1
|
Soundarya P, Pahan S, Sekar G. Domino Synthesis of Thioindirubin via Aldol Condensation/C-S Cross-Coupling/Cyclization Reaction Using Xanthate as a Sulfur Surrogate. Org Lett 2025; 27:2031-2036. [PMID: 39992352 DOI: 10.1021/acs.orglett.4c04539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Developing new types of molecular photoswitches with novel functionalities allows experts to advance their applications in biology, chemistry, and material sciences. Herein, we report an efficient synthetic protocol for the synthesis of thioindirubin derivatives from commercially available starting materials. This domino reaction proceeds through aldol condensation followed by intramolecular C-S bond formation and selective cyclization in a 5-exo-trig manner. Nuclear magnetic resonance studies suggest the ability to tune both isomerization directions upon irradiation with different ultraviolet and visible light (370-640 nm light-emitting diode). The newly reported hemithioindigo photoswitches have various applications in the areas of life science and material sciences.
Collapse
Affiliation(s)
- Palanisamy Soundarya
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Sayan Pahan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Govindasamy Sekar
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| |
Collapse
|
2
|
Langer P. N-Glycosides of indigo, indirubin, and isoindigo: blue, red, and yellow sugars and their cancerostatic activity. Beilstein J Org Chem 2024; 20:2840-2869. [PMID: 39530076 PMCID: PMC11552416 DOI: 10.3762/bjoc.20.240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
Indigo, indirubin, and isoindigo derivatives have been used for centuries as pigments. Since the 1990s, a new aspect of the chemistry of this type of compounds is their activity against various types of cancer. N-Glycosides of indigo, indirubin, and isoindigo, blue, red, and yellow sugars, turned out to be of special interest because of their high cancerostatic activity and structural novelty. The present article provides an account on the synthesis and anticancer activity of these compounds.
Collapse
Affiliation(s)
- Peter Langer
- Institut für Chemie, Universität Rostock, Albert-Einstein-Str. 3a, 18059 Rostock, Germany
| |
Collapse
|
3
|
Wendt F, Wittig F, Rupprecht A, Ramer R, Langer P, Emmert S, Frank M, Hinz B. A Thia-Analogous Indirubin N-Glycoside Disrupts Mitochondrial Function and Causes the Death of Human Melanoma and Cutaneous Squamous Cell Carcinoma Cells. Cells 2023; 12:2409. [PMID: 37830623 PMCID: PMC10572502 DOI: 10.3390/cells12192409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 09/08/2023] [Accepted: 09/20/2023] [Indexed: 10/14/2023] Open
Abstract
Skin cancer is the most common malignant disease worldwide and, therefore, also poses a challenge from a pharmacotherapeutic perspective. Derivatives of indirubin are an interesting option in this context. In the present study, the effects of 3-[3'-oxo-benzo[b]thiophen-2'-(Z)-ylidene]-1-(β-d-glucopyranosyl)-oxindole (KD87), a thia-analogous indirubin N-glycoside, on the viability and mitochondrial properties of melanoma (A375) and squamous cell carcinoma cells (A431) of the skin were investigated. In both cell lines, KD87 caused decreased viability, the activation of caspases-3 and -7, and the inhibition of colony formation. At the mitochondrial level, a concentration-dependent decrease in both the basal and ATP-linked oxygen consumption rate and in the reserve capacity of oxidative respiration were registered in the presence of KD87. These changes were accompanied by morphological alterations in the mitochondria, a release of mitochondrial cytochrome c into the cytosol and significant reductions in succinate dehydrogenase complex subunit B (SDHB, subunit of complex II) in A375 and A431 cells and NADH:ubiquinone oxidoreductase subunit B8 (NDUFB8, subunit of complex I) in A375 cells. The effect of KD87 was accompanied by a significant upregulation of the enzyme heme oxygenase-1, whose inhibition led to a partial but significant reduction in the metabolic-activity-reducing effect of KD87. In summary, our data show a mitochondria-targeting effect of KD87 as part of the cytotoxic effect of this compound on skin cancer cells, which should be considered in future studies with this class of compounds.
