ki67 and 3% PHH3 positive nuclei. Grafts were perfused by host vasculature with no evidence for immune rejection nor ectopic tissue formations. Our findings support the use of early-stage hiPSC-CMs as an alternative therapy to treat MI. The next steps of preclinical development include efficacy studies in large animals on the path to clinical-grade regenerative therapy targeting human patients.
Collapse
Affiliation(s)
- Diogo Biagi
- PluriCell Biotech, São Paulo 05508-000, Brazil; (D.B.); (E.T.F.); (J.C.C.-O.); (M.V.N.); (A.F.R.J.); (S.R.); (I.O.); (R.V.); (M.V.); (E.C.)
| | - Evelyn Thais Fantozzi
- PluriCell Biotech, São Paulo 05508-000, Brazil; (D.B.); (E.T.F.); (J.C.C.-O.); (M.V.N.); (A.F.R.J.); (S.R.); (I.O.); (R.V.); (M.V.); (E.C.)
| | - Julliana Carvalho Campos-Oliveira
- PluriCell Biotech, São Paulo 05508-000, Brazil; (D.B.); (E.T.F.); (J.C.C.-O.); (M.V.N.); (A.F.R.J.); (S.R.); (I.O.); (R.V.); (M.V.); (E.C.)
| | - Marcus Vinicius Naghetini
- PluriCell Biotech, São Paulo 05508-000, Brazil; (D.B.); (E.T.F.); (J.C.C.-O.); (M.V.N.); (A.F.R.J.); (S.R.); (I.O.); (R.V.); (M.V.); (E.C.)
| | - Antonio Fernando Ribeiro
- PluriCell Biotech, São Paulo 05508-000, Brazil; (D.B.); (E.T.F.); (J.C.C.-O.); (M.V.N.); (A.F.R.J.); (S.R.); (I.O.); (R.V.); (M.V.); (E.C.)
| | - Sirlene Rodrigues
- PluriCell Biotech, São Paulo 05508-000, Brazil; (D.B.); (E.T.F.); (J.C.C.-O.); (M.V.N.); (A.F.R.J.); (S.R.); (I.O.); (R.V.); (M.V.); (E.C.)
| | - Isabella Ogusuku
- PluriCell Biotech, São Paulo 05508-000, Brazil; (D.B.); (E.T.F.); (J.C.C.-O.); (M.V.N.); (A.F.R.J.); (S.R.); (I.O.); (R.V.); (M.V.); (E.C.)
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, 81377 München, Germany
| | - Rubia Vanderlinde
- PluriCell Biotech, São Paulo 05508-000, Brazil; (D.B.); (E.T.F.); (J.C.C.-O.); (M.V.N.); (A.F.R.J.); (S.R.); (I.O.); (R.V.); (M.V.); (E.C.)
| | - Michelle Lopes Araújo Christie
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (M.L.A.C.); (D.B.M.); (A.C.C.d.C.)
| | - Debora Bastos Mello
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (M.L.A.C.); (D.B.M.); (A.C.C.d.C.)
| | - Antonio Carlos Campos de Carvalho
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (M.L.A.C.); (D.B.M.); (A.C.C.d.C.)
| | - Marcos Valadares
- PluriCell Biotech, São Paulo 05508-000, Brazil; (D.B.); (E.T.F.); (J.C.C.-O.); (M.V.N.); (A.F.R.J.); (S.R.); (I.O.); (R.V.); (M.V.); (E.C.)
| | - Estela Cruvinel
- PluriCell Biotech, São Paulo 05508-000, Brazil; (D.B.); (E.T.F.); (J.C.C.-O.); (M.V.N.); (A.F.R.J.); (S.R.); (I.O.); (R.V.); (M.V.); (E.C.)
| | - Rafael Dariolli
- PluriCell Biotech, São Paulo 05508-000, Brazil; (D.B.); (E.T.F.); (J.C.C.-O.); (M.V.N.); (A.F.R.J.); (S.R.); (I.O.); (R.V.); (M.V.); (E.C.)
