1
|
Maraf MB, Idrice AA, Mekoung Pélagie MA, Zintchem AAA, Bebga G, Rhyman L, Ibrahim MN, Ramasami P. Decoding the reaction mechanism of the cyclocondensation of ethyl acetate2-oxo-2-(4-oxo-4H-pyrido [1.2-a] pyrimidin-3-yl) polyazaheterocycle and ethylenediamine using bond evolution theory. J Comput Chem 2022; 43:972-985. [PMID: 35383996 DOI: 10.1002/jcc.26853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/05/2022] [Accepted: 02/28/2022] [Indexed: 11/12/2022]
Abstract
We investigated the flow of electron density along the cyclocondensation reaction between ethyl acetate 2-oxo-2-(4-oxo-4H-pyrido[1.2-a]pyrimidin-3-yl) polyazaheterocycle (1) and ethylenediamine (2) at the ωB97XD/6-311++G(d,p)computational method within of bond evolution theory (BET). The exploration of potential energy surface shows that this reaction has three channels (1-3) with the formation of product 3 via channel-2 (the most favorable one) as the main product and this is in good agreement with experimental observations. The BET analysis allows identifying unambiguously the main chemical events happening along channel-2. The mechanism along first step (TS2-a) is described by a series of four structural stability domains (SSDs), while five SSDs for the last two steps (TS2-b and TS2-c). The first and third steps can be summarized as follows, the formation of N1-C6 bond (SSD-II), then, the restoration of the nitrogen N1 lone pair (SSD-III), and finally, the formation of the last O1-H1 bond (SSD-IV). For the second step, the formation of hydroxide ion is noted, as a result of the disappearance of V(C6,O7) basin and the transformation of C6-N1 single bond into double one (SSD-IV). Finally, the appearance of V(O7,H2) basin lead to the elimination of water molecule within the last domain is observed.
Collapse
Affiliation(s)
- Mbah Bake Maraf
- Physical and Theoretical Chemistry unit, Laboratory of applied Physical and Analytical Chemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon.,Computational Chemistry Laboratory, Department of Chemistry, Higher Teacher Training College, University of Yaoundé I, Yaoundé, Cameroon
| | - Adjieufack Abel Idrice
- Physical and Theoretical Chemistry unit, Laboratory of applied Physical and Analytical Chemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon.,Computational Chemistry Laboratory, Department of Chemistry, Higher Teacher Training College, University of Yaoundé I, Yaoundé, Cameroon.,Laboratory of Theoretical Chemistry (LCT) and Namur Institute of Structured Matter (NISM), University of Namur, Namur, Belgium
| | - Manwal A Mekoung Pélagie
- Physical and Theoretical Chemistry unit, Laboratory of applied Physical and Analytical Chemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon.,Computational Chemistry Laboratory, Department of Chemistry, Higher Teacher Training College, University of Yaoundé I, Yaoundé, Cameroon
| | - Auguste Abouem A Zintchem
- Computational Chemistry Laboratory, Department of Chemistry, Higher Teacher Training College, University of Yaoundé I, Yaoundé, Cameroon
| | - Gouet Bebga
- Computational Chemistry Laboratory, Department of Chemistry, Higher Teacher Training College, University of Yaoundé I, Yaoundé, Cameroon
| | - Lydia Rhyman
- Computational Chemistry Group, Department of Chemistry, Faculty of Science, University of Mauritius, Réduit, Mauritius.,Centre for Natural Product Research, Department of Chemical Sciences, University of Johannesburg, Doornfontein, South Africa
| | - Mbouombouo Ndassa Ibrahim
- Computational Chemistry Laboratory, Department of Chemistry, Higher Teacher Training College, University of Yaoundé I, Yaoundé, Cameroon
| | - Ponnadurai Ramasami
- Computational Chemistry Group, Department of Chemistry, Faculty of Science, University of Mauritius, Réduit, Mauritius.,Centre for Natural Product Research, Department of Chemical Sciences, University of Johannesburg, Doornfontein, South Africa
| |
Collapse
|
2
|
Qiu Z, Qu K, Luan F, Liu Y, Zhu Y, Yuan Y, Li H, Zhang H, Hai Y, Zhao C. Binding specificities of estrogen receptor with perfluorinated compounds: A cross species comparison. ENVIRONMENT INTERNATIONAL 2020; 134:105284. [PMID: 31707300 DOI: 10.1016/j.envint.2019.105284] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/15/2019] [Accepted: 10/21/2019] [Indexed: 05/15/2023]
Abstract
BACKGROUND Perfluorinated compounds (PFCs) were reported to result in the endocrine disruption by activating the estrogen receptor (ER) and inducing ER-mediated transcriptions. OBJECTIVE The aim of the present work was to perform cross-species comparisons on the characteristics of eight PFCs binding to humans ERα and to rats ERα. METHODS In the present work, in vivo tests, including serum estradiol level assay and immunohistochemical staining, fluorescence assay and molecular models were applied. RESULTS Based on the in vivo experiments, the exposure of PFOA and PFOS to female rats was proved to increase the ERα expression in the terus, suggesting that PFCs may act as estrogenic compounds to activate ERα in vivo. The further fluorescence assay presented that these eight PFCs have stronger binding abilities to human ERα than to rat ERα. In addition, the differences in binding specificities between human ERα and rat ERα were identified in the process of molecular dynamics modeling with the term of helix position and the ability of coregulator recruitment. It can be found that more and stronger charge clamps could form between PFCs with human ERα than with rat ERα. Also, the eight PFCs presented lower binding energies in human ERα systems, which proved that eight PFCs presented much stronger binding abilities with human ERα. DISCUSSION In all, it can be concluded that PFCs might be more sensitive to human ERα than to that of rats, which also suggested the greater susceptibility to adverse effects on humans. The present work was a beginning assessment of a cross-species comparison, providing important information on health impacts of PFCs in humans.