Collapse
Affiliation(s)
- Franziska Wendt
- Institute of Pharmacology and Toxicology, Rostock University Medical Centre, 18057 Rostock, Germany; (F.W.); (F.W.); (A.R.); (R.R.)
| | - Felix Wittig
- Institute of Pharmacology and Toxicology, Rostock University Medical Centre, 18057 Rostock, Germany; (F.W.); (F.W.); (A.R.); (R.R.)
| | - Anne Rupprecht
- Institute of Pharmacology and Toxicology, Rostock University Medical Centre, 18057 Rostock, Germany; (F.W.); (F.W.); (A.R.); (R.R.)
| | - Robert Ramer
- Institute of Pharmacology and Toxicology, Rostock University Medical Centre, 18057 Rostock, Germany; (F.W.); (F.W.); (A.R.); (R.R.)
| | - Peter Langer
- Institute of Organic Chemistry, University of Rostock, 18059 Rostock, Germany;
| | - Steffen Emmert
- Clinic and Policlinic for Dermatology, Rostock University Medical Centre, 18057 Rostock, Germany;
| | - Marcus Frank
- Electron Microscopy Centre, Rostock University Medical Centre, 18057 Rostock, Germany;
- Department Life, Light and Matter, University of Rostock, 18059 Rostock, Germany
| | - Burkhard Hinz
- Institute of Pharmacology and Toxicology, Rostock University Medical Centre, 18057 Rostock, Germany; (F.W.); (F.W.); (A.R.); (R.R.)
| |
Collapse
|
4
|
Soundarya P, Sekar G. Cu-Catalyzed and iodine mediated synthesis of thioaurones via in situ C-S bond generation using xanthate as a sulfur surrogate. Org Biomol Chem 2022; 20:7405-7409. [PMID: 36098267 DOI: 10.1039/d2ob01211a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient method for synthesizing thioaurones has been developed using xanthate as an odorless sulfur surrogate. This reaction's key success lies in the use of iodine as a reagent, which promotes the α-iodination followed by cyclization of saturated ketones. This methodology has also been demonstrated with less reactive 2'-bromochalcones in good yield. Synthesis of the red isomer of indigo, i.e. a thia-analog of indirubin, was also achieved.
Collapse
Affiliation(s)
- Palanisamy Soundarya
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India.
| | - Govindasamy Sekar
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India.
| |
Collapse
|
5
|
A Sensitive LC-MS/MS Method for the Simultaneous Determination of Two Thia-Analogous Indirubin N-Glycosides and Indirubin-3'-Monoxime in Plasma and Cell Culture Medium. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27093031. [PMID: 35566381 PMCID: PMC9101087 DOI: 10.3390/molecules27093031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 11/16/2022]
Abstract
Indirubin was identified as an active component of Danggui Longhui Wan, an herbal mixture used in traditional Chinese medicine, and showed anticancer activity in clinical trials in patients with chronic leukemia. Investigations on the mechanisms of antitumor action of indirubins have mainly focused on the indirubin derivative indirubin-3'-monoxime (I3M). Meanwhile, antiproliferative and cytotoxic properties on cancer cells have also been demonstrated for several synthetic indirubin N-glycosides. In the present study, we demonstrate cytotoxic activity of the thia-analogous indirubin N-glycosides KD87 (3-[3'-oxo-benzo[b]thiophen-2'-(Z)-ylidene]-1-(β-d-glucopyranosyl)-oxindole) and KD85 (3-[3'-oxo-benzo[b]thiophen-2'-(Z)-ylidene]-1-(β-d-mannopyranosyl)-oxindole) against melanoma and squamous cell carcinoma cells as well as lung cancer and glioblastoma cells. The advanced state of preclinical studies on the effects of indirubins conducted to date underscores the need for pharmacokinetic data from cellular, animal, and human studies for which reliable quantification is required. Therefore, a sensitive liquid chromatography-tandem mass spectrometric (LC-MS/MS) method was developed and validated for the simultaneous measurement of KD87, KD85, and I3M in plasma and cell culture medium. Experimental conditions for sample preparation were optimized for human plasma protein precipitation and liquid-liquid extraction from plasma and cell culture medium. The methods were successfully validated in accordance with the U.S. Food and Drug Administration Bioanalytical Method Validation and evaluated for selectivity, sensitivity, matrix effect, recovery, carryover, calibration curve linearity, accuracy, precision, and stability. The applicability of the methods was demonstrated by the determination of KD87 in mouse plasma after prior intraperitoneal administration to mice.
