1
|
Mycobacterium tuberculosis Shikimate Pathway Enzymes as Targets for the Rational Design of Anti-Tuberculosis Drugs. Molecules 2020; 25:molecules25061259. [PMID: 32168746 PMCID: PMC7144000 DOI: 10.3390/molecules25061259] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/06/2020] [Accepted: 02/10/2020] [Indexed: 12/17/2022] Open
Abstract
Roughly a third of the world’s population is estimated to have latent Mycobacterium tuberculosis infection, being at risk of developing active tuberculosis (TB) during their lifetime. Given the inefficacy of prophylactic measures and the increase of drug-resistant M. tuberculosis strains, there is a clear and urgent need for the development of new and more efficient chemotherapeutic agents, with selective toxicity, to be implemented on patient treatment. The component enzymes of the shikimate pathway, which is essential in mycobacteria and absent in humans, stand as attractive and potential targets for the development of new drugs to treat TB. This review gives an update on published work on the enzymes of the shikimate pathway and some insight on what can be potentially explored towards selective drug development.
Collapse
|
2
|
Miranda PHDS, Lourenço EMG, Morais AMS, de Oliveira PIC, Silverio PSDSN, Jordão AK, Barbosa EG. Molecular modeling of a series of dehydroquinate dehydratase type II inhibitors of Mycobacterium tuberculosis and design of new binders. Mol Divers 2019; 25:1-12. [PMID: 31820222 DOI: 10.1007/s11030-019-10020-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/22/2019] [Indexed: 11/24/2022]
Abstract
Tuberculosis, caused by Mycobacterium tuberculosis (M. tuberculosis), is still responsible for a large number of fatal cases, especially in developing countries with alarming rates of incidence and prevalence worldwide. Mycobacterium tuberculosis has a remarkable ability to develop new resistance mechanisms to the conventional antimicrobials treatment. Because of this, there is an urgent need for novel bioactive compounds for its treatment. The dehydroquinate dehydratase II (DHQase II) is considered a key enzyme of shikimate pathway, and it can be used as a promising target for the design of new bioactive compounds with antibacterial action. The aim of this work was the construction of QSAR models to aid the design of new potential DHQase II inhibitors. For that purpose, various molecular modeling approaches, such as activity cliff, QSAR models and computer-aided ligand design were utilized. A predictive in silico 4D-QSAR model was built using a database comprising 86 inhibitors of DHQase II, and the model was used to predict the activity of the designed ligands. The obtained model proved to predict well the DHQase II inhibition for an external validation dataset ([Formula: see text] = 0.72). Also, the Activity Cliff analysis shed light on important structural features applied to the ligand design.
Collapse
Affiliation(s)
- Paulo H de S Miranda
- Departamento de Farmácia, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Estela M G Lourenço
- Departamento de Farmácia, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Alexander M S Morais
- Departamento de Farmácia, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Pedro I C de Oliveira
- Programa de Pós-Graduação em Bioinformática, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | | | - Alessandro K Jordão
- Departamento de Farmácia, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Euzébio G Barbosa
- Departamento de Farmácia, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil. .,Programa de Pós-Graduação em Bioinformática, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil.
| |
Collapse
|
3
|
Lence E, van der Kamp MW, González-Bello C, Mulholland AJ. QM/MM simulations identify the determinants of catalytic activity differences between type II dehydroquinase enzymes. Org Biomol Chem 2018; 16:4443-4455. [PMID: 29767194 PMCID: PMC6011038 DOI: 10.1039/c8ob00066b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/18/2018] [Indexed: 11/29/2022]
Abstract
Type II dehydroquinase enzymes (DHQ2), recognized targets for antibiotic drug discovery, show significantly different activities dependent on the species: DHQ2 from Mycobacterium tuberculosis (MtDHQ2) and Helicobacter pylori (HpDHQ2) show a 50-fold difference in catalytic efficiency. Revealing the determinants of this activity difference is important for our understanding of biological catalysis and further offers the potential to contribute to tailoring specificity in drug design. Molecular dynamics simulations using a quantum mechanics/molecular mechanics potential, with correlated ab initio single point corrections, identify and quantify the subtle determinants of the experimentally observed difference in efficiency. The rate-determining step involves the formation of an enolate intermediate: more efficient stabilization of the enolate and transition state of the key step in MtDHQ2, mainly by the essential residues Tyr24 and Arg19, makes it more efficient than HpDHQ2. Further, a water molecule, which is absent in MtDHQ2 but involved in generation of the catalytic Tyr22 tyrosinate in HpDHQ2, was found to destabilize both the transition state and the enolate intermediate. The quantification of the contribution of key residues and water molecules in the rate-determining step of the mechanism also leads to improved understanding of higher potencies and specificity of known inhibitors, which should aid ongoing inhibitor design.