Collapse
Affiliation(s)
- Zhiqiang Qiu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Kaili Qu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Feng Luan
- College of Chemistry & Chemical Engineering, Yantai University, Yantai 264005, China
| | - Yaquan Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Yu Zhu
- Department of Ecology and Environment of Gansu Province, Lanzhou 730000, China
| | - Yongna Yuan
- School of Information Science & Engineering, Lanzhou University, Lanzhou 730000, China
| | - Hongyu Li
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Haixia Zhang
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Ying Hai
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Chunyan Zhao
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
3
|
Khaldi-Khellafi N, Makhloufi-Chebli M, Oukacha-Hikem D, Bouaziz ST, Lamara KO, Idir T, Benazzouz-Touami A, Dumas F. Green synthesis, antioxidant and antibacterial activities of 4-aryl-3,4-dihydropyrimidinones/thiones derivatives of curcumin. Theoretical calculations and mechanism study. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.12.104] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
4
|
Do Van Thanh N, Patra S, Clive DL. Formation of meta-arylsulfanyl- and meta-(alkylsulfanyl)phenols from cyclohexane-1,3-diones. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.06.059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
5
|
Gein VL, Zamaraeva TM, Dmitriev MV. Sodium hydrogen sulfate as a catalyst for the synthesis of N,4-diaryl-6-methyl-1-methyl(phenyl)-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxamides via the Biginelli reaction. Chem Heterocycl Compd (N Y) 2018. [DOI: 10.1007/s10593-018-2251-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
|
7
|
Srungboonmee K, Songtawee N, Monnor T, Prachayasittikul V, Nantasenamat C. Probing the origins of 17β-hydroxysteroid dehydrogenase type 1 inhibitory activity via QSAR and molecular docking. Eur J Med Chem 2015; 96:231-7. [DOI: 10.1016/j.ejmech.2015.04.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 04/07/2015] [Accepted: 04/09/2015] [Indexed: 11/29/2022]
|
8
|
Chuang YC, Chang CH, Lin JT, Yang CN. Molecular modelling studies of sirtuin 2 inhibitors using three-dimensional structure-activity relationship analysis and molecular dynamics simulations. MOLECULAR BIOSYSTEMS 2014; 11:723-33. [PMID: 25502412 DOI: 10.1039/c4mb00620h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sirtuin 2 (SIRT2) is a nicotinamide-adenine-dinucleotide-dependent histone deacetylase that plays a vital role in various biological processes related to DNA regulation, metabolism, and longevity. Recent studies on SIRT2 have indicated its therapeutic potential for neurodegenerative diseases such as Parkinson's disease. In this study, a series of SIRT2 inhibitors with a 2-anilinobenzamide core was analysed using a combination of molecular modelling techniques. A three-dimensional structure-activity relationship (3D-QSAR) model adopting a comparative molecular field analysis (CoMFA) method with a non-cross-validated correlation coefficient R(2) = 0.992 (for training set) and a correlation coefficient Rtest(2) = 0.804 (for test set) was generated to determine the structural requirements for inhibitory activity. Furthermore, we employed molecular dynamics (MD) simulations and the molecular mechanics/generalized Born surface area (MM/GBSA) method to compare the binding modes of a potent and selective compound interacting with SIRT1, SIRT2, and SIRT3 and also their binding free energies to shed light on the selectivity of the footing of structural and energetic investigations. The steric and electrostatic contour maps from the 3D-QSAR analysis identified several key interactions also observed in the MD simulations. According to these results, we provide guidelines for developing novel potent and selective SIRT2 inhibitors.
Collapse
Affiliation(s)
- Yu-Chung Chuang
- Department of Life Sciences, National University of Kaohsiung, 700, Kaohsiung University Road, Nan-Tzu District 811, Kaohsiung, Taiwan.
| | | | | | | |
Collapse
|
9
|
Chaker A, Zribi F, Nepveu F, Chabchoub F. Microwave irradiation: Novel and facile methods for the synthesis of new pyrimidinones. CHINESE CHEM LETT 2014. [DOI: 10.1016/j.cclet.2014.03.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Miralinaghi P, Schmitt C, Hartmann RW, Frotscher M, Engel M. 6-Hydroxybenzothiophene Ketones: Potent Inhibitors of 17β-Hydroxysteroid Dehydrogenase Type 1 (17β-HSD1) Owing to Favorable Molecule Geometry and Conformational Preorganization. ChemMedChem 2014; 9:2294-308. [DOI: 10.1002/cmdc.201402050] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Indexed: 01/20/2023]
|
11
|
Abdelsamie AS, Bey E, Hanke N, Empting M, Hartmann RW, Frotscher M. Inhibition of 17β-HSD1: SAR of bicyclic substituted hydroxyphenylmethanones and discovery of new potent inhibitors with thioether linker. Eur J Med Chem 2014; 82:394-406. [DOI: 10.1016/j.ejmech.2014.05.074] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 05/27/2014] [Accepted: 05/31/2014] [Indexed: 01/19/2023]
|
12
|
Chang HW, Chung FS, Yang CN. Molecular modeling of p38α mitogen-activated protein kinase inhibitors through 3D-QSAR and molecular dynamics simulations. J Chem Inf Model 2013; 53:1775-86. [PMID: 23808966 DOI: 10.1021/ci4000085] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The p38 mitogen-activated protein kinase (MAPK) signaling pathway plays an essential role in inflammation and other physiological processes. Because specific inhibitors of p38α and p38β MAPK block the production of the major inflammatory cytokines and other proteins, p38α and p38β MAPK represent promising targets for the treatment of inflammation. In this work, a series of p38α inhibitors based on the structural scaffold of 4-benzoyl-5-aminopyrazole were analyzed using a combination of molecular modeling techniques. We generated three-dimensional quantitative structure-activity relationship (3D-QSAR) models for both comparative molecular field analysis (CoMFA) and comparative molecular similarity index analysis (CoMSIA) to highlight the structural requirements for p38 MAPK inhibition. Furthermore, we employed molecular dynamics (MD) simulations and the MM/GBSA method to compare the binding modes and binding free energies of a potent and selective compound interacting with p38α, p38β, p38γ, and p38δ MAPK in detail. Contour maps generated via 3D-QSAR analysis identified several key interactions that were also indicated through MD simulations. The binding free energies calculated via the MM/GBSA method were strongly correlated with experimentally observed biological activities and explained the selective inhibition of p38α and p38β, but not p38γ and p38δ detected here. On the basis of the obtained results, we provide insights regarding the development of novel potent p38α MAPK inhibitors.