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
16
|
Carbone RG, Monselise A, Bottino G, Negrini S, Puppo F. Stem cells therapy in acute myocardial infarction: a new era? Clin Exp Med 2021; 21:231-237. [PMID: 33484381 PMCID: PMC8053645 DOI: 10.1007/s10238-021-00682-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022]
Abstract
Stem cells transplantation after acute myocardial infarction (AMI) has been claimed to restore cardiac function. However, this therapy is still restricted to experimental studies and clinical trials. Early un-blinded studies suggested a benefit from stem cell therapy following AMI. More recent blinded randomized trials have produced mixed results and, notably, the last largest pan-European clinical trial showed the inconclusive results. Furthermore, mechanisms of potential benefit remain uncertain. This review analytically evaluates 34 blinded and un-blinded clinical trials comprising 3142 patients and is aimed to: (1) identify the pros and cons of stem cell therapy up to a 6-month follow-up after AMI comparing benefit or no effectiveness reported in clinical trials; (2) provide useful information for planning future clinical programs of cardiac stem cell therapy.
Collapse
Affiliation(s)
- R G Carbone
- Department of Internal Medicine, University of Genoa, Genoa, Italy
| | | | - G Bottino
- Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - S Negrini
- Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - F Puppo
- Department of Internal Medicine, University of Genoa, Genoa, Italy.
| |
Collapse
|
17
|
Campos de Carvalho AC, Kasai-Brunswick TH, Bastos Carvalho A. Cell-Based Therapies for Heart Failure. Front Pharmacol 2021; 12:641116. [PMID: 33912054 PMCID: PMC8072383 DOI: 10.3389/fphar.2021.641116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 02/11/2021] [Indexed: 02/05/2023] Open
Abstract
Heart failure has reached epidemic proportions with the advances in cardiovascular therapies for ischemic heart diseases and the progressive aging of the world population. Efficient pharmacological therapies are available for treating heart failure, but unfortunately, even with optimized therapy, prognosis is often poor. Their last therapeutic option is, therefore, a heart transplantation with limited organ supply and complications related to immunosuppression. In this setting, cell therapies have emerged as an alternative. Many clinical trials have now been performed using different cell types and injection routes. In this perspective, we will analyze the results of such trials and discuss future perspectives for cell therapies as an efficacious treatment of heart failure.
Collapse
Affiliation(s)
- Antonio Carlos Campos de Carvalho
- Laboratory of Cellular and Molecular Cardiology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Center of Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute of Science and Technology in Regenerative Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tais H. Kasai-Brunswick
- National Center of Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute of Science and Technology in Regenerative Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Adriana Bastos Carvalho
- Laboratory of Cellular and Molecular Cardiology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute of Science and Technology in Regenerative Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
18
|
Madeddu P. Cell therapy for the treatment of heart disease: Renovation work on the broken heart is still in progress. Free Radic Biol Med 2021; 164:206-222. [PMID: 33421587 DOI: 10.1016/j.freeradbiomed.2020.12.444] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 11/26/2020] [Accepted: 12/29/2020] [Indexed: 12/20/2022]
Abstract
Cardiovascular disease (CVD) continues to be the number one killer in the aging population. Heart failure (HF) is also an important cause of morbidity and mortality in patients with congenital heart disease (CHD). Novel therapeutic approaches that could restore stable heart function are much needed in both paediatric and adult patients. Regenerative medicine holds promises to provide definitive solutions for correction of congenital and acquired cardiac defects. In this review article, we recap some important aspects of cardiovascular cell therapy. First, we report quantifiable data regarding the scientific advancements in the field and how this has been translated into tangible outcomes according clinical studies and related meta-analyses. We then comment on emerging trends and technologies, such as the use of second-generation cell products, including pericyte-like vascular progenitors, and reprogramming of cells by different approaches including modulation of oxidative stress. The more affordable and feasible strategy of repurposing clinically available drugs to awaken the intrinsic healing potential of the heart will be discussed in the light of current social, financial, and ethical context. Cell therapy remains a work in progress field. Uncertainty in the ability of the experts and policy makers to solve urgent medical problems is growing in a world that is significantly influenced by them. This is particularly true in the field of regenerative medicine, due to great public expectations, polarization of leadership and funding, and insufficient translational vision. Cardiovascular regenerative medicine should be contextualized in a holistic program with defined priorities to allow a complete realization. Reshaping the notion of medical expertise is fundamental to fill the current gap in translation.