Collapse
Affiliation(s)
- Emilio Lence
- Centre for Computational Chemistry
, School of Chemistry
, University of Bristol
,
Cantock's Close
, BS8 1TS Bristol
, UK
.
; Tel: +44 (0)117 9289097
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS)
, Departamento de Química Orgánica
, Universidade de Santiago de Compostela
,
Jenaro de la Fuente s/n
, 15782 Santiago de Compostela
, Spain
.
; Tel: +34 881 815726
| | - Marc W. van der Kamp
- Centre for Computational Chemistry
, School of Chemistry
, University of Bristol
,
Cantock's Close
, BS8 1TS Bristol
, UK
.
; Tel: +44 (0)117 9289097
- School of Biochemistry
, University of Bristol
, University Walk
,
BS8 1TD Bristol
, UK
.
; Tel: +44 (0)117 3312147
| | - Concepción González-Bello
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS)
, Departamento de Química Orgánica
, Universidade de Santiago de Compostela
,
Jenaro de la Fuente s/n
, 15782 Santiago de Compostela
, Spain
.
; Tel: +34 881 815726
| | - Adrian J. Mulholland
- Centre for Computational Chemistry
, School of Chemistry
, University of Bristol
,
Cantock's Close
, BS8 1TS Bristol
, UK
.
; Tel: +44 (0)117 9289097
| |
Collapse
|
4
|
Parthasarathy A, Cross PJ, Dobson RCJ, Adams LE, Savka MA, Hudson AO. A Three-Ring Circus: Metabolism of the Three Proteogenic Aromatic Amino Acids and Their Role in the Health of Plants and Animals. Front Mol Biosci 2018; 5:29. [PMID: 29682508 PMCID: PMC5897657 DOI: 10.3389/fmolb.2018.00029] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 03/21/2018] [Indexed: 12/19/2022] Open
Abstract
Tyrosine, phenylalanine and tryptophan are the three aromatic amino acids (AAA) involved in protein synthesis. These amino acids and their metabolism are linked to the synthesis of a variety of secondary metabolites, a subset of which are involved in numerous anabolic pathways responsible for the synthesis of pigment compounds, plant hormones and biological polymers, to name a few. In addition, these metabolites derived from the AAA pathways mediate the transmission of nervous signals, quench reactive oxygen species in the brain, and are involved in the vast palette of animal coloration among others pathways. The AAA and metabolites derived from them also have integral roles in the health of both plants and animals. This review delineates the de novo biosynthesis of the AAA by microbes and plants, and the branching out of AAA metabolism into major secondary metabolic pathways in plants such as the phenylpropanoid pathway. Organisms that do not possess the enzymatic machinery for the de novo synthesis of AAA must obtain these primary metabolites from their diet. Therefore, the metabolism of AAA by the host animal and the resident microflora are important for the health of all animals. In addition, the AAA metabolite-mediated host-pathogen interactions in general, as well as potential beneficial and harmful AAA-derived compounds produced by gut bacteria are discussed. Apart from the AAA biosynthetic pathways in plants and microbes such as the shikimate pathway and the tryptophan pathway, this review also deals with AAA catabolism in plants, AAA degradation via the monoamine and kynurenine pathways in animals, and AAA catabolism via the 3-aryllactate and kynurenine pathways in animal-associated microbes. Emphasis will be placed on structural and functional aspects of several key AAA-related enzymes, such as shikimate synthase, chorismate mutase, anthranilate synthase, tryptophan synthase, tyrosine aminotransferase, dopachrome tautomerase, radical dehydratase, and type III CoA-transferase. The past development and current potential for interventions including the development of herbicides and antibiotics that target key enzymes in AAA-related pathways, as well as AAA-linked secondary metabolism leading to antimicrobials are also discussed.