Collapse
Affiliation(s)
- Hsin-Wen Chang
- Institute of Biotechnology, National University of Kaohsiung, Taiwan
| | | | | |
Collapse
|
13
|
Henn C, Einspanier A, Marchais-Oberwinkler S, Frotscher M, Hartmann RW. Lead Optimization of 17β-HSD1 Inhibitors of the (Hydroxyphenyl)naphthol Sulfonamide Type for the Treatment of Endometriosis. J Med Chem 2012; 55:3307-18. [DOI: 10.1021/jm201735j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Claudia Henn
- Pharmaceutical and Medicinal
Chemistry, Saarland University, Campus
C2 3, D-66041 Saarbrücken, Germany
- Helmholtz-Institute for Pharmaceutical
Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Campus C2 3, 66123 Saarbrücken,
Germany
| | - Almuth Einspanier
- Faculty of Veterinary
Medicine, Institute of Physiological Chemistry, An den Tierkliniken
1, 04103 Leipzig, Germany
| | | | - Martin Frotscher
- Pharmaceutical and Medicinal
Chemistry, Saarland University, Campus
C2 3, D-66041 Saarbrücken, Germany
| | - Rolf W. Hartmann
- Pharmaceutical and Medicinal
Chemistry, Saarland University, Campus
C2 3, D-66041 Saarbrücken, Germany
- Helmholtz-Institute for Pharmaceutical
Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Campus C2 3, 66123 Saarbrücken,
Germany
| |
Collapse
|
14
|
Spadaro A, Frotscher M, Hartmann RW. Optimization of hydroxybenzothiazoles as novel potent and selective inhibitors of 17β-HSD1. J Med Chem 2012; 55:2469-73. [PMID: 22277094 DOI: 10.1021/jm201711b] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
17β-HSD1 is a novel target for the treatment of estrogen-dependent diseases, as it catalyzes intracellular estradiol formation. Starting from two recently described compounds, highly active and selective inhibitors were developed. Benzoyl 6 and benzamide 17 are the most selective compounds toward 17β-HSD2 described so far. They also showed a promising profile regarding activity in T47-D cells, selectivity toward ERα and ERβ, inhibition of hepatic CYP enzymes, metabolic stability, and inhibition of marmoset 17β-HSD1 and 17β-HSD2.
Collapse
Affiliation(s)
- Alessandro Spadaro
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C23, D-66123 Saarbrücken, Germany
| | | | | |
Collapse
|
15
|
Spadaro A, Negri M, Marchais-Oberwinkler S, Bey E, Frotscher M. Hydroxybenzothiazoles as new nonsteroidal inhibitors of 17β-hydroxysteroid dehydrogenase type 1 (17β-HSD1). PLoS One 2012; 7:e29252. [PMID: 22242164 PMCID: PMC3252304 DOI: 10.1371/journal.pone.0029252] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 11/23/2011] [Indexed: 01/25/2023] Open
Abstract
17β-estradiol (E2), the most potent estrogen in humans, known to be involved in the development and progession of estrogen-dependent diseases (EDD) like breast cancer and endometriosis. 17β-HSD1, which catalyses the reduction of the weak estrogen estrone (E1) to E2, is often overexpressed in breast cancer and endometriotic tissues. An inhibition of 17β-HSD1 could selectively reduce the local E2-level thus allowing for a novel, targeted approach in the treatment of EDD. Continuing our search for new nonsteroidal 17β-HSD1 inhibitors, a novel pharmacophore model was derived from crystallographic data and used for the virtual screening of a small library of compounds. Subsequent experimental verification of the virtual hits led to the identification of the moderately active compound 5. Rigidification and further structure modifications resulted in the discovery of a novel class of 17β-HSD1 inhibitors bearing a benzothiazole-scaffold linked to a phenyl ring via keto- or amide-bridge. Their putative binding modes were investigated by correlating their biological data with features of the pharmacophore model. The most active keto-derivative 6 shows IC₅₀-values in the nanomolar range for the transformation of E1 to E2 by 17β-HSD1, reasonable selectivity against 17β-HSD2 but pronounced affinity to the estrogen receptors (ERs). On the other hand, the best amide-derivative 21 shows only medium 17β-HSD1 inhibitory activity at the target enzyme as well as fair selectivity against 17β-HSD2 and ERs. The compounds 6 and 21 can be regarded as first benzothiazole-type 17β-HSD1 inhibitors for the development of potential therapeutics.
Collapse
Affiliation(s)
- Alessandro Spadaro
- Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbrücken, Germany
- ElexoPharm GmbH, Saarbrücken, Germany
| | - Matthias Negri
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarbrücken, Germany
| | | | | | - Martin Frotscher
- Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbrücken, Germany
- * E-mail:
| |
Collapse
|
16
|
Starčević Š, Turk S, Brus B, Cesar J, Lanišnik Rižner T, Gobec S. Discovery of highly potent, nonsteroidal 17β-hydroxysteroid dehydrogenase type 1 inhibitors by virtual high-throughput screening. J Steroid Biochem Mol Biol 2011; 127:255-61. [PMID: 21920439 DOI: 10.1016/j.jsbmb.2011.08.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 07/15/2011] [Accepted: 08/14/2011] [Indexed: 01/03/2023]
Abstract
17β-Hydroxysteroid dehydrogenase type 1 (17β-HSD1) catalyzes the formation of the potent proliferation-stimulating hormone estradiol, and it is thus involved in the development of hormone-dependent breast cancer. Due to its high substrate specificity and the known relationships between its overexpression and disease incidence, 17β-HSD1 is considered an attractive target for drug development. Here, we have used structure-based virtual high-throughput screening to successfully identify potent nonsteroidal 17β-HSD1 inhibitors. Computational screening of a drug-like database containing 13 million compounds identified hits with a 2-benzylidenebenzofuran-3(2H)-one scaffold that we show to be highly potent 17β-HSD1 inhibitors. The most potent in the series, compound 1, showed an IC(50) of 45nM in our 17β-HSD1 inhibition assay, and also showed good selectivity for 17β-HSD1 over 17β-HSD2.