Collapse
|
6
|
Rebl H, Sawade M, Hein M, Bergemann C, Wende M, Lalk M, Langer P, Emmert S, Nebe B. Synergistic effect of plasma-activated medium and novel indirubin derivatives on human skin cancer cells by activation of the AhR pathway. Sci Rep 2022; 12:2528. [PMID: 35169210 PMCID: PMC8847430 DOI: 10.1038/s41598-022-06523-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 01/27/2022] [Indexed: 01/07/2023] Open
Abstract
Due to the increasing number of human skin cancers and the limited effectiveness of therapies, research into innovative therapeutic approaches is of enormous clinical interest. In recent years, the use of cold atmospheric pressure plasma has become increasingly important as anti-cancer therapy. The combination of plasma with small molecules offers the potential of an effective, tumour-specific, targeted therapy. The synthesised glycosylated and non glycosylated thia-analogous indirubin derivatives KD87 and KD88, respectively, were first to be investigated for their pharmaceutical efficacy in comparison with Indirubin-3'-monoxime (I3M) on human melanoma (A375) and squamous cell carcinoma (A431) cells. In combinatorial studies with plasma-activated medium (PAM) and KD87 we determined significantly decreased cell viability and cell adhesion. Cell cycle analyses revealed a marked G2/M arrest by PAM and a clear apoptotic effect by the glycosylated indirubin derivative KD87 in both cell lines and thus a synergistic anti-cancer effect. I3M had a pro-apoptotic effect only in A431 cells, so we hypothesize a different mode of action of the indirubin derivatives in the two skin cancer cells, possibly due to a different level of the aryl hydrocarbon receptor and an activation of this pathway by nuclear translocation of this receptor and subsequent activation of gene expression.
Collapse
Affiliation(s)
- Henrike Rebl
- grid.413108.f0000 0000 9737 0454Department of Cell Biology, Rostock University Medical Center, 18057 Rostock, Germany
| | - Marie Sawade
- grid.413108.f0000 0000 9737 0454Department of Cell Biology, Rostock University Medical Center, 18057 Rostock, Germany
| | - Martin Hein
- grid.10493.3f0000000121858338Institute for Chemistry, University of Rostock, 18059 Rostock, Germany
| | - Claudia Bergemann
- grid.413108.f0000 0000 9737 0454Department of Cell Biology, Rostock University Medical Center, 18057 Rostock, Germany
| | - Manuela Wende
- grid.5603.0Institute for Biochemistry, University of Greifswald, 17487 Greifswald, Germany
| | - Michael Lalk
- grid.5603.0Institute for Biochemistry, University of Greifswald, 17487 Greifswald, Germany
| | - Peter Langer
- grid.10493.3f0000000121858338Institute for Chemistry, University of Rostock, 18059 Rostock, Germany
| | - Steffen Emmert
- grid.413108.f0000 0000 9737 0454Clinic and Polyclinic for Dermatology and Venerology, Rostock University Medical Center, 18057 Rostock, Germany
| | - Barbara Nebe
- grid.413108.f0000 0000 9737 0454Department of Cell Biology, Rostock University Medical Center, 18057 Rostock, Germany
| |
Collapse
|
7
|
Crucial Role of Reactive Oxygen Species (ROS) for the Proapoptotic Effects of Indirubin Derivatives in Cutaneous SCC Cells. Antioxidants (Basel) 2021; 10:antiox10101514. [PMID: 34679649 PMCID: PMC8532942 DOI: 10.3390/antiox10101514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/31/2021] [Accepted: 09/13/2021] [Indexed: 01/04/2023] Open
Abstract