Collapse
Affiliation(s)
- Paolo Madeddu
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol Royal Infirmary, Upper Maudlin Street, BS28HW, Bristol, United Kingdom.
| |
Collapse
|
19
|
Affiliation(s)
- Roberto Bolli
- Institute of Molecular Cardiology, University of Louisville, Louisville, KY, USA
| |
Collapse
|
20
|
Analyzing Impetus of Regenerative Cellular Therapeutics in Myocardial Infarction. J Clin Med 2020; 9:jcm9051277. [PMID: 32354170 PMCID: PMC7287592 DOI: 10.3390/jcm9051277] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/20/2020] [Accepted: 04/26/2020] [Indexed: 02/06/2023] Open
Abstract
Both vasculature and myocardium in the heart are excessively damaged following myocardial infarction (MI), hence therapeutic strategies for treating MI hearts should concurrently aim for true cardiac repair by introducing new cardiomyocytes to replace lost or injured ones. Of them, mesenchymal stem cells (MSCs) have long been considered a promising candidate for cell-based therapy due to their unspecialized, proliferative differentiation potential to specific cell lineage and, most importantly, their capacity of secreting beneficial paracrine factors which further promote neovascularization, angiogenesis, and cell survival. As a consequence, the differentiated MSCs could multiply and replace the damaged tissues to and turn into tissue- or organ-specific cells with specialized functions. These cells are also known to release potent anti-fibrotic factors including matrix metalloproteinases, which inhibit the proliferation of cardiac fibroblasts, thereby attenuating fibrosis. To achieve the highest possible therapeutic efficacy of stem cells, the other interventions, including hydrogels, electrical stimulations, or platelet-derived biomaterials, have been supplemented, which have resulted in a narrow to broad range of outcomes. Therefore, this article comprehensively analyzed the progress made in stem cells and combinatorial therapies to rescue infarcted myocardium.
Collapse
|
21
|
Yang D, O’Brien CG, Ikeda G, Traverse JH, Taylor DA, Henry TD, Bolli R, Yang PC. Meta-analysis of short- and long-term efficacy of mononuclear cell transplantation in patients with myocardial infarction. Am Heart J 2020; 220:155-175. [PMID: 31821904 PMCID: PMC7173405 DOI: 10.1016/j.ahj.2019.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 09/04/2019] [Indexed: 01/18/2023]
Abstract
BACKGROUND Mononuclear cells (MNCs) have been tested in clinical trials across multiple cardiovascular pathologies with mixed results. Major adverse cardiac events (MACE) and markers of cardiovascular capacity have been particularly challenging to interpret because of small size. This meta-analysis is aimed to assess the efficacy of MNC therapy in randomized clinical trials to identify the markers of efficiency that could influence future trial design. METHODS PubMed, Embase, Cochrane library, and ClinicalTrials.gov were searched from inception through November 8, 2018. Changes in left ventricular ejection fraction (LVEF) and infarct size from baseline to follow-up were selected as primary outcomes. Changes in the left ventricular end-systolic volume, left ventricular end-diastolic volume, brain natriuretic peptide/N-terminal pro-B-type natriuretic peptide, 6-minute walk test, New York Heart Association class, and MACE incidences were considered secondary outcomes. RESULTS In short-term follow-up, patients treated with MNCs demonstrated a significant increase in absolute LVEF of 2.21% (95% CI 1.59-2.83; P < .001; I2 = 32%) and 6.01% (95% CI 4.45-7.57; P < .001; I2 = 0%) in acute myocardial infarction (AMI) and ischemic cardiomyopathy studies, respectively. This effect was sustained in long-term follow-up. MNC therapy significantly reduced left ventricular end-systolic volume; however, infarct size, 6-minute walk test, New York Heart Association class, and MACE rates were comparable. CONCLUSIONS MNC therapy may convey a modest but sustained increase in LVEF in ischemic cardiomyopathy patients, supporting further investigation. AMI trials, however, demonstrated minimal improvement in LVEF of unclear clinical significance, suggesting a limited role for MNC therapy in AMI.
