1
|
Kalita T, Choudhury A, Shakya A, Ghosh SK, Singh UP, Bhat HR. A Review on Synthetic Thiazole Derivatives as an Antimalarial Agent. Curr Drug Discov Technol 2024; 21:e240124226141. [PMID: 38279721 DOI: 10.2174/0115701638276379231223101625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/29/2023] [Accepted: 12/06/2023] [Indexed: 01/28/2024]
Abstract
BACKGROUND Thiazole is a widely studied core structure in heterocyclic chemistry and has proven to be a valuable scaffold in medicinal chemistry. The presence of thiazole in both naturally occurring and synthetic pharmacologically active compounds demonstrates the adaptability of these derivatives. METHODS The current study attempted to review and compile the contributions of numerous researchers over the last 20 years to the medicinal importance of these scaffolds, with a primary focus on antimalarial activity. The review is based on an extensive search of PubMed, Google Scholar, Elsevier, and other renowned journal sites for a thorough literature survey involving various research and review articles. RESULTS A comprehensive review of the antimalarial activity of the thiazole scaffold revealed potential therapeutic targets in Plasmodium species. Furthermore, the correlation of structure-activity-relationship (SAR) studies from various articles suggests that the thiazole ring has therapeutic potential. CONCLUSION This article intends to point researchers in the right direction for developing potential thiazole-based compounds as antimalarial agents in the future.
Collapse
Affiliation(s)
- Tutumoni Kalita
- Department of Pharmaceutical Sciences, Girijananda Chowdhury Institute of Pharmaceutical Science, Hatkhowapara, Azara, Guwahati, Assam, India
| | - Ankita Choudhury
- Department of Pharmacy, Silchar Medical College and Hospital, Silchar, Assam, India
| | - Anshul Shakya
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, 786004, India
| | - Surajit Kumar Ghosh
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, 786004, India
| | - Udaya Pratap Singh
- Drug Design & Discovery Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, Uttar Pradesh, 211007, India
| | - Hans Raj Bhat
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, 786004, India
| |
Collapse
|
2
|
Berger O, Ortial S, Wein S, Denoyelle S, Bressolle F, Durand T, Escale R, Vial HJ, Vo-Hoang Y. Evaluation of amidoxime derivatives as prodrug candidates of potent bis-cationic antimalarials. Bioorg Med Chem Lett 2019; 29:2203-2207. [PMID: 31255483 DOI: 10.1016/j.bmcl.2019.06.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/18/2019] [Accepted: 06/22/2019] [Indexed: 01/27/2023]
Abstract
Plasmodium falciparum is responsible for most of the cases of malaria and its resistance to established antimalarial drugs is a major issue. Thus, new chemotherapies are needed to fight the emerging multi-drug resistance of P. falciparum malaria, like choline analogues targeting plasmodial phospholipidic metabolism. Here we describe the synthesis of amidoxime derivatives as prodrug candidates of reverse-benzamidines and hybrid compounds able to mimic choline, as well as the design of a new series of asymmetrical bis-cationic compounds. Bioconversion studies were conducted on amidoximes in asymmetrical series and showed that amidoxime prodrug strategy could be applied on C-alkylamidine moieties, like benzamidines and that N-substituents did not alter the bioconversion of amidoximes. The antimalarial activity of the three series of compounds was evaluated in vitro against P. falciparum and in vivo against P. vinckei petteri in mice.
