1
|
Thottasseri AA, Rajendran V, Ramesh D, Tom AA, Thomas RR, Ray S, Gopan G, Mani M, Kannan T. Targeting Blood-Stage Malaria: Design, Synthesis, Characterization, In Vitro, and In Silico Evaluation of Pyrrolidinodiazenyl Chalcones. Chem Biol Drug Des 2025; 105:e70081. [PMID: 40070234 DOI: 10.1111/cbdd.70081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 01/25/2025] [Accepted: 02/18/2025] [Indexed: 03/25/2025]
Abstract
Malaria is a pervasive and deadly threat to the global population, and the resources available to treat this disease are limited. There is widespread clinical resistance to the most commonly prescribed antimalarial drugs. To address this issue, we synthesized a range of 4'-pyrrolidinodiazenyl chalcones using a covalent bitherapy approach to study their potential antimalarial properties. We examined the structure-activity relationships of these compounds, which could explain their antimalarial activities. The in vitro blood stage antimalarial activity of the compounds was evaluated against the mixed-blood stage culture (ring, trophozoites and schizonts) of Plasmodium falciparum 3D7, and the 50% inhibitory concentrations (IC50s) ranged from 3.3 to 22.2 μg/mL after 48 h of exposure. Compounds 11, 19, and 22 displayed pronounced IC50 values of 7.6 μg/mL, 6.4 μg/mL, and 3.3 μg/mL, respectively. The in vitro cytotoxicity of the active compounds was evaluated on human-derived Mo7e cells and murine-derived BA/F3 cells. Compounds 11 and 19 were found to be noncytotoxic (> 40 μg/mL), whereas compound 22 displayed cytotoxicity at higher concentrations. Moreover, these compounds exerted negligible hemolytic effects on human RBCs at their active concentrations. Molecular docking of these compounds revealed good hydrophobic and hydrogen bonding interactions with the binding sites of Plasmodium falciparum-dihydrofolate reductase, providing a rationale for their antimalarial activity, which is consistent with the in vitro results.
Collapse
Affiliation(s)
| | - Vinoth Rajendran
- Department of Microbiology, Pondicherry University, Kalapet, Puducherry, India
| | - Deepthi Ramesh
- Department of Chemistry, Pondicherry University, Kalapet, Puducherry, India
| | - Anju Agnes Tom
- Department of Chemistry, Pondicherry University, Kalapet, Puducherry, India
| | - Roshiny Roy Thomas
- Department of Chemistry, Pondicherry University, Kalapet, Puducherry, India
| | - Sreetama Ray
- Department of Chemistry, Pondicherry University, Kalapet, Puducherry, India
| | - Gopika Gopan
- Department of Microbiology, Pondicherry University, Kalapet, Puducherry, India
| | - Maheswaran Mani
- Department of Microbiology, Pondicherry University, Kalapet, Puducherry, India
| | | |
Collapse
|
2
|
Valiente PA, Guerra Y, Wolf MG, Pascual I, Rudiño-Piñera E, Florent I, Pons T, Groenhof G. Discovery of a Noncompetitive Open-Flap Selective Inhibitor of Plasmepsin II with Antiplasmodial Activity. J Chem Inf Model 2025; 65:2038-2051. [PMID: 39915939 DOI: 10.1021/acs.jcim.4c02059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Here, we predicted that Plasmepsin II (PlmII) can explore open-flap conformations not sampled for human aspartic proteases: Cathepsin D, Renin, and Pepsin were used in molecular dynamics simulations. We combined 24 independent (50 ns) MD runs to improve the conformational sampling of each system. We discovered two PlmII noncompetitive selective inhibitors: SPB07935 and RH01201, with Ki values in the μM range by targeting the open-flap conformations. Both compounds did not inhibit human Cathepsin D (hCatD) at high concentrations. We predicted that SPB07935 and RH01201 bind stably to the flap cryptic pocket, keeping this hairpin in an open or semiopen conformation along the MD simulations, respectively. Significantly, SPB07935 inhibited the P. falciparum chloroquine-resistant strain FcB1 growth in vitro, with an IC50 value of 8 μM while having a lower toxicity for HEK-293 human cells (CC50 = 189 μM).
Collapse
Affiliation(s)
- Pedro A Valiente
- Centro de Estudios de Proteínas (CEP), Facultad de Biología, Universidad de La Habana, Calle 25 #455% J e I, Plaza de la Revolución, CP 10400 La Habana, Cuba
| | - Yasel Guerra
- Grupo de Bio-Quimioinformática, Facultad de Ingeniería y Ciencias Aplicadas, Universidad de Las Américas, Campus UDLAPARK, Vía a Nayón, Quito 170124, Ecuador
- Ingeniería en Biotecnología, Facultad de Ingeniería y Ciencias Aplicadas, Universidad de Las Américas, Campus UDLAPARK, Vía a Nayón, Quito 170124, Ecuador
| | - Maarten G Wolf
- Biomolecular Chemistry Group, Theoretical and Computational Biophysics Department, Max Planck Institute for Multidisciplinary Sciences (Faßberg-Campus), Am Faßberg 11, 37077 Göttingen, Germany
| | - Isel Pascual
- Centro de Estudios de Proteínas (CEP), Facultad de Biología, Universidad de La Habana, Calle 25 #455% J e I, Plaza de la Revolución, CP 10400 La Habana, Cuba
| | - Enrique Rudiño-Piñera
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, UNAM, Av. Universidad 2001, Chamilpa, 62210 Cuernavaca, Morelos, México
| | - Isabelle Florent
- Département Adaptations du Vivant (AVIV), Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245 CNRS), Muséum National d'Histoire Naturelle (MNHN), CP 52, 57 rue Cuvier, 75231 Cedex 05 Paris, France
| | - Tirso Pons
- Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), C. de Melchor Fernández Almagro, 3, Fuencarral-El Pardo, 28029 Madrid, Spain
| | - Gerrit Groenhof
- Biomolecular Chemistry Group, Theoretical and Computational Biophysics Department, Max Planck Institute for Multidisciplinary Sciences (Faßberg-Campus), Am Faßberg 11, 37077 Göttingen, Germany
- Department of Chemistry and NanoScience Center, University of Jyvaskyla, Survontie 9c, 40500 Jyvaskyla, Finland
| |
Collapse
|
3
|
Charles S, Mahapatra RK. Artificial intelligence based de-novo design for novel Plasmodium falciparum plasmepsin (PM) X inhibitors. J Biomol Struct Dyn 2025; 43:92-107. [PMID: 37943000 DOI: 10.1080/07391102.2023.2279700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/27/2023] [Indexed: 11/10/2023]
Abstract
Plasmodium falciparum is the leading cause of malaria with 627,000 deaths annually. Invasion and egress are critical stages for successful infection of the host yet depend on proteins that are extensively pre-processed by various maturases. Plasmepsins (Plasmodium pepsins, abbreviated PM, I-X) are pepsin-like aspartic proteases that are involved in almost all stages of the life cycle. The goal of this study was to use de-novo generative modeling techniques to create novel potential PfPMX inhibitors. A total of 4325 compounds were virtually screened by structural-based docking methods. The obtained hits were utilized to refine a structure-based Ligand Neural Network (L-Net) generative model to generate related compounds. The obtained optimal L-Net Compounds with smina scores ≤ -5.00KCalmol-1 and QED ≥ 0.35 were further taken for amplification utilizing Ligand Based Transformer modeling using Deep generative learning (Drug Explorer/DrugEx). The resulting hits were then subjected to XP Glide conventional Molecular docking and QikProp ADMET screening; molecules with XP Docking score ≤ -7.00KCalmol-1 were retained. Based on their Glide ligand efficiency, originality, and uniqueness, 30 compounds were chosen for binding affinity and MM_GBSA energy determination. Following Induced Fit docking (IFD), 7 compounds were taken for 50 ns MD simulations and FEP/MD calculations. This study reported novel potential PfPMX inhibitors with acceptable ADMET profiles and reasonable synthetic accessibility scores, as well as sufficient docking scores against other PMs were generated. The PfPMX inhibitors reported in this article are promising antimalarials for the next stages of drug development, and the first of their kind to be investigated thoroughly.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ssemuyiga Charles
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, Odisha, India
| | | |
Collapse
|
4
|
Schmitz B, Frieg B, Homeyer N, Jessen G, Gohlke H. Extracting binding energies and binding modes from biomolecular simulations of fragment binding to endothiapepsin. Arch Pharm (Weinheim) 2024; 357:e2300612. [PMID: 38319801 DOI: 10.1002/ardp.202300612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/18/2023] [Accepted: 01/10/2024] [Indexed: 02/08/2024]
Abstract
Fragment-based drug discovery (FBDD) aims to discover a set of small binding fragments that may be subsequently linked together. Therefore, in-depth knowledge of the individual fragments' structural and energetic binding properties is essential. In addition to experimental techniques, the direct simulation of fragment binding by molecular dynamics (MD) simulations became popular to characterize fragment binding. However, former studies showed that long simulation times and high computational demands per fragment are needed, which limits applicability in FBDD. Here, we performed short, unbiased MD simulations of direct fragment binding to endothiapepsin, a well-characterized model system of pepsin-like aspartic proteases. To evaluate the strengths and limitations of short MD simulations for the structural and energetic characterization of fragment binding, we predicted the fragments' absolute free energies and binding poses based on the direct simulations of fragment binding and compared the predictions to experimental data. The predicted absolute free energies are in fair agreement with the experiment. Combining the MD data with binding mode predictions from molecular docking approaches helped to correctly identify the most promising fragments for further chemical optimization. Importantly, all computations and predictions were done within 5 days, suggesting that MD simulations may become a viable tool in FBDD projects.