Collapse
Affiliation(s)
- Dan Yang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China,Division of Cardiovascular Medicine, Department of Medicine, and Cardiovascular Institute, Stanford University School of Medicine, CA94305, USA
| | - Connor Galen O’Brien
- Division of Cardiovascular Medicine, Department of Medicine, and Cardiovascular Institute, Stanford University School of Medicine, CA94305, USA
| | - Gentaro Ikeda
- Division of Cardiovascular Medicine, Department of Medicine, and Cardiovascular Institute, Stanford University School of Medicine, CA94305, USA
| | - Jay H. Traverse
- Minneapolis Heart Institute Foundation, Abbott Northwestern Hospital, Minneapolis, MN55407, USA
| | - Doris A. Taylor
- Regenerative Medicine Research, Texas Heart Institute, PO Box 20345, Houston, TX 77225-0345 USA
| | - Timothy D. Henry
- The Carl and Edyth Lindner Center for Research and Education, The Christ Hospital Health Network, Cincinnati, OH45219, USA
| | - Roberto Bolli
- Institute of Molecular Cardiology, University of Louisville, KY40202, USA
| | - Phillip C. Yang
- Division of Cardiovascular Medicine, Department of Medicine, and Cardiovascular Institute, Stanford University School of Medicine, CA94305, USA
| |
Collapse
|
22
|
Banerjee MN, Bolli R, Hare JM. Clinical Studies of Cell Therapy in Cardiovascular Medicine: Recent Developments and Future Directions. Circ Res 2019; 123:266-287. [PMID: 29976692 DOI: 10.1161/circresaha.118.311217] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Given the rising prevalence of cardiovascular disease worldwide and the limited therapeutic options for severe heart failure, novel technologies that harness the regenerative capacity of the heart are sorely needed. The therapeutic use of stem cells has the potential to reverse myocardial injury and improve cardiac function, in contrast to most current medical therapies that only mitigate heart failure symptoms. Nearly 2 decades and >200 trials for cardiovascular disease have revealed that most cell types are safe; however, their efficacy remains controversial, limiting the transition of this therapy from investigation to practice. Lessons learned from these initial studies are driving the design of new clinical trials; higher fidelity of cell isolation techniques, standardization of conditions, more consistent use of state of the art measurement techniques, and assessment of multiple end points to garner insights into the efficacy of stem cells. Translation to clinical trials has almost outpaced our mechanistic understanding, and individual patient factors likely play a large role in stem cell efficacy. Therefore, careful analysis of dosing, delivery methods, and the ideal patient populations is necessary to translate cell therapy from research to practice. We are at a pivotal stage in the field in which information from many relatively small clinical trials must guide carefully executed efficacy trials. Larger efficacy trials are being launched to answer questions about older, first-generation stem cell therapeutics, while novel, second-generation products are being introduced into the clinical realm. This review critically examines the current state of clinical research on cell-based therapies for cardiovascular disease, highlighting the controversies in the field, improvements in clinical trial design, and the application of exciting new cell products.
Collapse
Affiliation(s)
- Monisha N Banerjee
- From the Interdisciplinary Stem Cell Institute (M.N.B., J.M.H.).,Department of Surgery (M.N.B)
| | - Roberto Bolli
- University of Miami Miller School of Medicine, FL; and Institute of Molecular Cardiology, University of Louisville, KY (R.B.)
| | - Joshua M Hare
- From the Interdisciplinary Stem Cell Institute (M.N.B., J.M.H.) .,Department of Medicine (J.M.H.)
