1
|
Ozdogan E, Arikan C. Liver fibrosis in children: a comprehensive review of mechanisms, diagnosis, and therapy. Clin Exp Pediatr 2023; 66:110-124. [PMID: 36550776 PMCID: PMC9989719 DOI: 10.3345/cep.2022.00367] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 09/14/2022] [Indexed: 12/23/2022] Open
Abstract
Chronic liver disease incidence is increasing among children worldwide due to a multitude of epidemiological changes. Most of these chronic insults to the pediatric liver progress to fibrosis and cirrhosis to different degrees. Liver and immune physiology differs significantly in children from adults. Because most of pediatric liver diseases have no definitive therapy, a better understanding of population and disease-specific fibrogenesis is mandatory. Furthermore, fibrosis development has prognostic significance and often guide treatment. Evaluation of liver fibrosis continues to rely on the gold-standard liver biopsy. However, many high-quality studies put forward the high diagnostic accuracy of numerous diagnostic modalities in this setting. Herein, we summarize and discuss the recent literature on fibrogenesis with an emphasis on pediatric physiology along with a detailed outline of disease-specific signatures, noninvasive diagnostic modalities, and the potential for antifibrotic therapies.
Collapse
Affiliation(s)
- Elif Ozdogan
- Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Cigdem Arikan
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, Koc University School of Medicine, Istanbul, Turkey
| |
Collapse
|
2
|
ElShahawy A, El-Raziky MS, Sharaf SA, Elsharkawy A, Enayet A, Taher H. Accuracy of noninvasive methods for the diagnosis of liver fibrosis in children with chronic viral hepatitis. BMC Gastroenterol 2022; 22:508. [PMID: 36494622 PMCID: PMC9733352 DOI: 10.1186/s12876-022-02570-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 11/07/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Liver biopsy is the reference standard for assessing liver fibrosis. Moreover, it is an invasive procedure. Transient elastography (TE) is an accurate, noninvasive method for evaluating liver stiffness as a surrogate of liver fibrosis. The aspartate aminotransferase to platelet ratio index (APRI) and Hyaluronic acid (HA) are noninvasive alternatives to liver biopsy for detecting hepatic fibrosis. This study aimed to identify the accuracy of APRI, HA, and TE concerning liver biopsy in children with chronic viral hepatitis. METHODS This cross-sectional study included 50 children, 5-18 years with chronic viral hepatitis B (HBV) or hepatitis C (HCV) who underwent liver biopsy within nine months of laboratory tests, determining APRI & performing TE. Twenty healthy children of age and sex-matching patients were included as a control group for the serum HA levels. RESULTS The histopathological findings of the studied cases showed seven cases with (F0) fibrosis, 36 cases with mild (F1,2), two children with moderate (F3,4), and five children with severe (F5,6). The median (IQR) of steatosis was 4 (three had HCV). When correlating TE, APRI, and HA values in all cases with their laboratory data, there was a positive correlation between ALT and APRI values (P-value = 0.000), a positive correlation between AST and HA values (P-value = 0.02), and a negative correlation between stiffness and APRI. The sensitivity of HA, APRI, and TE compared to fibrosis detected by histopathology was 60.5, 65.1, and 60.5%, and their specificity was 71.4, 57.1, and 85.7%, respectively. TE was significantly higher in a group with (moderate to severe) fibrosis. CONCLUSION APRI, HA, and TE are good indicators of the presence of fibrosis almost with the same accuracy. TE is the only method to differentiate mild cases from those with significant fibrosis.