Collapse
Affiliation(s)
- Birte Schmitz
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Benedikt Frieg
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), and Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
| | - Nadine Homeyer
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Gisela Jessen
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), and Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
- Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
5
|
Mishra V, Deshmukh A, Rathore I, Chakraborty S, Patankar S, Gustchina A, Wlodawer A, Yada RY, Bhaumik P. Inhibition of Plasmodium falciparum plasmepsins by drugs targeting HIV-1 protease: A way forward for antimalarial drug discovery. Curr Res Struct Biol 2024; 7:100128. [PMID: 38304146 PMCID: PMC10830516 DOI: 10.1016/j.crstbi.2024.100128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 02/03/2024] Open
Abstract
Plasmodium species are causative agents of malaria, a disease that is a serious global health concern. FDA-approved HIV-1 protease inhibitors (HIV-1 PIs) have been reported to be effective in reducing the infection by Plasmodium parasites in the population co-infected with both HIV-1 and malaria. However, the mechanism of HIV-1 PIs in mitigating Plasmodium pathogenesis during malaria/HIV-1 co-infection is not fully understood. In this study we demonstrate that HIV-1 drugs ritonavir (RTV) and lopinavir (LPV) exhibit the highest inhibition activity against plasmepsin II (PMII) and plasmepsin X (PMX) of P. falciparum. Crystal structures of the complexes of PMII with both drugs have been determined. The inhibitors interact with PMII via multiple hydrogen bonding and hydrophobic interactions. The P4 moiety of RTV forms additional interactions compared to LPV and exhibits conformational flexibility in a large S4 pocket of PMII. Our study is also the first to report inhibition of P. falciparum PMX by RTV and the mode of binding of the drug to the PMX active site. Analysis of the crystal structures implies that PMs can accommodate bulkier groups of these inhibitors in their S4 binding pockets. Structurally similar active sites of different vacuolar and non-vacuolar PMs suggest the potential of HIV-1 PIs in targeting these enzymes with differential affinities. Our structural investigations and biochemical data emphasize PMs as crucial targets for repurposing HIV-1 PIs as antimalarial drugs.
Collapse
Affiliation(s)
- Vandana Mishra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Anuradha Deshmukh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Ishan Rathore
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
- Protein Structure Section, Center for Structural Biology, National Cancer Institute, Frederick, MD, 21702, USA
| | - Satadru Chakraborty
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Swati Patankar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Alla Gustchina
- Protein Structure Section, Center for Structural Biology, National Cancer Institute, Frederick, MD, 21702, USA
| | - Alexander Wlodawer
- Protein Structure Section, Center for Structural Biology, National Cancer Institute, Frederick, MD, 21702, USA
| | - Rickey Y. Yada
- Faculty of Land and Food Systems, University of British Columbia, 248-2357 Main Mall, Vancouver, BC V6T 1Z4, Vancouver, Canada
| | - Prasenjit Bhaumik
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| |
Collapse
|
6
|
Kovada V, Withers-Martinez C, Bobrovs R, Ce̅rule H, Liepins E, Grinberga S, Hackett F, Collins CR, Kreicberga A, Jiménez-Díaz MB, Angulo-Barturen I, Rasina D, Suna E, Jaudzems K, Blackman MJ, Jirgensons A. Macrocyclic Peptidomimetic Plasmepsin X Inhibitors with Potent In Vitro and In Vivo Antimalarial Activity. J Med Chem 2023; 66:10658-10680. [PMID: 37505188 PMCID: PMC10424242 DOI: 10.1021/acs.jmedchem.3c00812] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Indexed: 07/29/2023]
Abstract
The Plasmodium falciparum aspartic protease plasmepsin X (PMX) is essential for the egress of invasive merozoite forms of the parasite. PMX has therefore emerged as a new potential antimalarial target. Building on peptidic amino alcohols originating from a phenotypic screening hit, we have here developed a series of macrocyclic analogues as PMX inhibitors. Incorporation of an extended linker between the S1 phenyl group and S3 amide led to a lead compound that displayed a 10-fold improved PMX inhibitory potency and a 3-fold improved half-life in microsomal stability assays compared to the acyclic analogue. The lead compound was also the most potent of the new macrocyclic compounds in in vitro parasite growth inhibition. Inhibitor 7k cleared blood-stage P. falciparum in a dose-dependent manner when administered orally to infected humanized mice. Consequently, lead compound 7k represents a promising orally bioavailable molecule for further development as a PMX-targeting antimalarial drug.
Collapse
Affiliation(s)
- Vadims Kovada
- Latvian
Institute of Organic Synthesis, Riga LV-1006, Latvia
| | | | - Raitis Bobrovs
- Latvian
Institute of Organic Synthesis, Riga LV-1006, Latvia
| | - Hele̅na Ce̅rule
- Latvian
Institute of Organic Synthesis, Riga LV-1006, Latvia
| | - Edgars Liepins
- Latvian
Institute of Organic Synthesis, Riga LV-1006, Latvia
| | | | - Fiona Hackett
- Malaria
Biochemistry Laboratory, The Francis Crick
Institute, London NW1 1AT, United
Kingdom
| | - Christine R. Collins
- Malaria
Biochemistry Laboratory, The Francis Crick
Institute, London NW1 1AT, United
Kingdom
| | | | - María Belén Jiménez-Díaz
- The
Art of Discovery SL, Biscay Science and Technology Park, Derio, 48160 Bizkaia, Basque Country, Spain
| | - Iñigo Angulo-Barturen
- The
Art of Discovery SL, Biscay Science and Technology Park, Derio, 48160 Bizkaia, Basque Country, Spain
| | - Dace Rasina
- Latvian
Institute of Organic Synthesis, Riga LV-1006, Latvia
| | - Edgars Suna
- Latvian
Institute of Organic Synthesis, Riga LV-1006, Latvia
| | | | - Michael J. Blackman
- Malaria
Biochemistry Laboratory, The Francis Crick
Institute, London NW1 1AT, United
Kingdom
- Faculty
of Infectious and Tropical Diseases, London
School of Hygiene & Tropical Medicine, London WC1E 7HT, United Kingdom
| | | |
Collapse
|
7
|
Meller A, Bhakat S, Solieva S, Bowman GR. Accelerating Cryptic Pocket Discovery Using AlphaFold. J Chem Theory Comput 2023. [PMID: 36948209 PMCID: PMC10373493 DOI: 10.1021/acs.jctc.2c01189] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Cryptic pockets, or pockets absent in ligand-free, experimentally determined structures, hold great potential as drug targets. However, cryptic pocket openings are often beyond the reach of conventional biomolecular simulations because certain cryptic pocket openings involve slow motions. Here, we investigate whether AlphaFold can be used to accelerate cryptic pocket discovery either by generating structures with open pockets directly or generating structures with partially open pockets that can be used as starting points for simulations. We use AlphaFold to generate ensembles for 10 known cryptic pocket examples, including five that were deposited after AlphaFold's training data were extracted from the PDB. We find that in 6 out of 10 cases AlphaFold samples the open state. For plasmepsin II, an aspartic protease from the causative agent of malaria, AlphaFold only captures a partial pocket opening. As a result, we ran simulations from an ensemble of AlphaFold-generated structures and show that this strategy samples cryptic pocket opening, even though an equivalent amount of simulations launched from a ligand-free experimental structure fails to do so. Markov state models (MSMs) constructed from the AlphaFold-seeded simulations quickly yield a free energy landscape of cryptic pocket opening that is in good agreement with the same landscape generated with well-tempered metadynamics. Taken together, our results demonstrate that AlphaFold has a useful role to play in cryptic pocket discovery but that many cryptic pockets may remain difficult to sample using AlphaFold alone.