| |
Collapse
|
23
|
Stem cell therapy in heart failure: Where do we stand today? Biochim Biophys Acta Mol Basis Dis 2019; 1866:165489. [PMID: 31199998 DOI: 10.1016/j.bbadis.2019.06.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/30/2019] [Accepted: 06/01/2019] [Indexed: 02/06/2023]
Abstract
Heart failure is a global epidemic that drastically cuts short longevity and compromises quality of life. Approximately 6 million Americans ≥20 years of age carry a diagnosis of heart failure. Worldwide, about 40 million adults are affected. The treatment of HF depends on the etiology. If left untreated it rapidly progresses and compromises quality of life. One of the newer technologies still in its infancy is stem cell therapy for heart failure. This review attempts to highlight the clinical studies done in ischemic cardiomyopathy, dilated cardiomyopathy and restrictive cardiomyopathy. A combined approach of simultaneous revascularization and stem cell therapy appears to produce maximum benefit in ischemic cardiomyopathy. Treatment of dilated cardiomyopathy with stem cells also holds promise but needs more definition with regards to timing, route of cell delivery and type of cell used to achieve reproducible results. The variability noted in response to stem cell therapy in patients could also be secondary to their co-morbidities. Abnormalities of glucose metabolism and diabetes in particular impair stem cell and angiogenic cell mobilization. This opens up a whole new area of investigation into exploring the biochemical microenvironment which could influence the efficacy of stem cell therapy. This article is part of a Special Issue entitled: Stem Cells and Their Applications to Human Diseases edited by Hemachandra Reddy.
Collapse
|
24
|
Wang C, Tian X, Xia W, Liu Q. Study on correlation between property of coronary artery lesion and degree of coronary artery stenosis of elderly patients with coronary heart disease. Pak J Med Sci 2019; 35:236-240. [PMID: 30881430 PMCID: PMC6408652 DOI: 10.12669/pjms.35.1.225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 10/08/2018] [Accepted: 12/25/2018] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To discuss the influence of coronary artery lesion of elderly patients with coronary heart disease (CHD) on left ventricular remodeling. METHODS Retrospective selection method was used to choose 80 elderly CHD patients who received coronary angiogram examination in Baoding First Central Hospital from January 2014 to February 2018 as the objects of study. According to coronary artery lesion, the patients were classified into single vessel lesion group (single vessel group) and multi-vessel lesion group (multi-vessel group, the number of lesion vessels≧2). Single vessel group included 60 patients, and multi-vessel group includes 20 patients. Intravascular unltrasound was applied to record coronary plaque property of all patients and transthoracic echocardiography was used to record left ventricular remodeling. Later correlation analysis was carried out. RESULTS The proportion of calcified plaque and mixed plaque was higher than that of single vessel group, and the differences had statistical significance (P<0.05). Left ventricular end diastolic volume (LVEDV) and left ventricular end-systolic volume (LVESV) of multi-vessel group were higher than that of single vessel group, while left ventricular ejection fraction (LVEF) was lower than that of single vessel group. The differences had statistical significance (P<0.05). Linear correlation analysis showed coronary artery lesion was positively correlated with LVEF and calcified plaque (r=0.287, 0.371, P<0.05). Multiple linear regression analysis showed LVEF, calcified plaque and LDL-C were independent risk factors of multi-vessel coronary artery lesion of old CHD patients (P<0.05). CONCLUSION The number of coronary artery lesions is significantly correlated with left ventricular remodeling, and can increase the proportion of calcified plaque and mixed plaque, thus leading to left ventricular remodeling abnormity.
Collapse
Affiliation(s)
- Chao Wang
- Chao Wang, Department of Cardiology, Baoding First Hospital Baoding 071000, P. R. China
| | - Xiang Tian
- Qianmei Liu, Department of Cardiology, Baoding First Hospital Baoding 071000, P. R. China
| | - Wei Xia
- Wei Xia, Department of Cardiology, Baoding First Hospital Baoding 071000, P. R. China
| | - Qianmei Liu
- Xiang Tian, Department of Cardiology, Baoding First Hospital Baoding 071000, P. R. China
| |
Collapse
|
25
|
Abstract
Despite considerable advances in medicine, cardiovascular disease is still rising, with ischemic heart disease being the leading cause of death and disability worldwide. Thus extensive efforts are continuing to establish effective therapeutic modalities that would improve both quality of life and survival in this patient population. Novel therapies are being investigated not only to protect the myocardium against ischemia-reperfusion injury but also to regenerate the heart. Stem cell therapy, such as potential use of human mesenchymal stem cells and induced pluripotent stem cells and their exosomes, will make it possible not only to address molecular mechanisms of cardiac conditioning, but also to develop new therapies for ischemic heart disease. Despite the studies and progress made over the last 15 years on the use of stem cell therapy for cardiovascular disease, the efforts are still in their infancy. Even though the expectations have been high, the findings indicate that most of the clinical trials generally have been small and the results inconclusive. Because of many negative findings, there is certain pessimism that cardiac cell therapy is likely to yield any meaningful results over the next decade or so. Similar to other new technologies, early failures are not unusual and they may be followed by impressive success. Nevertheless, there has been considerable attention to safety by the clinical investigators because the adverse events of stem cell therapy have been impressively rare. In summary, although regenerative biology might not help the cardiovascular patient in the near term, it is destined to do so over the next several decades.
