1
|
Exertier C, Salerno A, Antonelli L, Fiorillo A, Ocello R, Seghetti F, Caciolla J, Uliassi E, Masetti M, Fiorentino E, Orsini S, Di Muccio T, Ilari A, Bolognesi ML. Fragment Merging, Growing, and Linking Identify New Trypanothione Reductase Inhibitors for Leishmaniasis. J Med Chem 2024; 67:402-419. [PMID: 38164929 PMCID: PMC10788915 DOI: 10.1021/acs.jmedchem.3c01439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/30/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2024]
Abstract
Trypanothione reductase (TR) is a suitable target for drug discovery approaches against leishmaniasis, although the identification of potent inhibitors is still challenging. Herein, we harnessed a fragment-based drug discovery (FBDD) strategy to develop new TR inhibitors. Previous crystallographic screening identified fragments 1-3, which provided ideal starting points for a medicinal chemistry campaign. In silico investigations revealed critical hotspots in the TR binding site, guiding our structure- and ligand-based structure-actvity relationship (SAR) exploration that yielded fragment-derived compounds 4-14. A trend of improvement in Leishmania infantum TR inhibition was detected along the optimization and confirmed by the crystal structures of 9, 10, and 14 in complex with Trypanosoma brucei TR. Compound 10 showed the best TR inhibitory profile (Ki = 0.2 μM), whereas 9 was the best one in terms of in vitro and ex vivo activity. Although further fine-tuning is needed to improve selectivity, we demonstrated the potentiality of FBDD on a classic but difficult target for leishmaniasis.
Collapse
Affiliation(s)
- Cécile Exertier
- Institute of Molecular Biology and Pathology (IBPM) of the National Research Council of Italy (CNR), c/o Department of Biochemical Sciences, Sapienza University of Rome, Piazzale A. Moro 5, Roma 00185, Italy
| | - Alessandra Salerno
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum─University of Bologna, Via Belmeloro 6, Bologna 40126, Italy
| | - Lorenzo Antonelli
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Piazzale A. Moro 5, Roma 00185, Italy
| | - Annarita Fiorillo
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Piazzale A. Moro 5, Roma 00185, Italy
| | - Riccardo Ocello
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum─University of Bologna, Via Belmeloro 6, Bologna 40126, Italy
- Computational and Chemical Biology, Istituto Italiano di Tecnologia, via Morego 30, Genova 16163, Italy
| | - Francesca Seghetti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum─University of Bologna, Via Belmeloro 6, Bologna 40126, Italy
| | - Jessica Caciolla
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum─University of Bologna, Via Belmeloro 6, Bologna 40126, Italy
| | - Elisa Uliassi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum─University of Bologna, Via Belmeloro 6, Bologna 40126, Italy
| | - Matteo Masetti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum─University of Bologna, Via Belmeloro 6, Bologna 40126, Italy
| | - Eleonora Fiorentino
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, Roma 00161, Italy
| | - Stefania Orsini
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, Roma 00161, Italy
| | - Trentina Di Muccio
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, Roma 00161, Italy
| | - Andrea Ilari
- Institute of Molecular Biology and Pathology (IBPM) of the National Research Council of Italy (CNR), c/o Department of Biochemical Sciences, Sapienza University of Rome, Piazzale A. Moro 5, Roma 00185, Italy
| | - Maria Laura Bolognesi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum─University of Bologna, Via Belmeloro 6, Bologna 40126, Italy
| |
Collapse
|
2
|
Polyamine-based analogs and conjugates as antikinetoplastid agents. Eur J Med Chem 2017; 139:982-1015. [DOI: 10.1016/j.ejmech.2017.08.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/24/2017] [Accepted: 08/04/2017] [Indexed: 12/12/2022]
|
3
|
Novel Heteroaryl Selenocyanates and Diselenides as Potent Antileishmanial Agents. Antimicrob Agents Chemother 2016; 60:3802-12. [PMID: 27067328 DOI: 10.1128/aac.02529-15] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 04/06/2016] [Indexed: 12/11/2022] Open
Abstract
A series of new selenocyanates and diselenides bearing interesting bioactive scaffolds (quinoline, quinoxaline, acridine, chromene, furane, isosazole, etc.) was synthesized, and their in vitro leishmanicidal activities against Leishmania infantum amastigotes along with their cytotoxicities in human THP-1 cells were determined. Interestingly, most tested compounds were active in the low micromolar range and led us to identify four lead compounds (1h, 2d, 2e, and 2f) with 50% effective dose (ED50) values ranging from 0.45 to 1.27 μM and selectivity indexes of >25 for all of them, much higher than those observed for the reference drugs. These active derivatives were evaluated against infected macrophages, and in order to gain preliminary knowledge about their possible mechanism of action, the inhibition of trypanothione reductase (TryR) was measured. Among these novel structures, compounds 1h (3,5-dimethyl-4-isoxazolyl selenocyanate) and 2d [3,3'-(diselenodiyldimethanediyl)bis(2-bromothiophene)] exhibited good association between TryR inhibitory activity and antileishmanial potency, pointing to 1h, for its excellent theoretical ADME (absorption, distribution, metabolism, and excretion) properties, as the most promising lead molecule for leishmancidal drug design.