Collapse
Affiliation(s)
- Artur Meller
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, 660 S. Euclid Ave., St. Louis, Missouri 63110, United States
- Medical Scientist Training Program, Washington University in St. Louis, 660 S. Euclid Ave., St. Louis, Missouri 63110, United States
| | - Soumendranath Bhakat
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, 660 S. Euclid Ave., St. Louis, Missouri 63110, United States
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Shahlo Solieva
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Gregory R Bowman
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, 660 S. Euclid Ave., St. Louis, Missouri 63110, United States
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
8
|
Bhakat S. Pepsin-like aspartic proteases (PAPs) as model systems for combining biomolecular simulation with biophysical experiments. RSC Adv 2021; 11:11026-11047. [PMID: 35423571 PMCID: PMC8695779 DOI: 10.1039/d0ra10359d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/21/2021] [Indexed: 01/26/2023] Open
Abstract
Pepsin-like aspartic proteases (PAPs) are a class of aspartic proteases which shares tremendous structural similarity with human pepsin. One of the key structural features of PAPs is the presence of a β-hairpin motif otherwise known as flap. The biological function of the PAPs is highly dependent on the conformational dynamics of the flap region. In apo PAPs, the conformational dynamics of the flap is dominated by the rotational degrees of freedom associated with χ1 and χ2 angles of conserved Tyr (or Phe in some cases). However it is plausible that dihedral order parameters associated with several other residues might play crucial roles in the conformational dynamics of apo PAPs. Due to their size, complexities associated with conformational dynamics and clinical significance (drug targets for malaria, Alzheimer's disease etc.), PAPs provide a challenging testing ground for computational and experimental methods focusing on understanding conformational dynamics and molecular recognition in biomolecules. The opening of the flap region is necessary to accommodate substrate/ligand in the active site of the PAPs. The BIG challenge is to gain atomistic details into how reversible ligand binding/unbinding (molecular recognition) affects the conformational dynamics. Recent reports of kinetics (K i, K d) and thermodynamic parameters (ΔH, TΔS, and ΔG) associated with macro-cyclic ligands bound to BACE1 (belongs to PAP family) provide a perfect challenge (how to deal with big ligands with multiple torsional angles and select optimum order parameters to study reversible ligand binding/unbinding) for computational methods to predict binding free energies and kinetics beyond typical test systems e.g. benzamide-trypsin. In this work, i reviewed several order parameters which were proposed to capture the conformational dynamics and molecular recognition in PAPs. I further highlighted how machine learning methods can be used as order parameters in the context of PAPs. I then proposed some open ideas and challenges in the context of molecular simulation and put forward my case on how biophysical experiments e.g. NMR, time-resolved FRET etc. can be used in conjunction with biomolecular simulation to gain complete atomistic insights into the conformational dynamics of PAPs.
Collapse
Affiliation(s)
- Soumendranath Bhakat
- Division of Biophysical Chemistry, Center for Molecular Protein Science, Department of Chemistry, Lund University P. O. Box 124 SE-22100 Lund Sweden +46-769608418
| |
Collapse
|
9
|
Diallo BN, Swart T, Hoppe HC, Tastan Bishop Ö, Lobb K. Potential repurposing of four FDA approved compounds with antiplasmodial activity identified through proteome scale computational drug discovery and in vitro assay. Sci Rep 2021; 11:1413. [PMID: 33446838 PMCID: PMC7809352 DOI: 10.1038/s41598-020-80722-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 12/01/2020] [Indexed: 12/14/2022] Open
Abstract
Malaria elimination can benefit from time and cost-efficient approaches for antimalarials such as drug repurposing. In this work, 796 DrugBank compounds were screened against 36 Plasmodium falciparum targets using QuickVina-W. Hits were selected after rescoring using GRaph Interaction Matching (GRIM) and ligand efficiency metrics: surface efficiency index (SEI), binding efficiency index (BEI) and lipophilic efficiency (LipE). They were further evaluated in Molecular dynamics (MD). Twenty-five protein-ligand complexes were finally retained from the 28,656 (36 × 796) dockings. Hit GRIM scores (0.58 to 0.78) showed their molecular interaction similarity to co-crystallized ligands. Minimum LipE (3), SEI (23) and BEI (7) were in at least acceptable thresholds for hits. Binding energies ranged from -6 to -11 kcal/mol. Ligands showed stability in MD simulation with good hydrogen bonding and favorable protein-ligand interactions energy (the poorest being -140.12 kcal/mol). In vitro testing showed 4 active compounds with two having IC50 values in the single-digit μM range.
Collapse
Affiliation(s)
- Bakary N'tji Diallo
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa
| | - Tarryn Swart
- Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa
| | - Heinrich C Hoppe
- Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa
| | - Kevin Lobb
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa.
- Department of Chemistry, Rhodes University, Grahamstown, 6140, South Africa.
| |
Collapse
|
10
|
Cheuka PM, Dziwornu G, Okombo J, Chibale K. Plasmepsin Inhibitors in Antimalarial Drug Discovery: Medicinal Chemistry and Target Validation (2000 to Present). J Med Chem 2020; 63:4445-4467. [PMID: 31913032 DOI: 10.1021/acs.jmedchem.9b01622] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Plasmepsins represent novel antimalarial drug targets. However, plasmepsin-based antimalarial drug discovery efforts in the past 2 decades have generally suffered some drawbacks including lack of translatability of target inhibition to potent parasite inhibition in vitro and in vivo as well as poor selectivity over the related human aspartic proteases. Most studies reported in this period have over-relied on the use of hemoglobinase plasmepsins I-IV (particularly I and II) as targets for the new inhibitors even though these are known to be nonessential at the asexual stage of parasite development. Therefore, future antimalarial drug discovery efforts seeking to identify plasmepsin inhibitors should focus on incorporating non-hemoglobinase plasmepsins such as V, IX, and X in their screening in order to maximize chances of success. Additionally, there is need to go beyond just target enzymatic activity profiling to establishing cellular activity, physicochemical as well as drug metabolism and pharmacokinetics properties and finally in vivo proof-of-concept while ensuring selectivity over related human host proteases.