Collapse
Affiliation(s)
- Olivier Berger
- Institut des Biomolecules Max Mousseron, UMR 5247, Université de Montpellier, CNRS, ENSCM, Faculté des Sciences Pharmaceutiques et Biologiques, 15 Avenue Charles Flahault, 34093 Montpellier, France
| | - Stéphanie Ortial
- Institut des Biomolecules Max Mousseron, UMR 5247, Université de Montpellier, CNRS, ENSCM, Faculté des Sciences Pharmaceutiques et Biologiques, 15 Avenue Charles Flahault, 34093 Montpellier, France
| | - Sharon Wein
- Dynamique Moléculaire des Interactions Membranaires Normales et Pathologiques, Université de Montpellier, UMR 5235 CNRS, Place Eugène Bataillon, 34095 Montpellier, France
| | - Séverine Denoyelle
- Institut des Biomolecules Max Mousseron, UMR 5247, Université de Montpellier, CNRS, ENSCM, Faculté des Sciences Pharmaceutiques et Biologiques, 15 Avenue Charles Flahault, 34093 Montpellier, France
| | - Françoise Bressolle
- Pharmacocinetique Clinique, EA4215, Faculté des Sciences Pharmaceutiques et Biologiques, 15 Avenue Charles Flahault, 34093 Montpellier, France
| | - Thierry Durand
- Institut des Biomolecules Max Mousseron, UMR 5247, Université de Montpellier, CNRS, ENSCM, Faculté des Sciences Pharmaceutiques et Biologiques, 15 Avenue Charles Flahault, 34093 Montpellier, France
| | - Roger Escale
- Institut des Biomolecules Max Mousseron, UMR 5247, Université de Montpellier, CNRS, ENSCM, Faculté des Sciences Pharmaceutiques et Biologiques, 15 Avenue Charles Flahault, 34093 Montpellier, France
| | - Henri J Vial
- Dynamique Moléculaire des Interactions Membranaires Normales et Pathologiques, Université de Montpellier, UMR 5235 CNRS, Place Eugène Bataillon, 34095 Montpellier, France
| | - Yen Vo-Hoang
- Institut des Biomolecules Max Mousseron, UMR 5247, Université de Montpellier, CNRS, ENSCM, Faculté des Sciences Pharmaceutiques et Biologiques, 15 Avenue Charles Flahault, 34093 Montpellier, France.
| |
Collapse
|
3
|
Degardin M, Wein S, Duckert JF, Maynadier M, Guy A, Durand T, Escale R, Vial H, Vo-Hoang Y. Development of the first oral bioprecursors of bis-alkylguanidine antimalarial drugs. ChemMedChem 2014; 9:300-4. [PMID: 24403182 DOI: 10.1002/cmdc.201300419] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Indexed: 11/07/2022]
Abstract
Plasmodium falciparum is responsible of the most severe form of malaria, and new targets and novel chemotherapeutic scaffolds are needed to fight emerging multidrug-resistant strains of this parasite. Bis-alkylguanidines have been designed to mimic choline, resulting in the inhibition of plasmodial de novo phosphatidylcholine biosynthesis. Despite potent in vitro antiplasmodial and in vivo antimalarial activities, a major drawback of these compounds for further clinical development is their low oral bioavailability. To solve this issue, various modulations were performed on bis-alkylguanidines. The introduction of N-disubstituents on the guanidino motif improved both in vitro and in vivo activities. On the other hand, in vivo pharmacological evaluation in a mouse model showed that the N-hydroxylated derivatives constitute the first oral bioprecursors in bis-alkylguanidine series. This study paves the way for bis-alkylguanidine-based oral antimalarial agents targeting plasmodial phospholipid metabolism.
Collapse
Affiliation(s)
- Mélissa Degardin
- UMR 5247 CNRS-UMI-UMII-ENSCM, Institut des Biomolecules Max Mousseron (IBMM), Faculté des Sciences Pharmaceutiques et Biologiques, Université de Montpellier I/II, 15 Avenue Charles Flahault, 34093 Montpellier (France)
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Biamonte MA, Wanner J, Le Roch KG. Recent advances in malaria drug discovery. Bioorg Med Chem Lett 2013; 23:2829-43. [PMID: 23587422 PMCID: PMC3762334 DOI: 10.1016/j.bmcl.2013.03.067] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 03/11/2013] [Accepted: 03/20/2013] [Indexed: 01/18/2023]
Abstract
This digest covers some of the most relevant progress in malaria drug discovery published between 2010 and 2012. There is an urgent need to develop new antimalarial drugs. Such drugs can target the blood stage of the disease to alleviate the symptoms, the liver stage to prevent relapses, and the transmission stage to protect other humans. The pipeline for the blood stage is becoming robust, but this should not be a source of complacency, as the current therapies set a high standard. Drug discovery efforts directed towards the liver and transmission stages are in their infancy but are receiving increasing attention as targeting these stages could be instrumental in eradicating malaria.