Collapse
Affiliation(s)
- Anutthaman Parthasarathy
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, United States
| | - Penelope J. Cross
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Renwick C. J. Dobson
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia
| | - Lily E. Adams
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, United States
| | - Michael A. Savka
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, United States
| | - André O. Hudson
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, United States
| |
Collapse
|
5
|
Peón A, Robles A, Blanco B, Convertino M, Thompson P, Hawkins AR, Caflisch A, González-Bello C. Reducing the Flexibility of Type II Dehydroquinase for Inhibition: A Fragment-Based Approach and Molecular Dynamics Study. ChemMedChem 2017; 12:1512-1524. [DOI: 10.1002/cmdc.201700396] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/01/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Antonio Peón
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares, CIQUS, and Departamento de Química Orgánica; Universidade de Santiago de Compostela; calle Jenaro de la Fuente s/n 15782 Santiago de Compostela Spain
| | - Adrián Robles
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares, CIQUS, and Departamento de Química Orgánica; Universidade de Santiago de Compostela; calle Jenaro de la Fuente s/n 15782 Santiago de Compostela Spain
| | - Beatriz Blanco
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares, CIQUS, and Departamento de Química Orgánica; Universidade de Santiago de Compostela; calle Jenaro de la Fuente s/n 15782 Santiago de Compostela Spain
| | - Marino Convertino
- Department of Biochemistry; University of Zurich; 8057 Zurich Switzerland
- Current address: Department of Biochemistry and Biophysics; University of North Carolina, School of Medicine; Chapel Hill NC 27599 USA
| | - Paul Thompson
- Institute of Cell and Molecular Biosciences, Medical School; University of Newcastle upon Tyne; Catherine Cookson Building, Framlington Place Newcastle upon Tyne NE2 4HH UK
| | - Alastair R. Hawkins
- Institute of Cell and Molecular Biosciences, Medical School; University of Newcastle upon Tyne; Catherine Cookson Building, Framlington Place Newcastle upon Tyne NE2 4HH UK
| | - Amedeo Caflisch
- Department of Biochemistry; University of Zurich; 8057 Zurich Switzerland
| | - Concepción González-Bello
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares, CIQUS, and Departamento de Química Orgánica; Universidade de Santiago de Compostela; calle Jenaro de la Fuente s/n 15782 Santiago de Compostela Spain
| |
Collapse
|
6
|
Seçinti H, Seçen H. Synthesis of Two Natural Furan-Cyclized Diarylheptanoidsvia2-Furaldehyde. Helv Chim Acta 2015. [DOI: 10.1002/hlca.201400274] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
7
|
Lence E, Tizón L, Otero JM, Peón A, Prazeres VFV, Llamas-Saiz AL, Fox GC, van Raaij MJ, Lamb H, Hawkins AR, González-Bello C. Mechanistic basis of the inhibition of type II dehydroquinase by (2S)- and (2R)-2-benzyl-3-dehydroquinic acids. ACS Chem Biol 2013. [PMID: 23198883 DOI: 10.1021/cb300493s] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The structural changes caused by the substitution of the aromatic moiety in (2S)-2-benzyl-3-dehydroquinic acids and its epimers in C2 by electron-withdrawing or electron-donating groups in type II dehydroquinase enzyme from M. tuberculosis and H. pylori has been investigated by structural and computational studies. Both compounds are reversible competitive inhibitors of this enzyme, which is essential in these pathogenic bacteria. The crystal structures of M. tuberculosis and H. pylori in complex with (2S)-2-(4-methoxy)benzyl- and (2S)-2-perfluorobenzyl-3-dehydroquinic acids have been solved at 2.0, 2.3, 2.0, and 1.9 Å, respectively. The crystal structure of M. tuberculosis in complex with (2R)-2-(benzothiophen-5-yl)methyl-3-dehydroquinic acid is also reported at 1.55 Å. These crystal structures reveal key differences in the conformation of the flexible loop of the two enzymes, a difference that depends on the presence of electron-withdrawing or electron-donating groups in the aromatic moiety of the inhibitors. This loop closes over the active site after substrate binding, and its flexibility is essential for the function of the enzyme. These differences have also been investigated by molecular dynamics simulations in an effort to understand the significant inhibition potency differences observed between some of these compounds and also to obtain more information about the possible movements of the loop. These computational studies have also allowed us to identify key structural factors of the H. pylori loop that could explain its reduced flexibility in comparison to the M. tuberculosis loop, specifically by the formation of a key salt bridge between the side chains of residues Asp18 and Arg20.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Gavin C. Fox