Collapse
Affiliation(s)
- Štefan Starčević
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | | | | | | | | | | |
Collapse
|
17
|
Klein T, Henn C, Negri M, Frotscher M. Structural basis for species specific inhibition of 17β-hydroxysteroid dehydrogenase type 1 (17β-HSD1): computational study and biological validation. PLoS One 2011; 6:e22990. [PMID: 21857977 PMCID: PMC3153478 DOI: 10.1371/journal.pone.0022990] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 07/07/2011] [Indexed: 11/19/2022] Open
Abstract
17β-Hydroxysteroid dehydrogenase type 1 (17β-HSD1) catalyzes the reduction of estrone to estradiol, which is the most potent estrogen in humans. Inhibition of 17β-HSD1 and thereby reducing the intracellular estradiol concentration is thus a promising approach for the treatment of estrogen dependent diseases. In the past, several steroidal and non-steroidal inhibitors of 17β-HSD1 have been described but so far there is no cocrystal structure of the latter in complex with 17β-HSD1. However, a distinct knowledge of active site topologies and protein-ligand interactions is a prerequisite for structure-based drug design and optimization. An elegant strategy to enhance this knowledge is to compare inhibition values obtained for one compound toward ortholog proteins from various species, which are highly conserved in sequence and differ only in few residues. In this study the inhibitory potencies of selected members of different non-steroidal inhibitor classes toward marmoset 17β-HSD1 were determined and the data were compared with the values obtained for the human enzyme. A species specific inhibition profile was observed in the class of the (hydroxyphenyl)naphthols. Using a combination of computational methods, including homology modelling, molecular docking, MD simulation, and binding energy calculation, a reasonable model of the three-dimensional structure of marmoset 17β-HSD1 was developed and inhibition data were rationalized on the structural basis. In marmoset 17β-HSD1, residues 190 to 196 form a small α-helix, which induces conformational changes compared to the human enzyme. The docking poses suggest these conformational changes as determinants for species specificity and energy decomposition analysis highlighted the outstanding role of Asn152 as interaction partner for inhibitor binding. In summary, this strategy of comparing the biological activities of inhibitors toward highly conserved ortholog proteins might be an alternative to laborious x-ray or site-directed mutagenesis experiments in certain cases. Additionally, it facilitates inhibitor design and optimization by offering new information on protein-ligand interactions.
Collapse
Affiliation(s)
- Tobias Klein
- Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbrücken, Germany
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarbrücken, Germany
| | - Claudia Henn
- Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbrücken, Germany
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarbrücken, Germany
| | - Matthias Negri
- Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbrücken, Germany
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarbrücken, Germany
| | - Martin Frotscher
- Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbrücken, Germany
| |
Collapse
|
18
|
Marchais-Oberwinkler S, Henn C, Möller G, Klein T, Negri M, Oster A, Spadaro A, Werth R, Wetzel M, Xu K, Frotscher M, Hartmann RW, Adamski J. 17β-Hydroxysteroid dehydrogenases (17β-HSDs) as therapeutic targets: protein structures, functions, and recent progress in inhibitor development. J Steroid Biochem Mol Biol 2011; 125:66-82. [PMID: 21193039 DOI: 10.1016/j.jsbmb.2010.12.013] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 12/03/2010] [Accepted: 12/20/2010] [Indexed: 01/18/2023]
Abstract
17β-Hydroxysteroid dehydrogenases (17β-HSDs) are oxidoreductases, which play a key role in estrogen and androgen steroid metabolism by catalyzing final steps of the steroid biosynthesis. Up to now, 14 different subtypes have been identified in mammals, which catalyze NAD(P)H or NAD(P)(+) dependent reductions/oxidations at the 17-position of the steroid. Depending on their reductive or oxidative activities, they modulate the intracellular concentration of inactive and active steroids. As the genomic mechanism of steroid action involves binding to a steroid nuclear receptor, 17β-HSDs act like pre-receptor molecular switches. 17β-HSDs are thus key enzymes implicated in the different functions of the reproductive tissues in both males and females. The crucial role of estrogens and androgens in the genesis and development of hormone dependent diseases is well recognized. Considering the pivotal role of 17β-HSDs in steroid hormone modulation and their substrate specificity, these proteins are promising therapeutic targets for diseases like breast cancer, endometriosis, osteoporosis, and prostate cancer. The selective inhibition of the concerned enzymes might provide an effective treatment and a good alternative to the existing endocrine therapies. Herein, we give an overview of functional and structural aspects for the different 17β-HSDs. We focus on steroidal and non-steroidal inhibitors recently published for each subtype and report on existing animal models for the different 17β-HSDs and the respective diseases. Article from the Special issue on Targeted Inhibitors.