Collapse
Affiliation(s)
- Peter Mubanga Cheuka
- Department of Chemistry, University of Zambia, Great East Road Campus, P.O. Box 32379, Lusaka, Zambia
| | - Godwin Dziwornu
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - John Okombo
- Department of Microbiology and Immunology, Columbia University, 701 West 168th Street, New York, New York 10032, United States
| | - Kelly Chibale
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa.,Drug Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa.,Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa.,South African Medical Research Council Drug Discovery and Development Research Unit, University of Cape Town, Rondebosch 7701, South Africa
| |
Collapse
|
11
|
Tetrahydroisoquinoline-Based Non-Peptidomimetic Plasmepsin Inhibitors. Chem Heterocycl Compd (N Y) 2020. [DOI: 10.1007/s10593-020-02623-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
12
|
Bobrovs R, Jaudzems K, Jirgensons A. Exploiting Structural Dynamics To Design Open-Flap Inhibitors of Malarial Aspartic Proteases. J Med Chem 2019; 62:8931-8950. [DOI: 10.1021/acs.jmedchem.9b00184] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Raitis Bobrovs
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga LV1006, Latvia
| | - Kristaps Jaudzems
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga LV1006, Latvia
| | - Aigars Jirgensons
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga LV1006, Latvia
| |
Collapse
|
13
|
Brennecke P, Rasina D, Aubi O, Herzog K, Landskron J, Cautain B, Vicente F, Quintana J, Mestres J, Stechmann B, Ellinger B, Brea J, Kolanowski JL, Pilarski R, Orzaez M, Pineda-Lucena A, Laraia L, Nami F, Zielenkiewicz P, Paruch K, Hansen E, von Kries JP, Neuenschwander M, Specker E, Bartunek P, Simova S, Leśnikowski Z, Krauss S, Lehtiö L, Bilitewski U, Brönstrup M, Taskén K, Jirgensons A, Lickert H, Clausen MH, Andersen JH, Vicent MJ, Genilloud O, Martinez A, Nazaré M, Fecke W, Gribbon P. EU-OPENSCREEN: A Novel Collaborative Approach to Facilitate Chemical Biology. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2019; 24:398-413. [PMID: 30616481 PMCID: PMC6764006 DOI: 10.1177/2472555218816276] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/11/2018] [Accepted: 11/08/2018] [Indexed: 12/27/2022]
Abstract
Compound screening in biological assays and subsequent optimization of hits is indispensable for the development of new molecular research tools and drug candidates. To facilitate such discoveries, the European Research Infrastructure EU-OPENSCREEN was founded recently with the support of its member countries and the European Commission. Its distributed character harnesses complementary knowledge, expertise, and instrumentation in the discipline of chemical biology from 20 European partners, and its open working model ensures that academia and industry can readily access EU-OPENSCREEN's compound collection, equipment, and generated data. To demonstrate the power of this collaborative approach, this perspective article highlights recent projects from EU-OPENSCREEN partner institutions. These studies yielded (1) 2-aminoquinazolin-4(3 H)-ones as potential lead structures for new antimalarial drugs, (2) a novel lipodepsipeptide specifically inducing apoptosis in cells deficient for the pVHL tumor suppressor, (3) small-molecule-based ROCK inhibitors that induce definitive endoderm formation and can potentially be used for regenerative medicine, (4) potential pharmacological chaperones for inborn errors of metabolism and a familiar form of acute myeloid leukemia (AML), and (5) novel tankyrase inhibitors that entered a lead-to-candidate program. Collectively, these findings highlight the benefits of small-molecule screening, the plethora of assay designs, and the close connection between screening and medicinal chemistry within EU-OPENSCREEN.
Collapse
Affiliation(s)
- Philip Brennecke
- EU-OPENSCREEN, Leibniz Research
Institute for Molecular Pharmacology, Berlin, Germany
| | - Dace Rasina
- Organic Synthesis Methodology Group,
Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Oscar Aubi
- Department of Biomedicine, University of
Bergen, Bergen, Norway
| | - Katja Herzog
- EU-OPENSCREEN, Leibniz Research
Institute for Molecular Pharmacology, Berlin, Germany
| | - Johannes Landskron
- Centre for Molecular Medicine
Norway–Nordic EMBL Partnership, University of Oslo, Oslo, Norway
| | - Bastien Cautain
- Fundación MEDINA, Health Sciences
Technology Park, Granada, Spain
| | | | - Jordi Quintana
- Department of Experimental and Health
Sciences, Universitat Pompeu Fabra, Barcelona, Catalunya, Spain
| | - Jordi Mestres
- Department of Experimental and Health
Sciences, Universitat Pompeu Fabra, Barcelona, Catalunya, Spain
- IMIM Hospital del Mar Medical Research
Institute, Research Program on Biomedical Informatics (GRIB), Barcelona, Spain
| | - Bahne Stechmann
- EU-OPENSCREEN, Leibniz Research
Institute for Molecular Pharmacology, Berlin, Germany
| | - Bernhard Ellinger
- Fraunhofer Institute for Molecular
Biology and Applied Ecology IME, Screening Port, Hamburg, Germany
| | - Jose Brea
- Institute for Research in Molecular
Medicine and Chronic Diseases—BioFarma Research Group, University of Santiago de
Compostela, Santiago de Compostela, Spain
| | - Jacek L. Kolanowski
- Department of Molecular Probes and
Prodrugs, Institute of Bioorganic Chemistry—Polish Academy of Sciences, Poznan,
Poland
| | - Radosław Pilarski
- Department of Molecular Probes and
Prodrugs, Institute of Bioorganic Chemistry—Polish Academy of Sciences, Poznan,
Poland
| | - Mar Orzaez
- Screening Platform, Principe Felipe
Research Center, Valencia, Spain
| | | | - Luca Laraia
- Center for Nanomedicine and
Theranostics, Department of Chemistry, Technical University of Denmark, Lyngby,
Denmark
- Technical University of Denmark,
DK-OPENSCREEN, Lyngby, Denmark
| | - Faranak Nami
- Center for Nanomedicine and
Theranostics, Department of Chemistry, Technical University of Denmark, Lyngby,
Denmark
- Technical University of Denmark,
DK-OPENSCREEN, Lyngby, Denmark
| | - Piotr Zielenkiewicz
- Department of Bioinformatics,
Institute of Biochemistry and Biophysics—Polish Academy of Sciences, Warsaw,
Poland
| | - Kamil Paruch
- Department of Chemistry—CZ-OPENSCREEN,
Masaryk University, Brno, Czech Republic
| | - Espen Hansen
- The Arctic University of Norway,
University of Tromsø, Marbio, Tromsø, Norway
| | - Jens P. von Kries
- Screening Unit, Leibniz Research
Institute for Molecular Pharmacology, Berlin, Germany
| | - Martin Neuenschwander
- Screening Unit, Leibniz Research
Institute for Molecular Pharmacology, Berlin, Germany
| | - Edgar Specker
- Medicinal Chemistry Research Group,
Leibniz Research Institute for Molecular Pharmacology, Berlin, Germany
| | - Petr Bartunek
- Institute of Molecular Genetics of the
ASCR, CZ-OPENSCREEN, Prague, Czech Republic
| | - Sarka Simova
- Institute of Molecular Genetics of the
ASCR, CZ-OPENSCREEN, Prague, Czech Republic
| | - Zbigniew Leśnikowski
- Laboratory of Molecular Virology and
Biological Chemistry, Institute of Medical Biology—Polish Academy of Sciences, Łódź,
Poland
| | - Stefan Krauss
- Department of Immunology and
Transfusion Medicine, Oslo University Hospital, Oslo, Norway
- Hybrid Technology Hub—Centre of
Excellence—Institute of Basic Medical Sciences, University of Oslo, Oslo,
Norway
| | - Lari Lehtiö
- Faculty of Biochemistry and Molecular
Medicine—Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Ursula Bilitewski
- Working Group Compound Profiling and
Screening, Helmholtz Centre for Infection Research, Brunswick, Germany
| | - Mark Brönstrup
- Department of Chemical Biology,
Helmholtz Centre for Infection Research, Brunswick, Germany
- German Center for Infection Research
(DZIF), partner site Hannover-Brunswick, Brunswick, Germany
| | - Kjetil Taskén
- Centre for Molecular Medicine
Norway–Nordic EMBL Partnership, University of Oslo, Oslo, Norway
- Department of Cancer
Immunology—Institute for Cancer Research, Oslo University Hospital, Oslo,
Norway
- K.G. Jebsen Centre for Cancer
Immunotherapy—Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- K.G. Jebsen Centre for B Cell
Malignancies—Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Aigars Jirgensons
- Organic Synthesis Methodology Group,
Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Heiko Lickert
- Institute of Diabetes and Regeneration
Research, Helmholtz Centre Munich German Research Center for Environmental Health,
Neuherberg, Germany
| | - Mads H. Clausen
- Center for Nanomedicine and
Theranostics, Department of Chemistry, Technical University of Denmark, Lyngby,
Denmark
- Technical University of Denmark,
DK-OPENSCREEN, Lyngby, Denmark
| | | | - Maria J. Vicent
- Screening Platform, Principe Felipe
Research Center, Valencia, Spain
| | - Olga Genilloud
- Fundación MEDINA, Health Sciences
Technology Park, Granada, Spain
| | - Aurora Martinez
- Department of Biomedicine, University of
Bergen, Bergen, Norway
| | - Marc Nazaré
- Medicinal Chemistry Research Group,
Leibniz Research Institute for Molecular Pharmacology, Berlin, Germany
| | | | - Philip Gribbon
- Fraunhofer Institute for Molecular
Biology and Applied Ecology IME, Screening Port, Hamburg, Germany
| |
Collapse
|
14
|
Zogota R, Kinena L, Withers-Martinez C, Blackman MJ, Bobrovs R, Pantelejevs T, Kanepe-Lapsa I, Ozola V, Jaudzems K, Suna E, Jirgensons A. Peptidomimetic plasmepsin inhibitors with potent anti-malarial activity and selectivity against cathepsin D. Eur J Med Chem 2018; 163:344-352. [PMID: 30529637 PMCID: PMC6336538 DOI: 10.1016/j.ejmech.2018.11.068] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/26/2018] [Accepted: 11/28/2018] [Indexed: 11/18/2022]
Abstract
Following up the open initiative of anti-malarial drug discovery, a GlaxoSmithKline (GSK) phenotypic screening hit was developed to generate hydroxyethylamine based plasmepsin (Plm) inhibitors exhibiting growth inhibition of the malaria parasite Plasmodium falciparum at nanomolar concentrations. Lead optimization studies were performed with the aim of improving Plm inhibition selectivity versus the related human aspartic protease cathepsin D (Cat D). Optimization studies were performed using Plm IV as a readily accessible model protein, the inhibition of which correlates with anti-malarial activity. Guided by sequence alignment of Plms and Cat D, selectivity-inducing structural motifs were modified in the S3 and S4 sub-pocket occupying substituents of the hydroxyethylamine inhibitors. This resulted in potent anti-malarials with an up to 50-fold Plm IV/Cat D selectivity factor. More detailed investigation of the mechanism of action of the selected compounds revealed that they inhibit maturation of the P. falciparum subtilisin-like protease SUB1, and also inhibit parasite egress from erythrocytes. Our results indicate that the anti-malarial activity of the compounds is linked to inhibition of the SUB1 maturase plasmepsin subtype Plm X. Peptidomimimetic plasmepsin inhibitors are developed using Plm IV as a model enzyme. Up to 50-fold selectivity against Cathepsin D is reached. Compounds show growth inhibition of P. falciparum at nanomolar concentrations. Inhibition of SUB1 maturation and parasite egress imply (co)inhibition of Plm X.