Collapse
Affiliation(s)
- A ElShahawy
- Pediatrics in National Hepatology and Tropical Medicine Institiute, Cairo, Egypt
| | - MS El-Raziky
- grid.7776.10000 0004 0639 9286Pediatrics and Pediatric Hepatology, Faculty of Medicine, Cairo University, Giza City, Egypt
| | - SA Sharaf
- grid.7776.10000 0004 0639 9286Chemical Pathology, Faculty of Medicine, Cairo University, Giza City, Egypt
| | - A Elsharkawy
- grid.7776.10000 0004 0639 9286Endemic Medicine and Hepatology, Faculty of Medicine, Cairo University, Giza City, Egypt
| | - A Enayet
- grid.7776.10000 0004 0639 9286Pediatrics and Pediatric Hepatology, Faculty of Medicine, Cairo University, Giza City, Egypt ,grid.7776.10000 0004 0639 9286Department of Pediatrics, Kasr Alainy Medical School, Faculty of Medicine, Cairo University, Giza City, Egypt
| | - H Taher
- grid.7776.10000 0004 0639 9286Pediatrics and Pediatric Hepatology, Faculty of Medicine, Cairo University, Giza City, Egypt
| |
Collapse
|
3
|
Patel AM, Liu YS, Davies SP, Brown RM, Kelly DA, Scheel-Toellner D, Reynolds GM, Stamataki Z. The Role of B Cells in Adult and Paediatric Liver Injury. Front Immunol 2021; 12:729143. [PMID: 34630404 PMCID: PMC8495195 DOI: 10.3389/fimmu.2021.729143] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/16/2021] [Indexed: 12/16/2022] Open
Abstract
B lymphocytes are multitasking cells that direct the immune response by producing pro- or anti-inflammatory cytokines, by presenting processed antigen for T cell activation and co-stimulation, and by turning into antibody-secreting cells. These functions are important to control infection in the liver but can also exacerbate tissue damage and fibrosis as part of persistent inflammation that can lead to end stage disease requiring a transplant. In transplantation, immunosuppression increases the incidence of lymphoma and often this is of B cell origin. In this review we bring together information on liver B cell biology from different liver diseases, including alcohol-related and metabolic fatty liver disease, autoimmune hepatitis, primary biliary and primary sclerosing cholangitis, viral hepatitis and, in infants, biliary atresia. We also discuss the impact of B cell depletion therapy in the liver setting. Taken together, our analysis shows that B cells are important in the pathogenesis of liver diseases and that further research is necessary to fully characterise the human liver B cell compartment.
Collapse
Affiliation(s)
- Arzoo M. Patel
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Yuxin S. Liu
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Scott P. Davies
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Rachel M. Brown
- Department of Histopathology, Queen Elizabeth Hospital, Birmingham Women’s and Children’s National Health Service (NHS) Foundation Trust, Birmingham, United Kingdom
| | - Deirdre A. Kelly
- The Liver Unit, Birmingham Women’s and Children’s Hospital and the University of Birmingham, Birmingham, United Kingdom
| | - Dagmar Scheel-Toellner
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Gary M. Reynolds
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- The Liver Unit, Birmingham Women’s and Children’s Hospital and the University of Birmingham, Birmingham, United Kingdom
| | - Zania Stamataki
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
4
|
Yu WY, Cai W, Ying HZ, Zhang WY, Zhang HH, Yu CH. Exogenous Plant gma-miR-159a, Identified by miRNA Library Functional Screening, Ameliorated Hepatic Stellate Cell Activation and Inflammation via Inhibiting GSK-3β-Mediated Pathways. J Inflamm Res 2021; 14:2157-2172. [PMID: 34079325 PMCID: PMC8163999 DOI: 10.2147/jir.s304828] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/22/2021] [Indexed: 12/15/2022] Open
Abstract
Purpose Plant-derived exogenous microRNAs (miRNAs) regulate human physiological functions by blocking the translation of target mRNAs. Although several computational approaches have been developed to elucidate the interactions of cross-species miRNAs and their targets in mammals, the number of verified plant miRNAs is still limited, and the biological roles of most exogenous plant miRNAs remain unknown. Methods A miRNA mimic library-based phenotypic screening, which contained 8394 plant mature miRNAs published in the official database miRbase, was performed to identify more novel bioactive plant miRNAs for the prevention of hepatic fibrosis. Inhibition of candidates for the activation of hepatic stellate cells (HSCs) and the underlying mechanisms were evaluated in TGF-β1- and PDGF-exposed HSC models. The protective effects of the candidates against CCl4-induced liver fibrosis were evaluated in a mouse model. Results Among the 8394 plant mature miRNAs reported in the official database miRBase, five candidates were found to effectively inhibit the differentiation of HSCs. gma-miR-159a (miR159a) exerted the strongest inhibitory activities on both TGF-β1- and PDGF-induced HSC activation and proliferation by inhibiting the GSK-3β-mediated NF-κB and TGF-β1 pathways. Moreover, miR159a was mainly accumulated in the liver after intravenous injection, and it reduced CCl4-induced hepatic fibrosis and inflammation in mice. Conclusion Results indicated that miR159a has the therapeutic potential for preventing hepatic fibrosis. This study provides a novel strategy for achieving natural nucleic acid drugs.