- Proxima 2, Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, F-91192
Gif-sur-Yvette, France
| | - Mark J. van Raaij
- Departamento de Estructura de
Macromoléculas, Centro Nacional de Biotecnología (CSIC), Campus Cantoblanco, 28049 Madrid, Spain
| | - Heather Lamb
- Institute of Cell and Molecular
Biosciences, Medical School, University of Newcastle upon Tyne, Newcastle upon Tyne NE2 4HH, U.K
| | - Alastair R. Hawkins
- Institute of Cell and Molecular
Biosciences, Medical School, University of Newcastle upon Tyne, Newcastle upon Tyne NE2 4HH, U.K
| | | |
Collapse
|
8
|
Peón A, Coderch C, Gago F, González-Bello C. Comparative binding energy COMBINE analysis for understanding the binding determinants of type II dehydroquinase inhibitors. ChemMedChem 2013; 8:740-7. [PMID: 23450741 DOI: 10.1002/cmdc.201300013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Indexed: 11/08/2022]
Abstract
Herein we report comparative binding energy (COMBINE) analyses to derive quantitative structure-activity relationship (QSAR) models that help rationalize the determinants of binding affinity for inhibitors of type II dehydroquinase (DHQ2), the third enzyme of the shikimic acid pathway. Independent COMBINE models were derived for Helicobacter pylori and Mycobacterium tuberculosis DHQ2, which is an essential enzyme in both these pathogenic bacteria that has no counterpart in human cells. These studies quantify the importance of the hydrogen bonding interactions between the ligands and the water molecule involved in the DHQ2 reaction mechanism. They also highlight important differences in the ligand interactions with the interface pocket close to the active site that could provide guides for future inhibitor design.
Collapse
Affiliation(s)
- Antonio Peón
- Centro Singular de Investigación en Química Biológica y Materiales, Moleculares CIQUS, Universidad de Santiago de Compostela calle Jenaro de la Fuente s/n, 15782 Santiago de Compostela Spain
| | | | | | | |
Collapse
|
9
|
Jiang M, Xiong B, Shen YM, Yang C. Design, synthesis, and preliminary biological evaluation of novel ketone derivatives of shikimic acid. RSC Adv 2013. [DOI: 10.1039/c3ra43755h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
10
|
Structural investigation of inhibitor designs targeting 3-dehydroquinate dehydratase from the shikimate pathway of Mycobacterium tuberculosis. Biochem J 2011; 436:729-39. [PMID: 21410435 DOI: 10.1042/bj20110002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The shikimate pathway is essential in Mycobacterium tuberculosis and its absence from humans makes the enzymes of this pathway potential drug targets. In the present paper, we provide structural insights into ligand and inhibitor binding to 3-dehydroquinate dehydratase (dehydroquinase) from M. tuberculosis (MtDHQase), the third enzyme of the shikimate pathway. The enzyme has been crystallized in complex with its reaction product, 3-dehydroshikimate, and with six different competitive inhibitors. The inhibitor 2,3-anhydroquinate mimics the flattened enol/enolate reaction intermediate and serves as an anchor molecule for four of the inhibitors investigated. MtDHQase also forms a complex with citrazinic acid, a planar analogue of the reaction product. The structure of MtDHQase in complex with a 2,3-anhydroquinate moiety attached to a biaryl group shows that this group extends to an active-site subpocket inducing significant structural rearrangement. The flexible extensions of inhibitors designed to form π-stacking interactions with the catalytic Tyr24 have been investigated. The high-resolution crystal structures of the MtDHQase complexes provide structural evidence for the role of the loop residues 19-24 in MtDHQase ligand binding and catalytic mechanism and provide a rationale for the design and efficacy of inhibitors.