Collapse
Affiliation(s)
- Rimants Zogota
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, LV, 1006, Latvia
| | - Linda Kinena
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, LV, 1006, Latvia
| | | | - Michael J Blackman
- Malaria Biochemistry Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK; Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Raitis Bobrovs
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, LV, 1006, Latvia
| | - Teodors Pantelejevs
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, LV, 1006, Latvia
| | - Iveta Kanepe-Lapsa
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, LV, 1006, Latvia
| | - Vita Ozola
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, LV, 1006, Latvia
| | - Kristaps Jaudzems
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, LV, 1006, Latvia
| | - Edgars Suna
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, LV, 1006, Latvia.
| | - Aigars Jirgensons
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, LV, 1006, Latvia.
| |
Collapse
|
15
|
Kinena L, Leitis G, Kanepe-Lapsa I, Bobrovs R, Jaudzems K, Ozola V, Suna E, Jirgensons A. Azole-based non-peptidomimetic plasmepsin inhibitors. Arch Pharm (Weinheim) 2018; 351:e1800151. [DOI: 10.1002/ardp.201800151] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/21/2018] [Accepted: 06/29/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Linda Kinena
- Latvian Institute of Organic Synthesis; Riga Latvia
| | | | | | | | | | - Vita Ozola
- Latvian Institute of Organic Synthesis; Riga Latvia
| | - Edgars Suna
- Latvian Institute of Organic Synthesis; Riga Latvia
| | | |
Collapse
|
16
|
Nguyen W, Hodder AN, de Lezongard RB, Czabotar PE, Jarman KE, O'Neill MT, Thompson JK, Jousset Sabroux H, Cowman AF, Boddey JA, Sleebs BE. Enhanced antimalarial activity of plasmepsin V inhibitors by modification of the P 2 position of PEXEL peptidomimetics. Eur J Med Chem 2018; 154:182-198. [PMID: 29800827 DOI: 10.1016/j.ejmech.2018.05.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 05/14/2018] [Accepted: 05/14/2018] [Indexed: 12/26/2022]
Abstract
Plasmepsin V is an aspartyl protease that plays a critical role in the export of proteins bearing the Plasmodium export element (PEXEL) motif (RxLxQ/E/D) to the infected host erythrocyte, and thus the survival of the malaria parasite. Previously, development of transition state PEXEL mimetic inhibitors of plasmepsin V have primarily focused on demonstrating the importance of the P3 Arg and P1 Leu in binding affinity and selectivity. Here, we investigate the importance of the P2 position by incorporating both natural and non-natural amino acids into this position and show disubstituted beta-carbon amino acids convey the greatest potency. Consequently, we show analogues with either cyclohexylglycine or phenylglycine in the P2 position are the most potent inhibitors of plasmepsin V that impair processing of the PEXEL motif in exported proteins resulting in death of P. falciparum asexual stage parasites.
Collapse
Affiliation(s)
- William Nguyen
- The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, 3010, Australia
| | - Anthony N Hodder
- The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, 3010, Australia
| | - Richard Bestel de Lezongard
- The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, 3010, Australia
| | - Peter E Czabotar
- The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, 3010, Australia
| | - Kate E Jarman
- The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, 3010, Australia
| | - Matthew T O'Neill
- The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Australia
| | - Jennifer K Thompson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Australia
| | - Helene Jousset Sabroux
- The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, 3010, Australia
| | - Alan F Cowman
- The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, 3010, Australia
| | - Justin A Boddey
- The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, 3010, Australia
| | - Brad E Sleebs
- The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, 3010, Australia.
| |
Collapse
|
17
|
Rasina D, Stakanovs G, Borysov OV, Pantelejevs T, Bobrovs R, Kanepe-Lapsa I, Tars K, Jaudzems K, Jirgensons A. 2-Aminoquinazolin-4(3H)-one based plasmepsin inhibitors with improved hydrophilicity and selectivity. Bioorg Med Chem 2018; 26:2488-2500. [PMID: 29636223 DOI: 10.1016/j.bmc.2018.04.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/29/2018] [Accepted: 04/03/2018] [Indexed: 11/15/2022]
Abstract
2-Aminoquinazolin-4(3H)-ones were previously discovered as perspective leads for antimalarial drug development targeting the plasmepsins. Here we report the lead optimization studies with the aim to reduce inhibitor lipophilicity and increase selectivity versus the human aspartic protease Cathepsin D. Exploiting the solvent exposed area of the enzyme provides an option to install polar groups (R1) the 5-position of 2-aminoquinazolin-4(3H)-one to inhibitors such as carboxylic acid without scarifying enzymatic potency. Moreover, introduction of R1 substituents increased selectivity factors of compounds in this series up to 100-fold for Plm II, IV vs CatD inhibition. The introduction of flap pocket substituent (R2) at 7-postion of 2-aminoquinazolin-4(3H)-one allows to remove Ph group from THF ring without notably impairing Plm inhibitory potency. Based on these findings, inhibitors were developed, which show Plm II and IV inhibitory potency in low nanomolar range and remarkable selectivity against Cathepsin D along with decreased lipophilicity and increased solubility.
Collapse
Affiliation(s)
- Dace Rasina
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga LV-1006, Latvia
| | - Georgijs Stakanovs
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga LV-1006, Latvia
| | - Oleksandr V Borysov
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga LV-1006, Latvia
| | - Teodors Pantelejevs
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga LV-1006, Latvia
| | - Raitis Bobrovs
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga LV-1006, Latvia
| | - Iveta Kanepe-Lapsa
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga LV-1006, Latvia
| | - Kaspars Tars
- Biomedical Research and Study Centre, Ratsupites 1, Riga LV-1067, Latvia
| | - Kristaps Jaudzems
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga LV-1006, Latvia
| | - Aigars Jirgensons
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga LV-1006, Latvia.
| |
Collapse
|
18
|
Mathew D, P. LJ, T.M. M, P. D, V.T.K. SR. Therapeutic molecules for multiple human diseases identified from pigeon pea ( Cajanus cajan L. Millsp.) through GC–MS and molecular docking. FOOD SCIENCE AND HUMAN WELLNESS 2017. [DOI: 10.1016/j.fshw.2017.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Ogungbe IV, Setzer WN. The Potential of Secondary Metabolites from Plants as Drugs or Leads against Protozoan Neglected Diseases-Part III: In-Silico Molecular Docking Investigations. Molecules 2016; 21:E1389. [PMID: 27775577 PMCID: PMC6274513 DOI: 10.3390/molecules21101389] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 10/06/2016] [Accepted: 10/12/2016] [Indexed: 12/11/2022] Open
Abstract
Malaria, leishmaniasis, Chagas disease, and human African trypanosomiasis continue to cause considerable suffering and death in developing countries. Current treatment options for these parasitic protozoal diseases generally have severe side effects, may be ineffective or unavailable, and resistance is emerging. There is a constant need to discover new chemotherapeutic agents for these parasitic infections, and natural products continue to serve as a potential source. This review presents molecular docking studies of potential phytochemicals that target key protein targets in Leishmania spp., Trypanosoma spp., and Plasmodium spp.