Efficient drugs are needed for countering the worldwide high incidence of cutaneous squamous cell carcinoma (cSCC) and actinic keratosis. Indirubin derivatives represent promising candidates, but their effects in cSCC cells have not been reported before. Here, we investigated the efficacy of three indirubin derivatives (DKP-071, -073 and -184) in four cSCC cell lines. High efficacy was seen in SCL-I, SCL-II, SCC-12 and SCC-13, resulting in up to 80% loss of cell proliferation, 60% loss of cell viability and 30% induced apoptosis (10 µM). Apoptosis was further enhanced in combinations with TNF-related apoptosis-inducing ligand (TRAIL). Induction of reactive oxygen species (ROS) appeared as critical for these effects. Thus, antioxidative pretreatment completely abolished apoptosis as well as restored cell proliferation and viability. Concerning the pathways, complete activation of caspases cascades (caspases-3, -4, -6, -7, -8 and -9), loss of mitochondrial membrane potential, activation of proapoptotic PKCδ (protein kinase C delta), inhibition of STAT3 (signal transducer and activator of transcription 3), downregulation of antiapoptotic XIAP (X-linked inhibitor of apoptosis protein) and survivin as well as upregulation of the proapoptotic Bcl-2 protein Puma and the cell cycle inhibitor p21 were obtained. Importantly, all activation steps were prevented by antioxidants, thus proving ROS as a master regulator of indirubins' antitumor effects. ROS induction presently develops as an important issue in anticancer therapy.
Collapse
|
8
|
Wang H, Wang Z, Wei C, Wang J, Xu Y, Bai G, Yao Q, Zhang L, Chen Y. Anticancer potential of indirubins in medicinal chemistry: Biological activity, structural modification, and structure-activity relationship. Eur J Med Chem 2021; 223:113652. [PMID: 34161865 DOI: 10.1016/j.ejmech.2021.113652] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 06/13/2021] [Accepted: 06/13/2021] [Indexed: 10/21/2022]
Abstract
Indirubin is the crucial ingredient of Danggui Longhui Wan and Qing-Dai, traditional Chinese medicine herbal formulas used for the therapy of chronic myelocytic leukemia in China for hundreds of years. Although the monomeric indirubin has been used in China for the treatment human chronic myelocytic leukemia. However, due to low water solubility, poor pharmacokinetic properties and low therapeutic effects are the major obstacle, and had significantly limited its clinical application. Consequently, the attractive anticancer profile of indirubin has enthused numerous researchers to discover novel indirubin derivatives with improved pharmacodynamic activity as well as good pharmacokinetic property. In this paper, we comprehensively review the recent progress of anticancer potential of indirubins, structural modification and structure-activity relationship, which may provide useful direction for the further development of novel indirubins with improved pharmacological profiles for the treatment of various types of cancer.
Collapse
Affiliation(s)
- Hezhen Wang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Key Laboratory of Basic Pharmacology of Ministry of Education, School of Pharmacy, Zunyi Medical University, 6 West Xuefu Road, Zunyi, 563000, PR China
| | - Zhiyuan Wang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Key Laboratory of Basic Pharmacology of Ministry of Education, School of Pharmacy, Zunyi Medical University, 6 West Xuefu Road, Zunyi, 563000, PR China
| | - Chunyong Wei
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Key Laboratory of Basic Pharmacology of Ministry of Education, School of Pharmacy, Zunyi Medical University, 6 West Xuefu Road, Zunyi, 563000, PR China
| | - Jing Wang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Key Laboratory of Basic Pharmacology of Ministry of Education, School of Pharmacy, Zunyi Medical University, 6 West Xuefu Road, Zunyi, 563000, PR China
| | - Yingshu Xu
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Key Laboratory of Basic Pharmacology of Ministry of Education, School of Pharmacy, Zunyi Medical University, 6 West Xuefu Road, Zunyi, 563000, PR China
| | - Guohui Bai
- Key Laboratory of Oral Disease of Higher Schools in Guizhou Province, Zunyi Medical University, 6 West Xuefu Road, Zunyi, 563000, PR China.
| | - Qizheng Yao
- School of Pharmacy, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing, 210009, PR China.