Collapse
|
11
|
Tizón L, Otero JM, Prazeres VFV, Llamas-Saiz AL, Fox GC, van Raaij MJ, Lamb H, Hawkins AR, Ainsa JA, Castedo L, González-Bello C. A Prodrug Approach for Improving Antituberculosis Activity of Potent Mycobacterium tuberculosis Type II Dehydroquinase Inhibitors. J Med Chem 2011; 54:6063-84. [DOI: 10.1021/jm2006063] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lorena Tizón
- Centro Singular de Investigación en Química Biológica y Materiales Moleculares, Universidad de Santiago de Compostela, calle Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| | - José M. Otero
- Laboratoire des Proteines Membranaires, Institut de Biologie Structurale J. P. Ebel, 38027 Grenoble, France
| | - Verónica F. V. Prazeres
- Centro Singular de Investigación en Química Biológica y Materiales Moleculares, Universidad de Santiago de Compostela, calle Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| | - Antonio L. Llamas-Saiz
- Unidad de Rayos X, RIAIDT, Edificio CACTUS, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Gavin C. Fox
- Laboratoire des Proteines Membranaires, Institut de Biologie Structurale J. P. Ebel, 38027 Grenoble, France
| | - Mark J. van Raaij
- Departamento de Estructura de Macromoléculas, Centro Nacional de Biotecnología (CSIC), Campus Cantoblanco, 28049 Madrid, Spain
| | - Heather Lamb
- Institute of Cell and Molecular Biosciences, Medical School, University of Newcastle upon Tyne, Newcastle upon Tyne NE2 4HH, U.K
| | - Alastair R. Hawkins
- Institute of Cell and Molecular Biosciences, Medical School, University of Newcastle upon Tyne, Newcastle upon Tyne NE2 4HH, U.K
| | - José A. Ainsa
- Grupo de Genética de Micobacterias, Departamento de Microbiología, Medicina Preventiva y Salud Pública, Facultad de Medicina, 50009 Zaragoza, Spain, and CIBER Enfermedades Respiratorias, Spain
| | - Luis Castedo
- Departamento de Química Orgánica, Facultad de Química, Universidad de Santiago de Compostela, Avenida de las Ciencias s/n, 15782 Santiago de Compostela, Spain
| | - Concepción González-Bello
- Centro Singular de Investigación en Química Biológica y Materiales Moleculares, Universidad de Santiago de Compostela, calle Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| |
Collapse
|
12
|
Paz S, Tizón L, Otero JM, Llamas-Saiz AL, Fox GC, van Raaij MJ, Lamb H, Hawkins AR, Lapthorn AJ, Castedo L, González-Bello C. Tetrahydrobenzothiophene derivatives: conformationally restricted inhibitors of type II dehydroquinase. ChemMedChem 2010; 6:266-72. [PMID: 21275050 DOI: 10.1002/cmdc.201000343] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Revised: 10/12/2010] [Indexed: 11/10/2022]
Affiliation(s)
- Sonia Paz
- Departamento de Química Orgánica y Centro Singular de Investigación en Química Biológica y Materiales Moleculares, Universidad de Santiago de Compostela calle Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Peón A, Otero JM, Tizón L, Prazeres VFV, Llamas-Saiz AL, Fox GC, van Raaij MJ, Lamb H, Hawkins AR, Gago F, Castedo L, González-Bello C. Understanding the Key Factors that Control the Inhibition of Type II Dehydroquinase by (2R)-2-Benzyl-3-dehydroquinic Acids. ChemMedChem 2010; 5:1726-33. [DOI: 10.1002/cmdc.201000281] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|