Collapse
Affiliation(s)
- Ifedayo Victor Ogungbe
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, MS 39217, USA.
| | - William N Setzer
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA.
| |
Collapse
|
20
|
Boss C, Aissaoui H, Amaral N, Bauer A, Bazire S, Binkert C, Brun R, Bürki C, Ciana CL, Corminboeuf O, Delahaye S, Dollinger C, Fischli C, Fischli W, Flock A, Frantz MC, Girault M, Grisostomi C, Friedli A, Heidmann B, Hinder C, Jacob G, Le Bihan A, Malrieu S, Mamzed S, Merot A, Meyer S, Peixoto S, Petit N, Siegrist R, Trollux J, Weller T, Wittlin S. Discovery and Characterization of ACT-451840: an Antimalarial Drug with a Novel Mechanism of Action. ChemMedChem 2016; 11:1995-2014. [DOI: 10.1002/cmdc.201600298] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 07/04/2016] [Indexed: 11/09/2022]
|
21
|
Rasina D, Otikovs M, Leitans J, Recacha R, Borysov OV, Kanepe-Lapsa I, Domraceva I, Pantelejevs T, Tars K, Blackman MJ, Jaudzems K, Jirgensons A. Fragment-Based Discovery of 2-Aminoquinazolin-4(3H)-ones As Novel Class Nonpeptidomimetic Inhibitors of the Plasmepsins I, II, and IV. J Med Chem 2015; 59:374-87. [PMID: 26670264 DOI: 10.1021/acs.jmedchem.5b01558] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
2-Aminoquinazolin-4(3H)-ones were identified as a novel class of malaria digestive vacuole plasmepsin inhibitors by using NMR-based fragment screening against Plm II. Initial fragment hit optimization led to a submicromolar inhibitor, which was cocrystallized with Plm II to produce an X-ray structure of the complex. The structure showed that 2-aminoquinazolin-4(3H)-ones bind to the open flap conformation of the enzyme and provided clues to target the flap pocket. Further improvement in potency was achieved via introduction of hydrophobic substituents occupying the flap pocket. Most of the 2-aminoquinazolin-4(3H)-one based inhibitors show a similar activity against digestive Plms I, II, and IV and >10-fold selectivity versus CatD, although varying the flap pocket substituent led to one Plm IV selective inhibitor. In cell-based assays, the compounds show growth inhibition of Plasmodium falciparum 3D7 with IC50 ∼ 1 μM. Together, these results suggest 2-aminoquinazolin-4(3H)-ones as perspective leads for future development of an antimalarial agent.
Collapse
Affiliation(s)
- Dace Rasina
- Latvian Institute of Organic Synthesis , Aizkraukles 21, Riga LV-1006, Latvia
| | - Martins Otikovs
- Latvian Institute of Organic Synthesis , Aizkraukles 21, Riga LV-1006, Latvia
| | - Janis Leitans
- Biomedical Research and Study Centre , Ratsupites 1, Riga LV-1067, Latvia
| | - Rosario Recacha
- Latvian Institute of Organic Synthesis , Aizkraukles 21, Riga LV-1006, Latvia
| | - Oleksandr V Borysov
- Latvian Institute of Organic Synthesis , Aizkraukles 21, Riga LV-1006, Latvia
| | - Iveta Kanepe-Lapsa
- Latvian Institute of Organic Synthesis , Aizkraukles 21, Riga LV-1006, Latvia
| | - Ilona Domraceva
- Latvian Institute of Organic Synthesis , Aizkraukles 21, Riga LV-1006, Latvia
| | - Teodors Pantelejevs
- Latvian Institute of Organic Synthesis , Aizkraukles 21, Riga LV-1006, Latvia
| | - Kaspars Tars
- Biomedical Research and Study Centre , Ratsupites 1, Riga LV-1067, Latvia
| | - Michael J Blackman
- The Francis Crick Institute, Mill Hill Laboratory , The Ridgeway, Mill Hill, London NW7 1AA, U.K
| | - Kristaps Jaudzems
- Latvian Institute of Organic Synthesis , Aizkraukles 21, Riga LV-1006, Latvia
| | - Aigars Jirgensons
- Latvian Institute of Organic Synthesis , Aizkraukles 21, Riga LV-1006, Latvia
| |
Collapse
|
22
|
Huizing AP, Mondal M, Hirsch AKH. Fighting malaria: structure-guided discovery of nonpeptidomimetic plasmepsin inhibitors. J Med Chem 2015; 58:5151-63. [PMID: 25719272 DOI: 10.1021/jm5014133] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Plasmepsins (Plms) are aspartic proteases involved in the degradation of human hemoglobin by Plasmodium falciparum. Given that the parasite needs the resulting amino acid building blocks for its growth and development, plasmepsins are an important antimalarial drug target. Over the past decade, tremendous progress has been achieved in the development of inhibitors of plasmepsin using two strategies: structure-based drug design (SBDD) and structure-based virtual screening (SBVS). Herein, we review the inhibitors of Plms I-IV developed by SBDD or SBVS with a particular focus on obtaining selectivity versus the human Asp proteases cathepsins and renin and activity in cell-based assays. By use of SBDD, the flap pocket of Plm II has been discovered and constitutes a convenient handle to obtain selectivity. In SBVS, activity against Plms I-IV and selectivity versus cathepsins are not always taken into account. A combination of SBVS, SBDD, and molecular dynamics simulations opens up opportunities for future design cycles.
Collapse
Affiliation(s)
- Anja P Huizing
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, NL-9747 AG Groningen, The Netherlands
| | - Milon Mondal
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, NL-9747 AG Groningen, The Netherlands
| | - Anna K H Hirsch
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, NL-9747 AG Groningen, The Netherlands
| |
Collapse
|
23
|
Persch E, Dumele O, Diederich F. Molekulare Erkennung in chemischen und biologischen Systemen. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201408487] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
24
|
Persch E, Dumele O, Diederich F. Molecular recognition in chemical and biological systems. Angew Chem Int Ed Engl 2015; 54:3290-327. [PMID: 25630692 DOI: 10.1002/anie.201408487] [Citation(s) in RCA: 424] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Indexed: 12/13/2022]
Abstract
Structure-based ligand design in medicinal chemistry and crop protection relies on the identification and quantification of weak noncovalent interactions and understanding the role of water. Small-molecule and protein structural database searches are important tools to retrieve existing knowledge. Thermodynamic profiling, combined with X-ray structural and computational studies, is the key to elucidate the energetics of the replacement of water by ligands. Biological receptor sites vary greatly in shape, conformational dynamics, and polarity, and require different ligand-design strategies, as shown for various case studies. Interactions between dipoles have become a central theme of molecular recognition. Orthogonal interactions, halogen bonding, and amide⋅⋅⋅π stacking provide new tools for innovative lead optimization. The combination of synthetic models and biological complexation studies is required to gather reliable information on weak noncovalent interactions and the role of water.
Collapse
Affiliation(s)
- Elke Persch
- Laboratorium für Organische Chemie, Departement Chemie und Angewandte Biowissenschaften, ETH Zürich, Vladimir-Prelog-Weg 3, 8093 Zürich (Switzerland)
| | | | | |
Collapse
|
25
|
Kumar A, Paliwal D, Saini D, Thakur A, Aggarwal S, Kaushik D. A comprehensive review on synthetic approach for antimalarial agents. Eur J Med Chem 2014; 85:147-78. [DOI: 10.1016/j.ejmech.2014.07.084] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 07/23/2014] [Accepted: 07/23/2014] [Indexed: 01/11/2023]
|
26
|
Transition-state inhibitors of purine salvage and other prospective enzyme targets in malaria. Future Med Chem 2014; 5:1341-60. [PMID: 23859211 DOI: 10.4155/fmc.13.51] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Malaria is a leading cause of human death within the tropics. The gradual generation of drug resistance imposes an urgent need for the development of new and selective antimalarial agents. Kinetic isotope effects coupled to computational chemistry have provided the relevant details on geometry and charge of enzymatic transition states to facilitate the design of transition-state analogs. These features have been reproduced into chemically stable mimics through synthetic chemistry, generating inhibitors with dissociation constants in the pico- to femto-molar range. Transition-state analogs are expected to contribute to the control of malaria.