| | - Lei Zhang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Key Laboratory of Basic Pharmacology of Ministry of Education, School of Pharmacy, Zunyi Medical University, 6 West Xuefu Road, Zunyi, 563000, PR China.
| | - Yongzheng Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Key Laboratory of Basic Pharmacology of Ministry of Education, School of Pharmacy, Zunyi Medical University, 6 West Xuefu Road, Zunyi, 563000, PR China.
| |
Collapse
|
9
|
Letribot B, Redjdal W, Benmerad B, Le Bideau F, Alami M, Messaoudi S. Synthesis of N-Glycosyl-2-oxindoles by Pd-Catalyzed N-Arylation of 1-Amidosugars. Org Lett 2020; 22:4201-4206. [PMID: 32401034 DOI: 10.1021/acs.orglett.0c01262] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An efficient intramolecular Pd-catalyzed N-arylation of o-iodo-amidosugars for the synthesis of N-glycosylated oxindoles has been reported. The coupling reaction takes place in toluene and involves Pd(OAc)2/RuPhos catalytic systems in the presence of K2CO3. This versatile approach was extended successfully to the synthesis of other N-glycosylated heterocycles.
Collapse
Affiliation(s)
- Boris Letribot
- Université Paris-Saclay, CNRS, BioCIS, 92290 Châtenay-Malabry, France
| | - Wafa Redjdal
- Université Paris-Saclay, CNRS, BioCIS, 92290 Châtenay-Malabry, France.,Laboratoire de Physico-Chimie des Matériaux et Catalyse, Faculté des Sciences Exactes, Université de Bejaia, 06000 Be-jaia, Algeria
| | - Belkacem Benmerad
- Laboratoire de Physico-Chimie des Matériaux et Catalyse, Faculté des Sciences Exactes, Université de Bejaia, 06000 Be-jaia, Algeria
| | - Franck Le Bideau
- Université Paris-Saclay, CNRS, BioCIS, 92290 Châtenay-Malabry, France
| | - Mouâd Alami
- Université Paris-Saclay, CNRS, BioCIS, 92290 Châtenay-Malabry, France
| | - Samir Messaoudi
- Université Paris-Saclay, CNRS, BioCIS, 92290 Châtenay-Malabry, France
| |
Collapse
|
10
|
Soltan MY, Sumarni U, Assaf C, Langer P, Reidel U, Eberle J. Key Role of Reactive Oxygen Species (ROS) in Indirubin Derivative-Induced Cell Death in Cutaneous T-Cell Lymphoma Cells. Int J Mol Sci 2019; 20:ijms20051158. [PMID: 30866411 PMCID: PMC6429192 DOI: 10.3390/ijms20051158] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 02/27/2019] [Accepted: 03/02/2019] [Indexed: 01/05/2023] Open
Abstract
Cutaneous T-cell lymphoma (CTCL) may develop a highly malignant phenotype in its late phase, and patients may profit from innovative therapies. The plant extract indirubin and its chemical derivatives represent new and promising antitumor strategies. This first report on the effects of an indirubin derivative in CTCL cells shows a strong decrease of cell proliferation and cell viability as well as an induction of apoptosis, suggesting indirubin derivatives for therapy of CTCL. As concerning the mode of activity, the indirubin derivative DKP-071 activated the extrinsic apoptosis cascade via caspase-8 and caspase-3 through downregulation of the caspase antagonistic proteins c-FLIP and XIAP. Importantly, a strong increase of reactive oxygen species (ROS) was observed as an immediate early effect in response to DKP-071 treatment. The use of antioxidative pre-treatment proved the decisive role of ROS, which turned out upstream of all other proapoptotic effects monitored. Thus, reactive oxygen species appear as a highly active proapoptotic pathway in CTCL, which may be promising for therapeutic intervention. This pathway can be efficiently activated by an indirubin derivative.
Collapse
Affiliation(s)
- Marwa Y Soltan
- Skin Cancer Centre Charité, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.
- Department of Dermatology and Venereology, Faculty of Medicine, Ain Shams University, Cairo 11591, Egypt.
| | - Uly Sumarni
- Skin Cancer Centre Charité, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.
| | - Chalid Assaf
- Skin Cancer Centre Charité, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.