Collapse
Affiliation(s)
- Marco A Biamonte
- Drug Discovery for Tropical Diseases, Suite 230, San Diego, CA 92121, USA.
| | | | | |
Collapse
|
6
|
Degardin M, Wein S, Gouni S, Tran Van Ba C, Duckert JF, Durand T, Escale R, Vial H, Vo-Hoang Y. Evaluation of bis-alkylamidoxime O-alkylsulfonates as orally available antimalarials. ChemMedChem 2012; 7:991-1001. [PMID: 22544438 DOI: 10.1002/cmdc.201200112] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 04/03/2012] [Indexed: 11/09/2022]
Abstract
The main threat to controlling malaria is the emerging multidrug resistance of Plasmodium sp. parasites. Bis-alkylamidines were developed as a potential new chemotherapy that targets plasmodial phospholipid metabolism. Unfortunately, these compounds are not orally available. To solve this absorption issue, we investigated a prodrug strategy based on sulfonate derivatives of alkylamidoximes. A total of 25 sulfonates were synthesized as prodrug candidates of one bis-N-alkylamidine and of six N-substituted bis-C-alkylamidines. Their antimalarial activities were evaluated in vitro against P. falciparum and in vivo against P. vinckei in mice to define structure-activity relationships. Small alkyl substituents on the sulfonate group of both C-alkyl- and N-alkylamidines led to the best oral antimalarial activities; alkylsulfonate derivatives are chemically transformed into the corresponding alkylamidines.
Collapse
Affiliation(s)
- Mélissa Degardin
- Institut des Biomolecules Max Mousseron, UMR 5247 CNRS-UMI-UMII, Faculté des Sciences Pharmaceutiques et Biologiques, Université de Montpellier I, 15 avenue Charles Flahault, 34093 Montpellier, France
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Tischer M, Pradel G, Ohlsen K, Holzgrabe U. Quaternary ammonium salts and their antimicrobial potential: targets or nonspecific interactions? ChemMedChem 2011; 7:22-31. [PMID: 22113995 DOI: 10.1002/cmdc.201100404] [Citation(s) in RCA: 224] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 10/28/2011] [Indexed: 11/07/2022]
Abstract
For more than 50 years dequalinium chloride has been used successfully as an antiseptic drug and disinfectant, particularly for clinical purposes. Given the success of dequalinium chloride, several series of mono- and bisquaternary ammonium compounds have been designed and reported to have improved antimicrobial activity. Furthermore, many of them exhibit high activity against mycobacteria and protozoa, especially against plasmodia. This review discusses the structure-activity relationships and the modes of action of the various series of (bis)quaternary ammonium compounds.
Collapse
Affiliation(s)
- Maximilian Tischer
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Würzburg, Germany
| | | | | | | |
Collapse
|
8
|
Tischer M, Sologub L, Pradel G, Holzgrabe U. The bisnaphthalimides as new active lead compounds against Plasmodium falciparum. Bioorg Med Chem 2010; 18:2998-3003. [PMID: 20382538 DOI: 10.1016/j.bmc.2010.03.067] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Revised: 03/22/2010] [Accepted: 03/25/2010] [Indexed: 11/18/2022]
Abstract
The bisquaternary bisnaphthalimides are a versatile class of compounds being active against the malaria parasite Plasmodium falciparum in the lower nanomolar range of concentration combined with no cytotoxicity. The series of compounds is designed as choline analogues and interfering agents of the phosphatidylcholine biosynthesis. The qualitative analysis of the structure-activity relationships (SAR) revealed the importance of a long methylene middle chain of at least 8 methylene groups between the two bisquaternary naphthalimides or a monoquaternary naphthalimide consisting of a long alkyl chain attached to the positively charged nitrogen atom. Since the SARs are different from reported biscationic antimalarial drugs the mode of action remains to be elucidated.
Collapse
Affiliation(s)
- Maximilian Tischer
- Institute of Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany
| | | | | | | |
Collapse
|