Collapse
|
27
|
Synthesis of 2-aminomethyl-4-phenyl-1-azabicyclo[2.2.1]heptanes via LiAlH4-induced reductive cyclization of 2-(4-chloro-2-cyano-2-phenylbutyl)aziridines and evaluation of their antimalarial activity. Bioorg Med Chem Lett 2013; 23:1507-10. [DOI: 10.1016/j.bmcl.2012.12.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 12/07/2012] [Accepted: 12/10/2012] [Indexed: 11/22/2022]
|
28
|
Aureggi V, Ehmke V, Wieland J, Schweizer WB, Bernet B, Bur D, Meyer S, Rottmann M, Freymond C, Brun R, Breit B, Diederich F. Potent inhibitors of malarial aspartic proteases, the plasmepsins, by hydroformylation of substituted 7-azanorbornenes. Chemistry 2012; 19:155-64. [PMID: 23161835 DOI: 10.1002/chem.201202941] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Indexed: 12/23/2022]
Abstract
The increasing prevalence of multidrug-resistant strains of the malarial parasite Plasmodium falciparum requires the urgent development of new therapeutic agents with novel modes of action. The vacuolar malarial aspartic proteases plasmepsin (PM) I, II, and IV are involved in hemoglobin degradation and play a central role in the growth and maturation of the parasite in the human host. We report the structure-based design, synthesis, and in vitro evaluation of a new generation of PM inhibitors featuring a highly decorated 7-azabicyclo[2.2.1]heptane core. While this protonated central core addresses the catalytic Asp dyad, three substituents bind to the flap, the S1/S3, and the S1' pockets of the enzymes. A hydroformylation reaction is the key synthetic step for the introduction of the new vector reaching into the S1' pocket. The configuration of the racemic ligands was confirmed by extensive NMR and X-ray crystallographic analysis. In vitro biological assays revealed high potency of the new inhibitors against the three plasmepsins (IC(50) values down to 6 nM) and good selectivity towards the closely related human cathepsins D and E. The occupancy of the S1' pocket makes an essential contribution to the gain in binding affinity and selectivity, which is particularly large in the case of the PM IV enzyme. Designing non-peptidic ligands for PM II is a valid route to generate compounds that inhibit the entire family of vacuolar plasmepsins.
Collapse
Affiliation(s)
- Valentina Aureggi
- Laboratorium für Organische Chemie, ETH Zurich, Hönggerberg HCI, 8093 Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Brunner R, Aissaoui H, Boss C, Bozdech Z, Brun R, Corminboeuf O, Delahaye S, Fischli C, Heidmann B, Kaiser M, Kamber J, Meyer S, Papastogiannidis P, Siegrist R, Voss T, Welford R, Wittlin S, Binkert C. Identification of a New Chemical Class of Antimalarials. J Infect Dis 2012; 206:735-43. [DOI: 10.1093/infdis/jis418] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
30
|
Bhaumik P, Gustchina A, Wlodawer A. Structural studies of vacuolar plasmepsins. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1824:207-23. [PMID: 21540129 PMCID: PMC3154504 DOI: 10.1016/j.bbapap.2011.04.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2011] [Revised: 04/11/2011] [Accepted: 04/12/2011] [Indexed: 10/18/2022]
Abstract
Plasmepsins (PMs) are pepsin-like aspartic proteases present in different species of parasite Plasmodium. Four Plasmodium spp. (P. vivax, P. ovale, P. malariae, and the most lethal P. falciparum) are mainly responsible for causing human malaria that affects millions worldwide. Due to the complexity and rate of parasite mutation coupled with regional variations, and the emergence of P. falciparum strains which are resistant to antimalarial agents such as chloroquine and sulfadoxine/pyrimethamine, there is constant pressure to find new and lasting chemotherapeutic drug therapies. Since many proteases represent therapeutic targets and PMs have been shown to play an important role in the survival of parasite, these enzymes have recently been identified as promising targets for the development of novel antimalarial drugs. The genome of P. falciparum encodes 10 PMs (PMI, PMII, PMIV-X and histo-aspartic protease (HAP)), 4 of which (PMI, PMII, PMIV and HAP) reside within the food vacuole, are directly involved in degradation of human hemoglobin, and share 50-79% amino acid sequence identity. This review focuses on structural studies of only these four enzymes, including their orthologs in other Plasmodium spp.. Almost all original crystallographic studies were performed with PMII, but more recent work on PMIV, PMI, and HAP resulted in a more complete picture of the structure-function relationship of vacuolar PMs. Many structures of inhibitor complexes of vacuolar plasmepsins, as well as their zymogens, have been reported in the last 15 years. Information gained by such studies will be helpful for the development of better inhibitors that could become a new class of potent antimalarial drugs. This article is part of a Special Issue entitled: Proteolysis 50 years after the discovery of lysosome.
Collapse
Affiliation(s)
- Prasenjit Bhaumik
- Protein Structure Section, Macromolecular Crystallography Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Alla Gustchina
- Protein Structure Section, Macromolecular Crystallography Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Alexander Wlodawer
- Protein Structure Section, Macromolecular Crystallography Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|
31
|
Enantiomerically Pure and Highly Substituted Alicyclic α,α-Difluoro Ketones: Potential Inhibitors for Malarial Aspartic Proteases, the Plasmepsins. European J Org Chem 2010. [DOI: 10.1002/ejoc.201000712] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
32
|
Downstream effects of haemoglobinase inhibition in Plasmodium falciparum-infected erythrocytes. Mol Biochem Parasitol 2010; 173:81-7. [PMID: 20478341 DOI: 10.1016/j.molbiopara.2010.05.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 04/28/2010] [Accepted: 05/08/2010] [Indexed: 12/22/2022]
Abstract
Blood-stage malarial parasites (Plasmodium falciparum) digest large quantities of host haemoglobin during their asexual development in erythrocytes. The haemoglobin digestion pathway, involving a succession of cleavages by various peptidases, appears to be essential for parasite development and has received much attention as an antimalarial drug target. A variety of peptidase inhibitors that have potent antimalarial activity are believed to inhibit and/or kill parasites by blocking haemoglobin digestion. It has not however been established how such a blockage might lead to parasite death. The answer to this question should lie in identifying the affected physiological function, but the purpose of excess haemoglobin digestion by P. falciparum has for many years been the subject of debate. The process was traditionally believed to be nutritional until Lew et al. [Blood 2003;101:4189-94] suggested that it is linked to volume control of the infected erythrocyte and is necessary to prevent premature osmotic lysis of the host cell. Their model predicts that sufficient inhibition of haemoglobin degradation should result in premature haemolysis. In this study we examined the downstream effects of reduced haemoglobin digestion on osmoprotection and nutrition. We found that inhibitors of haemoglobinases (plasmepsins, falcipains and aminopeptidases) did not cause premature haemolysis. The inhibitors did however block parasite development and this effect corresponded to a strong inhibition of protein synthesis. The effect on protein synthesis (i) occurred at inhibitor concentrations and times of exposure that were relevant to parasite growth inhibition, (ii) was observed with different chemical classes of inhibitor, and (iii) was synergistic when a plasmepsin and a falcipain inhibitor were combined, reflecting the well-established antimalarial synergism of the combination. Taken together, the results suggest that the likely primary downstream effect of inhibition of haemoglobin degradation is amino acid depletion, leading to blockade of protein synthesis, and that the parasite probably degrades globin for nutritional purposes.
Collapse
|
33
|
Degliesposti G, Kasam V, Da Costa A, Kang HK, Kim N, Kim DW, Breton V, Kim D, Rastelli G. Design and discovery of plasmepsin II inhibitors using an automated workflow on large-scale grids. ChemMedChem 2009; 4:1164-73. [PMID: 19437467 DOI: 10.1002/cmdc.200900111] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Novel and potent inhibitors of Plasmodium falciparum plasmepsin II were identified by post-processing the results of a docking screening with BEAR, a recently reported procedure for the refinement and rescoring of docked ligands in virtual screening. FRET substrate degradation assays performed on the 30 most promising compounds resulted in 26 inhibitors with IC(50) values ranging from 4.3 nM to 1.8 microM.Herein we report the discovery of novel and potent inhibitors of Plasmodium falciparum plasmepsin II using GRID computing infrastructures. These compounds were identified by post-processing the results of a large docking screen of commercially available compounds using an automated procedure based on molecular dynamics refinement and binding free-energy estimation using MM-PBSA and MM-GBSA. Among the best-scored compounds, four highly populated and promising chemical classes were identified: N-alkoxyamidines, guanidines, amides, and ureas and thioureas. Thirty hit compounds representative of each class were selected on the basis of their favourable binding free energies and molecular interactions with key active site residues. These were experimentally validated using an inhibition assay based on FRET substrate degradation. Remarkably, 26 of the 30 tested compounds proved to be active as plasmepsin II inhibitors, with IC(50) values ranging from 4.3 nM to 1.8 microM.