- Clinic for Dermatology and Venereology, Helios Klinikum Krefeld, Lutherplatz 40, 47805 Krefeld, Germany.
| | - Peter Langer
- Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 3a, 18059 Rostock, Germany.
- Leibniz Institute of Catalysis at the University of Rostock e.V., Albert-Einstein-Str. 29a, 18059 Rostock, Germany.
| | - Ulrich Reidel
- Skin Cancer Centre Charité, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.
| | - Jürgen Eberle
- Skin Cancer Centre Charité, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
11
|
Zhivkova V, Kiecker F, Langer P, Eberle J. Crucial role of reactive oxygen species (ROS) for the proapoptotic effects of indirubin derivative DKP-073 in melanoma cells. Mol Carcinog 2018; 58:258-269. [PMID: 30320471 DOI: 10.1002/mc.22924] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/27/2018] [Accepted: 10/09/2018] [Indexed: 01/07/2023]
Abstract
Melanoma represents a prime example demonstrating the success of targeted therapy in cancer. Nevertheless, it remained a deadly disease until now, and the identification of new, independent strategies as well as the understanding of their molecular mechanisms may help to finally overcome the high mortality. Both indirubins and TNF-related apoptosis-inducing ligand (TRAIL) represent promising candidates. Here, the indirubin derivative DKP-073 is shown to trigger apoptosis in melanoma cells, which is enhanced by the combination with TRAIL and is accompanied by complete loss of cell viability. Addressing the signaling cascade, characteristic molecular steps were identified as caspase-3 activation, downregulation of XIAP, upregulation of p53 and TRAIL receptor 2, loss of mitochondrial membrane potential, and STAT-3 dephosphorylation. The decisive step, however, turned out to be the early production of ROS already at 1 h. This was proven by antioxidant pretreatment, which completely abolished apoptosis induction and loss of cell viability as well as abrogated all signaling effects listed above. Thus, ROS appeared as upstream of all proapoptotic signaling. The data indicate a dominant role of ROS in apoptosis regulation, and the new pathway may expose a possible Achilleś heel of melanoma.
Collapse
Affiliation(s)
- Veselina Zhivkova
- Department of Dermatology and Allergy, Skin Cancer Centre Charité, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Faculty of Science, Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Felix Kiecker
- Department of Dermatology and Allergy, Skin Cancer Centre Charité, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Peter Langer
- Institute of Chemistry, University of Rostock, Rostock, Germany.,Leibniz Institute of Catalysis at the University of Rostock e.V., Rostock, Germany
| | - Jürgen Eberle
- Department of Dermatology and Allergy, Skin Cancer Centre Charité, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
12
|
Wang L, Li X, Liu X, Lu K, Chen NA, Li P, Lv X, Wang X. Enhancing effects of indirubin on the arsenic disulfide-induced apoptosis of human diffuse large B-cell lymphoma cells. Oncol Lett 2015; 9:1940-1946. [PMID: 25789073 PMCID: PMC4356417 DOI: 10.3892/ol.2015.2941] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 01/16/2015] [Indexed: 01/01/2023] Open
Abstract
The aim of the present study was to investigate the indirubin-enhanced effects of arsenic disulfide (As2S2) on the proliferation and apoptosis of diffuse large B-cell lymphoma (DLBCL) cells in order to identify an optimum combination therapy. The human DLBCL cells, LY1 and LY8, were treated with different concentrations of indirubin for 24, 48 and 72 h. Next, the cells were treated with 10 μM As2S2 or a combination of 10 μM As2S2 and 20 μM indirubin for 48 h. Cell proliferation inhibition was detected using cell counting kit-8 and cell apoptosis was determined using flow cytometry. The expression levels of Bcl-2, Bcl-2-associated X protein (Bax) and caspase-3 were analyzed by quantitative polymerase chain reaction (qPCR) and western blotting. The DLBCL cell viability exhibited no significant changes at 24, 48 or 72 h with increasing indirubin concentration. In addition, the apoptotic rates of the LY1 and LY8 cells demonstrated no noticeable effects at 48 h with increasing indirubin concentration. Following treatment with the combination of indirubin and As2S2, the inhibitory and apoptotic rates of the cells were notably increased compared with those of the As2S2-treated group. The qPCR results revealed that indirubin alone had no enhancing effect upon the Bax/Bcl-2 mRNA expression ratio and caspase-3 mRNA expression. Western blot analysis revealed that indirubin alone had an enhancing effect upon the Bax/Bcl-2 protein ratio and procaspase-3 protein expression. In addition, the results demonstrated that the 21-KDa Bax protein was proteolytically cleaved into an 18-KDa Bax in the DLBCL cells treated with the combination of indirubin and As2S2. Indirubin alone did not inhibit proliferation or induce the apoptosis of the LY1 and LY8 cells. However, the combination of indirubin and As2S2 yielded enhancing effects. Therefore, the results of the present study demonstrated that with regard to antitumor activities, As2S2 served as the principal drug, whereas indirubin served as the adjuvant drug. The enhancing effect was due, in part, to the induction of the mitochondrial apoptotic pathway, which involves the cleavage of Bax.