Collapse
|
19
|
Oster A, Klein T, Henn C, Werth R, Marchais‐Oberwinkler S, Frotscher M, Hartmann RW. Bicyclic Substituted Hydroxyphenylmethanone Type Inhibitors of 17 β‐Hydroxysteroid Dehydrogenase Type 1 (17 β‐HSD1): The Role of the Bicyclic Moiety. ChemMedChem 2011; 6:476-87. [DOI: 10.1002/cmdc.201000457] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 01/01/2011] [Indexed: 11/11/2022]
Affiliation(s)
- Alexander Oster
- Pharmaceutical and Medicinal Chemistry, Saarland University, & the Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus C2 3, P.O. Box 151150, 66123 Saarbrücken (Germany), Fax: (+49) 681‐302‐70308
| | - Tobias Klein
- Pharmaceutical and Medicinal Chemistry, Saarland University, & the Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus C2 3, P.O. Box 151150, 66123 Saarbrücken (Germany), Fax: (+49) 681‐302‐70308
| | - Claudia Henn
- Pharmaceutical and Medicinal Chemistry, Saarland University, & the Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus C2 3, P.O. Box 151150, 66123 Saarbrücken (Germany), Fax: (+49) 681‐302‐70308
| | - Ruth Werth
- Pharmaceutical and Medicinal Chemistry, Saarland University, & the Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus C2 3, P.O. Box 151150, 66123 Saarbrücken (Germany), Fax: (+49) 681‐302‐70308
| | - Sandrine Marchais‐Oberwinkler
- Pharmaceutical and Medicinal Chemistry, Saarland University, & the Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus C2 3, P.O. Box 151150, 66123 Saarbrücken (Germany), Fax: (+49) 681‐302‐70308
| | - Martin Frotscher
- Pharmaceutical and Medicinal Chemistry, Saarland University, & the Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus C2 3, P.O. Box 151150, 66123 Saarbrücken (Germany), Fax: (+49) 681‐302‐70308
| | - Rolf W. Hartmann
- Pharmaceutical and Medicinal Chemistry, Saarland University, & the Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus C2 3, P.O. Box 151150, 66123 Saarbrücken (Germany), Fax: (+49) 681‐302‐70308
| |
Collapse
|
20
|
Oster A, Hinsberger S, Werth R, Marchais-Oberwinkler S, Frotscher M, Hartmann RW. Bicyclic substituted hydroxyphenylmethanones as novel inhibitors of 17β-hydroxysteroid dehydrogenase type 1 (17β-HSD1) for the treatment of estrogen-dependent diseases. J Med Chem 2010; 53:8176-86. [PMID: 20977238 DOI: 10.1021/jm101073q] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Estradiol (E2), the most important estrogen in humans, is involved in the initiation and progression of estrogen-dependent diseases such as breast cancer and endometriosis. Its local production in the target cell is regulated by 17β-hydroxysteroid dehydrogenase type 1 (17β-HSD1), which catalyzes E2-formation by reduction of the weak estrogen estrone (E1). Because the enzyme is expressed in the diseased tissues, inhibition of 17β-HSD1 is considered as a promising therapy for the treatment of estrogen-dependent diseases. For the development of novel inhibitors, a structure- and ligand-based design strategy was applied, resulting in bicyclic substituted hydroxyphenylmethanones. In vitro testing revealed high inhibitory potencies toward human placental 17β-HSD1. Compounds were further evaluated with regard to selectivity (17β-HSD2, estrogen receptors ERα and ERβ), intracellular activity (T47D cells), and metabolic stability. The most promising compounds, 14 and 15, showed IC(50) values in the low nanomolar range in the cell-free and cellular assays (8-27 nM), more than 30-fold selectivity toward 17β-HSD2 and no affinity toward the ERs. The data obtained make these inhibitors interesting candidates for further preclinical evaluation.
Collapse
Affiliation(s)
- Alexander Oster
- Pharmaceutical and Medicinal Chemistry, Saarland University, and Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus C23, D-66123 Saarbrücken, Germany
| | | | | | | | | | | |
Collapse
|
21
|
Heinzerling L, Hartmann RW, Frotscher M, Neumann D. Predicting Putative Inhibitors of 17β-HSD1. Mol Inform 2010; 29:695-705. [DOI: 10.1002/minf.201000015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Accepted: 09/15/2010] [Indexed: 11/07/2022]
|
22
|
Negri M, Recanatini M, Hartmann RW. Insights in 17beta-HSD1 enzyme kinetics and ligand binding by dynamic motion investigation. PLoS One 2010; 5:e12026. [PMID: 20706575 PMCID: PMC2919385 DOI: 10.1371/journal.pone.0012026] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Accepted: 07/06/2010] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Bisubstrate enzymes, such as 17beta-hydroxysteroid dehydrogenase type 1 (17beta-HSD1), exist in solution as an ensemble of conformations. 17beta-HSD1 catalyzes the last step of the biosynthesis of estradiol and, thus, it is a potentially attractive target for breast cancer treatment. METHODOLOGY/PRINCIPAL FINDINGS To elucidate the conformational transitions of its catalytic cycle, a structural analysis of all available crystal structures was performed and representative conformations were assigned to each step of the putative kinetic mechanism. To cover most of the conformational space, all-atom molecular dynamic simulations were performed using the four crystallographic structures best describing apoform, opened, occluded and closed state of 17beta-HSD1 as starting structures. With three of them, binary and ternary complexes were built with NADPH and NADPH-estrone, respectively, while two were investigated as apoform. Free energy calculations were performed in order to judge more accurately which of the MD complexes describes a specific kinetic step. CONCLUSIONS/SIGNIFICANCE Remarkably, the analysis of the eight long range trajectories resulting from this multi-trajectory/-complex approach revealed an essential role played by the backbone and side chain motions, especially of the betaF alphaG'-loop, in cofactor and substrate binding. Thus, a selected-fit mechanism is suggested for 17beta-HSD1, where ligand-binding induced concerted motions of the FG-segment and the C-terminal part guide the enzyme along its preferred catalytic pathway. Overall, we could assign different enzyme conformations to the five steps of the random bi-bi kinetic cycle of 17beta-HSD1 and we could postulate a preferred pathway for it. This study lays the basis for more-targeted biochemical studies on 17beta-HSD1, as well as for the design of specific inhibitors of this enzyme. Moreover, it provides a useful guideline for other enzymes, also characterized by a rigid core and a flexible region directing their catalysis.