Collapse
|
4
|
Persch E, Dumele O, Diederich F. Molekulare Erkennung in chemischen und biologischen Systemen. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201408487] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
5
|
Persch E, Dumele O, Diederich F. Molecular recognition in chemical and biological systems. Angew Chem Int Ed Engl 2015; 54:3290-327. [PMID: 25630692 DOI: 10.1002/anie.201408487] [Citation(s) in RCA: 448] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Indexed: 12/13/2022]
Abstract
Structure-based ligand design in medicinal chemistry and crop protection relies on the identification and quantification of weak noncovalent interactions and understanding the role of water. Small-molecule and protein structural database searches are important tools to retrieve existing knowledge. Thermodynamic profiling, combined with X-ray structural and computational studies, is the key to elucidate the energetics of the replacement of water by ligands. Biological receptor sites vary greatly in shape, conformational dynamics, and polarity, and require different ligand-design strategies, as shown for various case studies. Interactions between dipoles have become a central theme of molecular recognition. Orthogonal interactions, halogen bonding, and amide⋅⋅⋅π stacking provide new tools for innovative lead optimization. The combination of synthetic models and biological complexation studies is required to gather reliable information on weak noncovalent interactions and the role of water.
Collapse
Affiliation(s)
- Elke Persch
- Laboratorium für Organische Chemie, Departement Chemie und Angewandte Biowissenschaften, ETH Zürich, Vladimir-Prelog-Weg 3, 8093 Zürich (Switzerland)
| | | | | |
Collapse
|
6
|
Toward the Development of Dual-Targeted Glyceraldehyde-3-phosphate Dehydrogenase/Trypanothione Reductase Inhibitors againstTrypanosoma bruceiandTrypanosoma cruzi. ChemMedChem 2014; 9:371-82. [DOI: 10.1002/cmdc.201300399] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 12/05/2013] [Indexed: 12/22/2022]
|
7
|
Indazoles: a new top seed structure in the search of efficient drugs against Trypanosoma cruzi. Future Med Chem 2013; 5:1843-59. [DOI: 10.4155/fmc.13.144] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
For years, Chagas disease treatment has been limited to only two drugs of highly questionable and controversial use (Nifurtimox® and Benznidazole®). In the search of effective drugs, many efforts have been made, but only a few structures have emerged as actual candidates. Heading into this, the multitarget-directed approach appears as the best choice. In this framework, indazoles were shown to be potent Trypanosoma cruzi growth inhibitors, being able to lead both the formation of reactive oxygen species and the inhibition of trypanothione reductase. Herein, we discuss the main structural factors that rule the anti-T. cruzi properties of indazoles, and how they would be involved in the biological properties as well as in the action mechanisms, attempting to make parallels between the old paradigms and current evidences in order to outline what could be the next steps to follow in regard to the future drug design for Chagas disease treatment.
Collapse
|
8
|
Helliwell M, Moosun S, Bhowon MG, Jhaumeer-Laulloo S, Joule JA. Three anilides of 2,2'-thiodibenzoic acid. Acta Crystallogr C 2012; 68:o387-91. [PMID: 23007539 DOI: 10.1107/s0108270112035962] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 08/15/2012] [Indexed: 11/10/2022] Open
Abstract
The structures of N,N'-bis(2-methylphenyl)-2,2'-thiodibenzamide, C(28)H(24)N(2)O(2)S, (Ia), N,N'-bis(2-ethylphenyl)-2,2'-thiodibenzamide, C(30)H(28)N(2)O(2)S, (Ib), and N,N'-bis(2-bromophenyl)-2,2'-thiodibenzamide, C(26)H(18)Br(2)N(2)O(2)S, (Ic), are compared with each other. For the 19 atoms of the consistent thiodibenzamide core, the r.m.s. deviations of the molecules in pairs are 0.29, 0.90 and 0.80 Å for (Ia)/(Ib), (Ia)/(Ic) and (Ib)/(Ic), respectively. The conformations of the central parts of molecules (Ia) and (Ib) are similar due to an intramolecular N-H···O hydrogen-bonding interaction. The molecules of (Ia) are further linked into infinite chains along the c axis by intermolecular N-H···O interactions, whereas the molecules of (Ib) are linked into chains along b by an intermolecular N-H···π contact. The conformation of (Ic) is quite different from those of (Ia) and (Ib), since there is no intramolecular N-H···O hydrogen bond, but instead there is a possible intramolecular N-H···Br hydrogen bond. The molecules are linked into chains along c by intermolecular N-H···O hydrogen bonds.