Collapse
Affiliation(s)
- Ling Wang
- Department of Hematology, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China ; Department of Hematology, Taian City Central Hospital, Tai'an, Shandong 271000, P.R. China
| | - Xianglu Li
- Department of Hematology, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Xinyu Liu
- Department of Hematology, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Kang Lu
- Department of Hematology, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - N A Chen
- Department of Hematology, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Peipei Li
- Department of Hematology, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Xiao Lv
- Department of Hematology, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Xin Wang
- Department of Hematology, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China ; Institute of Diagnostics, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
13
|
Kleeblatt D, Becker M, Plötz M, Schönherr M, Villinger A, Hein M, Eberle J, Kunz M, Rahman Q, Langer P. Synthesis and bioactivity of N-glycosylated 3-(2-oxo-2-arylethylidene)-indolin-2-ones. RSC Adv 2015. [DOI: 10.1039/c4ra14301a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
N-Glycosyl-3-alkylideneoxindoles, N-glycosylated 3-(2-oxo-2-arylethylidene)indolin-2-ones, were prepared by reaction of isatin-N-glycosides with substituted acetophenones.
Collapse
Affiliation(s)
| | - Martin Becker
- Institut für Chemie
- Universität Rostock
- 18059 Rostock
- Germany
| | - Michael Plötz
- Charité Centrum 12 für Innere Medizin und Dermatologie
- Hauttumorzentrum
- Charité – Universitätsmedizin Berlin
- 10117 Berlin
- Germany
| | - Madeleine Schönherr
- Klinik für Dermatologie
- Venerologie und Allergologie
- Universitätsklinik Leipzig
- 04103 Leipzig
- Germany
| | | | - Martin Hein
- Institut für Chemie
- Universität Rostock
- 18059 Rostock
- Germany
| | - Jürgen Eberle
- Charité Centrum 12 für Innere Medizin und Dermatologie
- Hauttumorzentrum
- Charité – Universitätsmedizin Berlin
- 10117 Berlin
- Germany
| | - Manfred Kunz
- Klinik für Dermatologie
- Venerologie und Allergologie
- Universitätsklinik Leipzig
- 04103 Leipzig
- Germany
| | - Qamar Rahman
- Institut für Chemie
- Universität Rostock
- 18059 Rostock
- Germany
- Amity University
| | - Peter Langer
- Institut für Chemie
- Universität Rostock
- 18059 Rostock
- Germany
- Leibniz-Institut für Katalyse e. V. an der Universität Rostock
| |
Collapse
|
14
|
Erben F, Michalik D, Feist H, Kleeblatt D, Hein M, Matin A, Iqbal J, Langer P. Synthesis and antiproliferative activity of (Z)-1-glycosyl-3-(5-oxo-2-thioxoimidazolidin-4-ylidene)indolin-2-ones and (Z)-3-(2-glycosylsulfanyl-4-oxo-4,5-dihydro-thiazol-5-ylidene)indolin-2-ones. RSC Adv 2014. [DOI: 10.1039/c3ra44362k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
15
|
Kleeblatt D, Cordes CA, Lebrenz P, Hein M, Feist H, Matin A, Raza R, Iqbal J, Munshi O, Rahman Q, Villinger A, Langer P. Synthesis and antiproliferative activity of N-glycosyl-3,3-diaryloxindoles. RSC Adv 2014. [DOI: 10.1039/c4ra02627f] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
16
|
R. Biehl E, Mendoza K, Kamila S. Synthesis of Novel 5-Aryl/Hetarylidenyl 3-(2-Methyl-5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidin-4-yl)-2-thioxothiazolidin-4-ones. HETEROCYCLES 2014. [DOI: 10.3987/com-13-s(s)36] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