Collapse
Affiliation(s)
- Wen-Ying Yu
- Zhejiang Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences (Hangzhou Medical College), Hangzhou, People's Republic of China
| | - Wei Cai
- Department of Traditional Chinese Medicine, Zhejiang Pharmaceutical College, Ningbo, People's Republic of China
| | - Hua-Zhong Ying
- Zhejiang Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences (Hangzhou Medical College), Hangzhou, People's Republic of China
| | - Wen-You Zhang
- Zhejiang Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences (Hangzhou Medical College), Hangzhou, People's Republic of China
| | - Huan-Huan Zhang
- Zhejiang Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences (Hangzhou Medical College), Hangzhou, People's Republic of China
| | - Chen-Huan Yu
- Zhejiang Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences (Hangzhou Medical College), Hangzhou, People's Republic of China.,Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Hangzhou, People's Republic of China.,Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, People's Republic of China
| |
Collapse
|
5
|
Kalveram L, Schunck WH, Rothe M, Rudolph B, Loddenkemper C, Holzhütter HG, Henning S, Bufler P, Schulz M, Meierhofer D, Zhang IW, Weylandt KH, Wiegand S, Hudert CA. Regulation of the cytochrome P450 epoxyeicosanoid pathway is associated with distinct histologic features in pediatric non-alcoholic fatty liver disease. Prostaglandins Leukot Essent Fatty Acids 2021; 164:102229. [PMID: 33388475 DOI: 10.1016/j.plefa.2020.102229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 12/15/2020] [Accepted: 12/15/2020] [Indexed: 12/14/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a significant health burden in obese children for which there is currently no specific therapy. Preclinical studies indicate that epoxyeicosanoids, a class of bioactive lipid mediators that are generated by cytochrome P450 (CYP) epoxygenases and inactivated by the soluble epoxide hydrolase (sEH), play a protective role in NAFLD. We performed a comprehensive lipidomics analysis using liver tissue and blood samples of 40 children with NAFLD. Proteomics was performed to determine CYP epoxygenase and sEH expressions. Hepatic epoxyeicosanoids significantly increased with higher grades of steatosis, while their precursor PUFAs were unaltered. Concomitantly, total CYP epoxygenase activity increased while protein level and activity of sEH decreased. In contrast, hepatic epoxyeicosanoids showed a strong decreasing trend with higher stages of fibrosis, accompanied by a decrease of CYP epoxygenase activity and protein expression. These findings suggest that the CYP epoxygenase/sEH pathway represents a potential pharmacologic target for the treatment of NAFLD.
Collapse
Affiliation(s)
- Laura Kalveram
- Center for Chronically Sick Children, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | | | | | - Birgit Rudolph
- Institute of Pathology, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | | | | | - Stephan Henning
- Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases, Charité -Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Philip Bufler
- Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases, Charité -Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Marten Schulz
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - David Meierhofer
- Max Planck Institute for Molecular Genetics, Mass Spectrometry Facility, 14195 Berlin, Germany
| | - Ingrid W Zhang
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Karsten H Weylandt
- Department of Gastroenterology, Diabetes, Oncology and Rheumatology, Ruppiner Kliniken, Brandenburg Medical School, 16816 Neuruppin, Germany
| | - Susanna Wiegand
- Center for Chronically Sick Children, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Christian A Hudert
- Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases, Charité -Universitätsmedizin Berlin, 13353 Berlin, Germany.