Collapse
Affiliation(s)
- Matthias Negri
- Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbrücken, Germany
- Helmholtz Institute for Pharmaceutical Research Saarland, Saarbrücken, Germany
| | - Maurizio Recanatini
- Department of Pharmaceutical Sciences, University of Bologna, Bologna, Italy
| | - Rolf W. Hartmann
- Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbrücken, Germany
- Helmholtz Institute for Pharmaceutical Research Saarland, Saarbrücken, Germany
| |
Collapse
|
23
|
Möller G, Deluca D, Gege C, Rosinus A, Kowalik D, Peters O, Droescher P, Elger W, Adamski J, Hillisch A. Structure-based design, synthesis and in vitro characterization of potent 17β-hydroxysteroid dehydrogenase type 1 inhibitors based on 2-substitutions of estrone and D-homo-estrone. Bioorg Med Chem Lett 2009; 19:6740-4. [DOI: 10.1016/j.bmcl.2009.09.113] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Revised: 09/27/2009] [Accepted: 09/29/2009] [Indexed: 11/25/2022]
|
24
|
Langham JJ, Cleves AE, Spitzer R, Kirshner D, Jain AN. Physical binding pocket induction for affinity prediction. J Med Chem 2009; 52:6107-25. [PMID: 19754201 DOI: 10.1021/jm901096y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Computational methods for predicting ligand affinity where no protein structure is known generally take the form of regression analysis based on molecular features that have only a tangential relationship to a protein/ligand binding event. Such methods have limited utility when structural variation moves beyond congeneric series. We present a novel approach based on the multiple-instance learning method of Compass, where a physical model of a binding site is induced from ligands and their corresponding activity data. The model consists of molecular fragments that can account for multiple positions of literal protein residues. We demonstrate the method on 5HT1a ligands by training on a series with limited scaffold variation and testing on numerous ligands with variant scaffolds. Predictive error was between 0.5 and 1.0 log units (0.7-1.4 kcal/mol), with statistically significant rank correlations. Accurate activity predictions of novel ligands were demonstrated using a validation approach where a small number of ligands of limited structural variation known at a fixed time point were used to make predictions on a blind test set of widely varying molecules, some discovered at a much later time point.
Collapse
Affiliation(s)
- James J Langham
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California 94158-9001, USA
| | | | | | | | | |
Collapse
|
25
|
Bey E, Marchais-Oberwinkler S, Negri M, Kruchten P, Oster A, Klein T, Spadaro A, Werth R, Frotscher M, Birk B, Hartmann RW. New Insights into the SAR and Binding Modes of Bis(hydroxyphenyl)thiophenes and -benzenes: Influence of Additional Substituents on 17β-Hydroxysteroid Dehydrogenase Type 1 (17β-HSD1) Inhibitory Activity and Selectivity. J Med Chem 2009; 52:6724-43. [DOI: 10.1021/jm901195w] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Emmanuel Bey
- Pharmaceutical and Medicinal Chemistry, Saarland University, P.O. Box 15 11 50, D-66041 Saarbrücken, Germany
| | | | - Matthias Negri
- Pharmaceutical and Medicinal Chemistry, Saarland University, P.O. Box 15 11 50, D-66041 Saarbrücken, Germany
| | - Patricia Kruchten
- Pharmaceutical and Medicinal Chemistry, Saarland University, P.O. Box 15 11 50, D-66041 Saarbrücken, Germany
| | - Alexander Oster
- Pharmaceutical and Medicinal Chemistry, Saarland University, P.O. Box 15 11 50, D-66041 Saarbrücken, Germany
| | - Tobias Klein
- Pharmaceutical and Medicinal Chemistry, Saarland University, P.O. Box 15 11 50, D-66041 Saarbrücken, Germany
| | - Alessandro Spadaro
- Pharmaceutical and Medicinal Chemistry, Saarland University, P.O. Box 15 11 50, D-66041 Saarbrücken, Germany
| | - Ruth Werth
- Pharmaceutical and Medicinal Chemistry, Saarland University, P.O. Box 15 11 50, D-66041 Saarbrücken, Germany
| | - Martin Frotscher
- Pharmaceutical and Medicinal Chemistry, Saarland University, P.O. Box 15 11 50, D-66041 Saarbrücken, Germany
| | - Barbara Birk
- Pharmaceutical and Medicinal Chemistry, Saarland University, P.O. Box 15 11 50, D-66041 Saarbrücken, Germany
| | - Rolf W. Hartmann
- Pharmaceutical and Medicinal Chemistry, Saarland University, P.O. Box 15 11 50, D-66041 Saarbrücken, Germany
| |
Collapse
|
26
|
Lilienkampf A, Karkola S, Alho-Richmond S, Koskimies P, Johansson N, Huhtinen K, Vihko K, Wähälä K. Synthesis and Biological Evaluation of 17β-Hydroxysteroid Dehydrogenase Type 1 (17β-HSD1) Inhibitors Based on a Thieno[2,3-d]pyrimidin-4(3H)-one Core. J Med Chem 2009; 52:6660-71. [DOI: 10.1021/jm900928k] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Annamaria Lilienkampf
- Laboratory of Organic Chemistry, Department of Chemistry, P.O. Box 55, FIN-00014 University of Helsinki, Finland
| | - Sampo Karkola
- Laboratory of Organic Chemistry, Department of Chemistry, P.O. Box 55, FIN-00014 University of Helsinki, Finland
| | - Sari Alho-Richmond
- Laboratory of Organic Chemistry, Department of Chemistry, P.O. Box 55, FIN-00014 University of Helsinki, Finland
| | - Pasi Koskimies
- Hormos Medical Ltd., PharmaCity, FIN-20520 Turku, Finland
| | - Nina Johansson
- Hormos Medical Ltd., PharmaCity, FIN-20520 Turku, Finland
| | - Kaisa Huhtinen
- Hormos Medical Ltd., PharmaCity, FIN-20520 Turku, Finland
| | - Kimmo Vihko
- Hormos Medical Ltd., PharmaCity, FIN-20520 Turku, Finland
| | - Kristiina Wähälä
- Laboratory of Organic Chemistry, Department of Chemistry, P.O. Box 55, FIN-00014 University of Helsinki, Finland