Collapse
|
9
|
Moosun S, Joule JA, Bhowon MG, Jhaumeer-Laulloo S. Antibacterial, Antioxidant and Binding Studies of Some Novel Diaryl Sulphide Derivatives. PHOSPHORUS SULFUR 2012. [DOI: 10.1080/10426507.2012.685996] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Salma Moosun
- a Department of Chemistry, Faculty of Science , University of Mauritius , Réduit , Mauritius
| | - John A. Joule
- b The School of Chemistry , The University of Manchester , Manchester , M13 9PL , UK
| | - Minu G. Bhowon
- a Department of Chemistry, Faculty of Science , University of Mauritius , Réduit , Mauritius
| | - Sabina Jhaumeer-Laulloo
- a Department of Chemistry, Faculty of Science , University of Mauritius , Réduit , Mauritius
| |
Collapse
|
10
|
Selenocyanates and diselenides: A new class of potent antileishmanial agents. Eur J Med Chem 2011; 46:3315-23. [DOI: 10.1016/j.ejmech.2011.04.054] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 04/20/2011] [Accepted: 04/21/2011] [Indexed: 01/21/2023]
|
11
|
Moreno D, Plano D, Baquedano Y, Jiménez-Ruiz A, Antonio Palop J, Sanmartín C. Antileishmanial activity of imidothiocarbamates and imidoselenocarbamates. Parasitol Res 2010; 108:233-9. [DOI: 10.1007/s00436-010-2073-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Accepted: 09/08/2010] [Indexed: 10/19/2022]
|
12
|
Bahl D, Athar F, Soares MBP, de Sá MS, Moreira DRM, Srivastava RM, Leite ACL, Azam A. Structure–activity relationships of mononuclear metal–thiosemicarbazone complexes endowed with potent antiplasmodial and antiamoebic activities. Bioorg Med Chem 2010; 18:6857-64. [DOI: 10.1016/j.bmc.2010.07.039] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2010] [Accepted: 07/16/2010] [Indexed: 02/01/2023]
|
13
|
Abstract
The protozoan parasitesTrypanosoma bruceiandTrypanosoma cruziare the causative agents of African trypanosomiasis and Chagas disease, respectively. These are debilitating infections that exert a considerable health burden on some of the poorest people on the planet. Treatment of trypanosome infections is dependent on a small number of drugs that have limited efficacy and can cause severe side effects. Here, we review the properties of these drugs and describe new findings on their modes of action and the mechanisms by which resistance can arise. We further outline how a greater understanding of parasite biology is being exploited in the search for novel chemotherapeutic agents. This effort is being facilitated by new research networks that involve academic and biotechnology/pharmaceutical organisations, supported by public–private partnerships, and are bringing a new dynamism and purpose to the search for trypanocidal agents.
Collapse
|
14
|
Richardson JL, Nett IRE, Jones DC, Abdille MH, Gilbert IH, Fairlamb AH. Improved tricyclic inhibitors of trypanothione reductase by screening and chemical synthesis. ChemMedChem 2009; 4:1333-40. [PMID: 19557801 PMCID: PMC2929371 DOI: 10.1002/cmdc.200900097] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Trypanothione reductase (TryR) is a key validated enzyme in the trypanothione-based redox metabolism of pathogenic trypanosomes and leishmania parasites. This system is absent in humans, being replaced with glutathione and glutathione reductase, and as such offers a target for selective inhibition. As part of a program to discover antiparasitic drugs, the LOPAC1280 library of 1266 compounds was screened against TryR and the top hits evaluated against glutathione reductase and T. brucei parasites. The top hits included a number of known tricyclic neuroleptic drugs along with other new scaffolds for TryR. Three novel druglike hits were identified and SAR studies on one of these using information from the tricyclic neuroleptic agents led to the discovery of a competitive inhibitor (Ki=330 nm) with an improved potency against T. brucei (EC50=775 nm).
Collapse
Affiliation(s)
- John L Richardson
- Division of Biological Chemistry & Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | | | | | | | | | | |
Collapse
|
15
|
Eberle C, Burkhard J, Stump B, Kaiser M, Brun R, Krauth-Siegel R, Diederich F. Synthesis, Inhibition Potency, Binding Mode, and Antiprotozoal Activities of Fluorescent Inhibitors of Trypanothione Reductase Based on Mepacrine-Conjugated Diaryl Sulfide Scaffolds. ChemMedChem 2009; 4:2034-44. [DOI: 10.1002/cmdc.200900327] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
16
|
Stump B, Eberle C, Schweizer WB, Kaiser M, Brun R, Krauth-Siegel RL, Lentz D, Diederich F. Pentafluorosulfanyl as a Novel Building Block for Enzyme Inhibitors: Trypanothione Reductase Inhibition and Antiprotozoal Activities of Diarylamines. Chembiochem 2009; 10:79-83. [DOI: 10.1002/cbic.200800565] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
17
|
Stump B, Eberle C, Kaiser M, Brun R, Krauth-Siegel RL, Diederich F. Diaryl sulfide-based inhibitors of trypanothione reductase: inhibition potency, revised binding mode and antiprotozoal activities. Org Biomol Chem 2008; 6:3935-47. [DOI: 10.1039/b806371k] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|