| |
Collapse
|
6
|
A bilirubin-conjugated chitosan nanotheranostics system as a platform for reactive oxygen species stimuli-responsive hepatic fibrosis therapy. Acta Biomater 2020; 116:356-367. [PMID: 32927089 DOI: 10.1016/j.actbio.2020.09.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 12/14/2022]
Abstract
The development of nanoparticles that can be used as stimuli-responsive drug carriers for the treatment of different diseases has been an emerging area of research. In this study, we designed a chitosan-bilirubin micelle (ChiBil) carrying losartan, which is responsive to intrinsic reactive oxygen species (ROS), for the treatment of hepatic fibrosis. Because bilirubin is hydrophobic in nature, its carboxyl group was conjugated to an amine group from chitosan using EDC-NHS chemistry to form an amphiphilic conjugate, ChiBil. Losartan is an angiotensin receptor blocker that reduces hepatic fibrosis, and it was used as the therapeutic payload in this study to form ChiBil-losartan micelles. The release characteristics of ChiBil-losartan were tested by ROS generation to confirm losartan release. Human hepatic stellate cell line LX2 was found to be the best in vitro model for the study. The reduction of hepatic stellate cell activation after treatment with ChiBil-losartan was analyzed based on the expression of alpha-smooth muscle actin (α-SMA) in both in vitro and in vivo studies. Advanced liver fibrosis was induced in C3H/HeN mice using a thioacetamide (TAA) via intraperitoneal injection and 10% ethanol (EtOH) in their drinking water. In addition, the hydroxyproline levels, histopathological evaluation, and mRNA quantification in the liver showed a decreased collagen content in the treated groups compared to that in the untreated control group. Macrophage infiltration studies and qPCR studies of inflammatory markers also proved the reduction of hepatic fibrosis in the treatment group. The intravenous administration of ChiBil-losartan resulted in decreased fibrosis in a TAA/EtOH-induced liver fibrosis mouse model. The in vitro and in vivo results suggest that the ROS stimuli-responsive ChiBil nanoparticles carrying losartan may be a potent therapeutic option for the treatment of hepatic fibrosis. The combined effect of losartan and bilirubin exhibited a decreased hepatic fibrosis both in vitro and in vivo.
Collapse
|
7
|
Abstract
The inherited diseases causing conjugated hyperbilirubinemia are diverse, with variability in clinical severity, histologic appearance, and time of onset. The liver biopsy appearances can also vary depending on whether the initial presentation is in the neonatal period or later. Although many of the disorders have specific histologic features in fully developed and classic cases, biopsies taken early in the disease course may be nonspecific, showing either cholestatic hepatitis or an obstructive pattern of injury requiring close correlation with the laboratory and clinical findings to reach the correct diagnosis. Additionally, increased understanding of the range of hepatic changes occurring in mild deficiencies of bile canalicular transporter proteins suggest that these disorders, particularly ABCB4 deficiency, may be more common than previously recognized; improved awareness should prompt further investigation.
Collapse
Affiliation(s)
- Andrew D Clouston
- Faculty of Medicine, University of Queensland, Herston Road, Brisbane, Queensland 4006, Australia.
| |
Collapse
|
8
|
Liaw CY, Ji S, Guvendiren M. Engineering 3D Hydrogels for Personalized In Vitro Human Tissue Models. Adv Healthc Mater 2018; 7. [PMID: 29345429 DOI: 10.1002/adhm.201701165] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 11/13/2017] [Indexed: 01/17/2023]
Abstract
There is a growing interest in engineering hydrogels for 3D tissue and disease models. The major motivation is to better mimic the physiological microenvironment of the disease and human condition. 3D tissue models derived from patients' own cells can potentially revolutionize the way treatment and diagnostic alternatives are developed. This requires development of tissue mimetic hydrogels with user defined and tunable properties. In this review article, a recent summary of 3D hydrogel platforms for in vitro tissue and disease modeling is given. Hydrogel design considerations and available hydrogel systems are summarized, followed by the types of currently available hydrogel models, such as bulk hydrogels, porous scaffolds, fibrous scaffolds, hydrogel microspheres, hydrogel sandwich systems, microwells, and 3D bioprinted constructs. Although hydrogels are utilized for a wide range of tissue models, this article focuses on liver and cancer models. This article also provides a detailed section on current challenges and future perspectives of hydrogel-based tissue models.
Collapse
Affiliation(s)
- Chya-Yan Liaw
- Instructive Biomaterials and Additive Manufacturing Laboratory; Otto H. York Chemical; Biological and Pharmaceutical Engineering; Newark College of Engineering; New Jersey Institute of Technology; University Heights; 138 York Center Newark NJ 07102 USA
| | - Shen Ji
- Instructive Biomaterials and Additive Manufacturing Laboratory; Otto H. York Chemical; Biological and Pharmaceutical Engineering; Newark College of Engineering; New Jersey Institute of Technology; University Heights; 138 York Center Newark NJ 07102 USA
| | - Murat Guvendiren
- Instructive Biomaterials and Additive Manufacturing Laboratory; Otto H. York Chemical; Biological and Pharmaceutical Engineering; Newark College of Engineering; New Jersey Institute of Technology; University Heights; 138 York Center Newark NJ 07102 USA
| |
Collapse
|