Collapse
Affiliation(s)
- Maia Terashvili
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI
| | - Zeljko J Bosnjak
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI.
| |
Collapse
|
26
|
Nicolau JC, Furtado RHM, Silva SA, Rochitte CE, Rassi A, Moraes JBMC, Quintella E, Costantini CR, Korman APM, Mattos MA, Castello HJ, Caixeta A, Dohmann HFR, de Carvalho ACC. Stem-cell therapy in ST-segment elevation myocardial infarction with reduced ejection fraction: A multicenter, double-blind randomized trial. Clin Cardiol 2018; 41:392-399. [PMID: 29569254 DOI: 10.1002/clc.22882] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/18/2017] [Accepted: 12/27/2017] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Left ventricular ejection fraction (LVEF) is a major determinant of long-term prognosis after ST-segment elevation myocardial infarction (STEMI). STEMI patients with reduced LVEF have a poor prognosis, despite successful reperfusion and the use of renin-angiotensin-aldosterone inhibitors. HYPOTHESIS Intracoronary infusion of bone marrow-derived mononuclear cells (BMMC) may improve LVEF in STEMI patients successfully reperfused. METHODS The main inclusion criteria for this double-blind, randomized, multicenter study were patient age 30 to 80 years, LVEF ≤50%, successful angioplasty of infarct-related artery, and regional dysfunction in the infarct-related area analyzed before cell injection. Cardiac magnetic resonance imaging was used to assess LVEF, left ventricular volumes, and infarct size at 7 to 9 days and 6 months post-myocardial infarction. RESULTS One hundred and twenty-one patients were included (66 patients in the BMMC group and 55 patients in the placebo group). The primary endpoint, mean LVEF, was similar between both groups at baseline (44.63% ± 10.74% vs 42.23% ± 10.33%; P = 0.21) and at 6 months (44.74% ± 12.95 % vs 43.50 ± 12.43%; P = 0.59). The groups were also similar regarding the difference between baseline and 6 months (0.11% ± 8.5% vs 1.27% ± 8.93%; P = 0.46). Other parameters of left ventricular remodeling, such as systolic and diastolic volumes, as well as infarct size, were also similar between groups. CONCLUSIONS In this randomized, multicenter, double-blind trial, BMMC intracoronary infusion did not improve left ventricular remodeling or decrease infarct size.
Collapse
Affiliation(s)
- José C Nicolau
- Coronary Care Unit, Instituto do Coração, Hospital das Clínicas, HCFMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Remo H M Furtado
- Coronary Care Unit, Instituto do Coração, Hospital das Clínicas, HCFMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Suzana A Silva
- Clinical Research Unit, Instituto Nacional de Cardiologia, Rio de Janeiro, Brazil
| | - Carlos E Rochitte
- Cardiovascular Imaging Department, Instituto do Coração, Hospital das Clínicas, HCFMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Anis Rassi
- Division of Cardiology, Anis Rassi Hospital, Goiânia, Brazil
| | | | - Edgard Quintella
- Cardiology Department, Instituto de Cardiologia Aloysio de Castro, Rio de Janeiro, Brazil
| | | | - Adrian P M Korman
- Cardiology Department, Sociedade Divina Providencia Hospital Santa Isabel, Blumenau, Brazil
| | - Marco A Mattos
- Clinical Research Unit, Instituto Nacional de Cardiologia, Rio de Janeiro, Brazil
| | | | - Adriano Caixeta
- Department of Interventional Cardiology, Instituto do Coração do Distrito Federal, Brasília, Brazil
| | - Hans F R Dohmann
- Cardiology Department, PROCEP/Amil Assistência Médica Internacional, Rio de Janeiro, Brazil
| | | | | |
Collapse
|