Matos AM, Francisco AP. Targets, structures, and recent approaches in malignant melanoma chemotherapy. ChemMedChem 2013; 8:1751-65. [PMID: 23956078 DOI: 10.1002/cmdc.201300248] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 07/23/2013] [Indexed: 12/24/2022]
Abstract
Malignant metastatic melanoma is one of the oncologic diseases with the worst clinical prognosis, due primarily to resistance phenomena against chemotherapeutic agents in current use. However, over the last few years, characterization of the molecular mechanisms involved in the development and progression of the disease has contributed to elucidation of the main pathways by which tissue invasion and metastasis can occur. More importantly, the identification of abnormalities in signaling cascades in melanoma cells has facilitated new therapeutic approaches against malignant melanoma through the design of highly potent and selective drugs with low associated toxicity. Ultimately, recognition of the restricted applicability of new chemotherapies in certain genetic contexts has led to significant improvements in the results of clinical trials, anticipating the existing need for investment in personalized therapies, and taking into account the molecular alterations observed in tumors. Although significant advances have been made in terms of extending the median overall survival rate and improving the quality of life for patients, the mechanisms that compromise in vivo drug efficacy remain poorly understood, particularly those concerning therapeutic resistance phenomena. This review summarizes recently validated targets from the perspective of the medicinal chemistry carried out in the design of the most promising structures.
Collapse
Affiliation(s)
- Ana Marta Matos
- Research Institute for Medicines and Pharmaceutical Sciences (i Med. UL), Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmacy, University of Lisbon, Av. Prof. Gama Pinto, 1649-003 Lisbon (Portugal)
| | | |
Collapse
|
18
|
LEE MINGYANG, LIU YIWEN, CHEN MINGHO, WU JINYI, HO HSINGYING, WANG QWAFUN, CHUANG JINGJING. Indirubin-3′-monoxime promotes autophagic and apoptotic death in JM1 human acute lymphoblastic leukemia cells and K562 human chronic myelogenous leukemia cells. Oncol Rep 2013; 29:2072-8. [DOI: 10.3892/or.2013.2334] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 02/08/2013] [Indexed: 11/05/2022] Open
|
19
|
Erben F, Kleeblatt D, Sonneck M, Hein M, Feist H, Fahrenwaldt T, Fischer C, Matin A, Iqbal J, Plötz M, Eberle J, Langer P. Synthesis and antiproliferative activity of selenoindirubins and selenoindirubin-N-glycosides. Org Biomol Chem 2013; 11:3963-78. [DOI: 10.1039/c3ob40603b] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
20
|
Berger A, Quast SA, Plötz M, Hein M, Kunz M, Langer P, Eberle J. Sensitization of melanoma cells for death ligand-induced apoptosis by an indirubin derivative—Enhancement of both extrinsic and intrinsic apoptosis pathways. Biochem Pharmacol 2011; 81:71-81. [DOI: 10.1016/j.bcp.2010.09.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 09/09/2010] [Accepted: 09/10/2010] [Indexed: 02/07/2023]
|
21
|
Karapetyan G, Chakrabarty K, Hein M, Langer P. Synthesis and Bioactivity of Carbohydrate Derivatives of Indigo, Its Isomers and Heteroanalogues. ChemMedChem 2010; 6:25-37. [DOI: 10.1002/cmdc.201000374] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|