| |
Collapse
|
27
|
Bérubé M, Poirier D. Improved synthesis of EM-1745, preparation of its C17-ketone analogue and comparison of their inhibitory potency on 17β-hydroxysteroid dehydrogenase type 1. J Enzyme Inhib Med Chem 2009; 24:832-43. [DOI: 10.1080/14756360802399761] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Marie Bérubé
- Medicinal Chemistry Division, Oncology and Molecular Endocrinology Laboratory, CHUQ-CHUL Research Center, Québec, G1V 4G2, Canada
| | - Donald Poirier
- Medicinal Chemistry Division, Oncology and Molecular Endocrinology Laboratory, CHUQ-CHUL Research Center, Québec, G1V 4G2, Canada
| |
Collapse
|
28
|
Kruchten P, Werth R, Bey E, Oster A, Marchais-Oberwinkler S, Frotscher M, Hartmann RW. Selective inhibition of 17beta-hydroxysteroid dehydrogenase type 1 (17betaHSD1) reduces estrogen responsive cell growth of T47-D breast cancer cells. J Steroid Biochem Mol Biol 2009; 114:200-6. [PMID: 19429452 DOI: 10.1016/j.jsbmb.2009.02.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Revised: 02/05/2009] [Accepted: 02/09/2009] [Indexed: 11/30/2022]
Abstract
The most potent estrogen estradiol (E2) plays a pivotal role in the initiation and progression of estrogen dependent diseases. 17beta-Hydroxysteroid dehydrogenase type 1 (17betaHSD1) catalyses the NADPH-dependent E2-formation from estrone (E1). It is often overexpressed in breast cancer and endometriosis. For this reason, inhibition of 17betaHSD1 is a promising strategy for the treatment of these diseases. In the present paper, we investigate the estrogen responsive cell growth of T47-D breast cancer cells, the intracellular inhibitory activity of non-steroidal 17betaHSD1-inhibitors and their effects on estrogen dependent cell growth in vitro. At equal concentrations the estrogens E1 and E2 induced the same extent of growth stimulation indicating fast intracellular conversion of E1 into E2. Application of inhibitors selectively prevented stimulation of proliferation evoked by E1-treatment whereas E2-mediated stimulation was not affected. Furthermore, intracellular E2-formation from E1 was significantly inhibited with IC(50)-values in the nanomolar range. In conclusion, our findings strongly support suitability of non-steroidal 17betaHSD1-inhibitors for the treatment of estrogen dependent diseases.
Collapse
Affiliation(s)
- Patricia Kruchten
- 8.2 Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbrücken, Germany
| | | | | | | | | | | | | |
Collapse
|
29
|
Al-Soud YA, Bey E, Oster A, Marchais-Oberwinkler S, Werth R, Kruchten P, Frotscher M, Hartmann RW. The role of the heterocycle in bis(hydroxyphenyl)triazoles for inhibition of 17beta-Hydroxysteroid Dehydrogenase (17beta-HSD) type 1 and type 2. Mol Cell Endocrinol 2009; 301:212-5. [PMID: 18848601 DOI: 10.1016/j.mce.2008.09.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Accepted: 09/10/2008] [Indexed: 11/21/2022]
Abstract
17beta-Hydroxysteroid dehydrogenase type 1 (17beta-HSD1) is responsible for the catalytic reduction of the weak estrogen estrone (E1) into the highly potent 17beta-estradiol (E2). As 17beta-HSD1 is often overexpressed in mammary tumors and endometriosis, the selective inhibition of this enzyme is discussed as a promising approach for the treatment of estrogen-dependent diseases. Recently, we reported on bis(hydroxyphenyl)azoles as a new class of potent inhibitors of 17beta-HSD1. In this paper, we focused on bis(hydroxyphenyl)triazoles. The influence of nitrogens on the potency as well as the space available around the heterocycle was investigated. Substituents were introduced on the triazole core in order to establish additional interactions with the enzyme active site. The compounds were evaluated for activity towards 17beta-HSD1 and selectivity with regard to 17beta-HSD2, the enzyme which is responsible for the deactivation of E2 into E1. 3-[4-(4-Hydroxyphenyl)-1H-1,2,3-triazol-1-yl]phenol (3) was the most active compound discovered in this study with an IC(50) value of 840nM and a reasonable selectivity towards 17beta-HSD2.
Collapse
Affiliation(s)
- Yaseen A Al-Soud
- 8.2 Pharmaceutical and Medicinal Chemistry, Saarland University, PO Box 15 11 50, D-66041 Saarbrücken, Germany
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Karkola S, Alho-Richmond S, Wahala K. Pharmacophore modelling of 17beta-HSD1 enzyme based on active inhibitors and enzyme structure. Mol Cell Endocrinol 2009; 301:225-8. [PMID: 18822344 DOI: 10.1016/j.mce.2008.08.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2008] [Revised: 08/20/2008] [Accepted: 08/25/2008] [Indexed: 11/29/2022]
Abstract
The 17beta-hydroxysteroid dehydrogenase type 1 (17beta-HSD1) enzyme regulates the conversion of estrone (E1) to the biologically active estradiol (E2). Due to its role as a key enzyme in female hormone production, it has emerged as an attractive drug target for inhibitor development in relation to hormone-dependent breast cancer. Herein, we report four pharmacophore models of 17beta-HSD1 based on a crystal structure, a relaxed crystal structure, a library of 17beta-HSD1 inhibitors and on a docked complex of 17betaHSD1 enzyme and a potent inhibitor. The models were used in screening two databases, which produced novel compounds to be used as leads in our drug design project. The results were validated by docking the compounds to the active site of the 17beta-HSD1 enzyme. With the help of our 3D-QSAR model, these results will be used to develop new inhibitors of 17beta-HSD1 as drug candidates.