Collapse
Affiliation(s)
- Gianluca Degliesposti
- Dipartimento di Scienze Farmaceutiche, Università di Modena e Reggio Emilia, Via Campi 183, 41100 Modena, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Liu K, Shi H, Xiao H, Chong A, Bi X, Chang YT, Tan K, Yada R, Yao S. Functional Profiling, Identification, and Inhibition of Plasmepsins in Intraerythrocytic Malaria Parasites. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200903747] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
35
|
Liu K, Shi H, Xiao H, Chong A, Bi X, Chang YT, Tan K, Yada R, Yao S. Functional Profiling, Identification, and Inhibition of Plasmepsins in Intraerythrocytic Malaria Parasites. Angew Chem Int Ed Engl 2009; 48:8293-7. [DOI: 10.1002/anie.200903747] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
36
|
Friedman R, Caflisch A. Discovery of Plasmepsin Inhibitors by Fragment-Based Docking and Consensus Scoring. ChemMedChem 2009; 4:1317-26. [DOI: 10.1002/cmdc.200900078] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
37
|
Zürcher M, Hof F, Barandun L, Schütz A, Schweizer WB, Meyer S, Bur D, Diederich F. Synthesis ofexo-3-Amino-7-azabicyclo[2.2.1]heptanes as a Class of Malarial Aspartic Protease Inhibitors: Exploration of Two Binding Pockets. European J Org Chem 2009. [DOI: 10.1002/ejoc.200801184] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
38
|
Bhaumik P, Xiao H, Parr CL, Kiso Y, Gustchina A, Yada RY, Wlodawer A. Crystal structures of the histo-aspartic protease (HAP) from Plasmodium falciparum. J Mol Biol 2009; 388:520-40. [PMID: 19285084 DOI: 10.1016/j.jmb.2009.03.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 02/25/2009] [Accepted: 03/05/2009] [Indexed: 02/07/2023]
Abstract
The structures of recombinant histo-aspartic protease (HAP) from malaria-causing parasite Plasmodium falciparum as apoenzyme and in complex with two inhibitors, pepstatin A and KNI-10006, were solved at 2.5-, 3.3-, and 3.05-A resolutions, respectively. In the apoenzyme crystals, HAP forms a tight dimer not seen previously in any aspartic protease. The interactions between the monomers affect the conformation of two flexible loops, the functionally important "flap" (residues 70-83) and its structural equivalent in the C-terminal domain (residues 238-245), as well as the orientation of helix 225-235. The flap is found in an open conformation in the apoenzyme. Unexpectedly, the active site of the apoenzyme contains a zinc ion tightly bound to His32 and Asp215 from one monomer and to Glu278A from the other monomer, with the coordination of Zn resembling that seen in metalloproteases. The flap is closed in the structure of the pepstatin A complex, whereas it is open in the complex with KNI-10006. Although the binding mode of pepstatin A is significantly different from that in other pepsin-like aspartic proteases, its location in the active site makes unlikely the previously proposed hypothesis that HAP is a serine protease. The binding mode of KNI-10006 is unusual compared with the binding of other inhibitors from the KNI series to aspartic proteases. The novel features of the HAP active site could facilitate design of specific inhibitors used in the development of antimalarial drugs.
Collapse
Affiliation(s)
- Prasenjit Bhaumik
- Protein Structure Section, Macromolecular Crystallography Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Fäh C, Hardegger LA, Baitsch L, Schweizer WB, Meyer S, Bur D, Diederich F. New organofluorine building blocks: inhibition of the malarial aspartic proteases plasmepsin II and IV by alicyclic α,α-difluoroketone hydrates. Org Biomol Chem 2009; 7:3947-57. [DOI: 10.1039/b908489d] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
40
|
Luksch T, Chan NS, Brass S, Sotriffer C, Klebe G, Diederich W. Computer-Aided Design and Synthesis of Nonpeptidic Plasmepsin II and IV Inhibitors. ChemMedChem 2008; 3:1323-36. [DOI: 10.1002/cmdc.200700270] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
41
|
Blum A, Böttcher J, Sammet B, Luksch T, Heine A, Klebe G, Diederich WE. Achiral oligoamines as versatile tool for the development of aspartic protease inhibitors. Bioorg Med Chem 2008; 16:8574-86. [DOI: 10.1016/j.bmc.2008.08.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Revised: 07/29/2008] [Accepted: 08/04/2008] [Indexed: 10/21/2022]
|
42
|
Zürcher M, Diederich F. Structure-Based Drug Design: Exploring the Proper Filling of Apolar Pockets at Enzyme Active Sites. J Org Chem 2008; 73:4345-61. [DOI: 10.1021/jo800527n] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Martina Zürcher
- Department of Chemistry and Applied Biosciences, Laboratorium für Organische Chemie, ETH Zürich, HCI G 313, 8093 Zürich, Switzerland
| | - François Diederich
- Department of Chemistry and Applied Biosciences, Laboratorium für Organische Chemie, ETH Zürich, HCI G 313, 8093 Zürich, Switzerland
| |
Collapse
|
43
|
Friedman R, Caflisch A. Pepsinogen-like activation intermediate of plasmepsin II revealed by molecular dynamics analysis. Proteins 2008; 73:814-27. [DOI: 10.1002/prot.22105] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
44
|
Zürcher M, Gottschalk T, Meyer S, Bur D, Diederich F. Exploring the Flap Pocket of the Antimalarial Target Plasmepsin II: The “55 % Rule” Applied to Enzymes. ChemMedChem 2008; 3:237-40. [DOI: 10.1002/cmdc.200700236] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
45
|
Gayathri P, Balaram H, Murthy MRN. Structural biology of plasmodial proteins. Curr Opin Struct Biol 2007; 17:744-54. [PMID: 17875391 DOI: 10.1016/j.sbi.2007.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Revised: 08/01/2007] [Accepted: 08/02/2007] [Indexed: 11/29/2022]
Abstract
Malaria is a global disease infecting several million individuals annually. Malarial infection is particularly severe in the poorest parts of the world and is a major drain on their limited resources. Development of drug resistance and absence of a preventive vaccine have led to an immediate necessity for identifying new drug targets to combat malaria. Understanding the intricacies of parasite biology is essential to design novel intervention strategies that can prevent the growth of the parasite. The structural biology approach towards this goal involves the identification of key differences in the structures of the human and parasite enzymes and the determination of unique protein structures essential for parasite survival. This review covers the work on structural biology of plasmodial proteins carried out during the period of January 2006 to June 2007.
Collapse
Affiliation(s)
- P Gayathri
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | | | | |
Collapse
|
46
|
Hidaka K, Kimura T, Tsuchiya Y, Kamiya M, Ruben AJ, Freire E, Hayashi Y, Kiso Y. Additional interaction of allophenylnorstatine-containing tripeptidomimetics with malarial aspartic protease plasmepsin II. Bioorg Med Chem Lett 2007; 17:3048-52. [PMID: 17400453 DOI: 10.1016/j.bmcl.2007.03.052] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Revised: 03/14/2007] [Accepted: 03/16/2007] [Indexed: 10/23/2022]
Abstract
Based on a highly potent allophenylnorstatine-containing inhibitor, KNI-10006, against the plasmepsins of Plasmodium falciparum, we synthesized a series of tripeptide-type compounds with various N-terminal moieties and evaluated their inhibitory activities against plasmepsin II. Certain phenylacetyl derivatives exhibited extremely high affinity with K(i) values of less than 0.1n M suggesting successful hydrophobic interactions.
Collapse
Affiliation(s)
- Koushi Hidaka
- Department of Medicinal Chemistry, Center for Frontier Research in Medicinal Science, 21st Century COE Program, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8412, Japan
| | | | | | | | | | | | | | | |
Collapse
|