Collapse
Affiliation(s)
- Sampo Karkola
- Laboratory of Organic Chemistry, Department of Chemistry, PO Box 55, University of Helsinki, FIN-00014 Helsinki, Finland
| | | | | |
Collapse
|
31
|
Bey E, Marchais-Oberwinkler S, Werth R, Negri M, Al-Soud YA, Kruchten P, Oster A, Frotscher M, Birk B, Hartmann RW. Design, synthesis, biological evaluation and pharmacokinetics of bis(hydroxyphenyl) substituted azoles, thiophenes, benzenes, and aza-benzenes as potent and selective nonsteroidal inhibitors of 17beta-hydroxysteroid dehydrogenase type 1 (17beta-HSD1). J Med Chem 2008; 51:6725-39. [PMID: 18855374 DOI: 10.1021/jm8006917] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
17beta-Estradiol (E2), the most potent female sex hormone, stimulates the growth of mammary tumors and endometriosis via activation of the estrogen receptor alpha (ERalpha). 17beta-Hydroxysteroid dehydrogenase type 1 (17beta-HSD1), which is responsible for the catalytic reduction of the weakly active estrogen estrone (E1) into E2, is therefore discussed as a novel drug target. Recently, we have discovered a 2,5-bis(hydroxyphenyl) oxazole to be a potent inhibitor of 17beta-HSD1. In this paper, further structural optimizations were performed: 39 bis(hydroxyphenyl) azoles, thiophenes, benzenes, and aza-benzenes were synthesized and their biological properties were evaluated. The most promising compounds of this study show enhanced IC 50 values in the low nanomolar range, a high selectivity toward 17beta-HSD2, a low binding affinity to ERalpha, a good metabolic stability in rat liver microsomes, and a reasonable pharmacokinetic profile after peroral application. Calculation of the molecular electrostatic potentials revealed a correlation between 17beta-HSD1 inhibition and the electron density distribution.
Collapse
Affiliation(s)
- Emmanuel Bey
- Pharmaceutical and Medicinal Chemistry, Saarland University, PO Box 15 11 50, D-66041, Saarbrucken, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Schuster D, Nashev LG, Kirchmair J, Laggner C, Wolber G, Langer T, Odermatt A. Discovery of Nonsteroidal 17β-Hydroxysteroid Dehydrogenase 1 Inhibitors by Pharmacophore-Based Screening of Virtual Compound Libraries. J Med Chem 2008; 51:4188-99. [DOI: 10.1021/jm800054h] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Daniela Schuster
- Computer-Aided Molecular Design Group, Department of Pharmaceutical Chemistry, University of Innsbruck, Innrain 52c, A-6020 Innsbruck, Austria, and Center of Molecular Biosciences Innsbruck—CMBI, Peter-Mayr-Strasse 1a, A-6020 Innsbruck, Austria, Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland, Inte:Ligand Software-Entwicklungs and Consulting GmbH, Marihilferstrasse 74B/11, A-1070 Wien, Austria
| | - Lyubomir G. Nashev
- Computer-Aided Molecular Design Group, Department of Pharmaceutical Chemistry, University of Innsbruck, Innrain 52c, A-6020 Innsbruck, Austria, and Center of Molecular Biosciences Innsbruck—CMBI, Peter-Mayr-Strasse 1a, A-6020 Innsbruck, Austria, Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland, Inte:Ligand Software-Entwicklungs and Consulting GmbH, Marihilferstrasse 74B/11, A-1070 Wien, Austria
| | - Johannes Kirchmair
- Computer-Aided Molecular Design Group, Department of Pharmaceutical Chemistry, University of Innsbruck, Innrain 52c, A-6020 Innsbruck, Austria, and Center of Molecular Biosciences Innsbruck—CMBI, Peter-Mayr-Strasse 1a, A-6020 Innsbruck, Austria, Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland, Inte:Ligand Software-Entwicklungs and Consulting GmbH, Marihilferstrasse 74B/11, A-1070 Wien, Austria
| | - Christian Laggner
- Computer-Aided Molecular Design Group, Department of Pharmaceutical Chemistry, University of Innsbruck, Innrain 52c, A-6020 Innsbruck, Austria, and Center of Molecular Biosciences Innsbruck—CMBI, Peter-Mayr-Strasse 1a, A-6020 Innsbruck, Austria, Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland, Inte:Ligand Software-Entwicklungs and Consulting GmbH, Marihilferstrasse 74B/11, A-1070 Wien, Austria
| | - Gerhard Wolber
- Computer-Aided Molecular Design Group, Department of Pharmaceutical Chemistry, University of Innsbruck, Innrain 52c, A-6020 Innsbruck, Austria, and Center of Molecular Biosciences Innsbruck—CMBI, Peter-Mayr-Strasse 1a, A-6020 Innsbruck, Austria, Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland, Inte:Ligand Software-Entwicklungs and Consulting GmbH, Marihilferstrasse 74B/11, A-1070 Wien, Austria
| | - Thierry Langer
- Computer-Aided Molecular Design Group, Department of Pharmaceutical Chemistry, University of Innsbruck, Innrain 52c, A-6020 Innsbruck, Austria, and Center of Molecular Biosciences Innsbruck—CMBI, Peter-Mayr-Strasse 1a, A-6020 Innsbruck, Austria, Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland, Inte:Ligand Software-Entwicklungs and Consulting GmbH, Marihilferstrasse 74B/11, A-1070 Wien, Austria
| | - Alex Odermatt
- Computer-Aided Molecular Design Group, Department of Pharmaceutical Chemistry, University of Innsbruck, Innrain 52c, A-6020 Innsbruck, Austria, and Center of Molecular Biosciences Innsbruck—CMBI, Peter-Mayr-Strasse 1a, A-6020 Innsbruck, Austria, Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland, Inte:Ligand Software-Entwicklungs and Consulting GmbH, Marihilferstrasse 74B/11, A-1070 Wien, Austria
| |
Collapse
|
33
|
Bey E, Marchais-Oberwinkler S, Kruchten P, Frotscher M, Werth R, Oster A, Algül O, Neugebauer A, Hartmann RW. Design, synthesis and biological evaluation of bis(hydroxyphenyl) azoles as potent and selective non-steroidal inhibitors of 17β-hydroxysteroid dehydrogenase type 1 (17β-HSD1) for the treatment of estrogen-dependent diseases. Bioorg Med Chem 2008; 16:6423-35. [DOI: 10.1016/j.bmc.2008.04.073] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Revised: 04/24/2008] [Accepted: 04/30/2008] [Indexed: 11/15/2022]
|