1
|
Yang Z, Xiao Y, Shi Y, Liu L. Advances in the chemical synthesis of human proteoforms. SCIENCE CHINA. LIFE SCIENCES 2025:10.1007/s11427-024-2860-5. [PMID: 40210795 DOI: 10.1007/s11427-024-2860-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 02/03/2025] [Indexed: 04/12/2025]
Abstract
Access to structurally-defined human proteoforms is essential to the biochemical studies on human health and medicine. Chemical protein synthesis provides a bottom-up and atomic-resolution approach for the preparation of homogeneous proteoforms bearing any number of post-translational modifications of any structure, at any position, and in any combination. In this review, we summarize the development of chemical protein synthesis, focusing on the recent advances in synthetic methods, product characterizations, and biomedical applications. By analyzing the chemical protein synthesis studies on human proteoforms reported to date, this review demonstrates the significant methodological improvements that have taken place in the field of human proteoform synthesis, especially in the last decade. Our analysis shows that although further method development is needed, all the human proteoforms could be within reach in a cost-effective manner through a divide-and-conquer chemical protein synthesis strategy. The synthetic proteoforms have been increasingly used to support biomedical research, including spatial-temporal studies and interaction network analysis, activity quantification and mechanism elucidation, and the development and evaluation of diagnostics and therapeutics.
Collapse
Affiliation(s)
- Ziyi Yang
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yudi Xiao
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yang Shi
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Lei Liu
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
2
|
Abstract
Protein semisynthesis-defined herein as the assembly of a protein from a combination of synthetic and recombinant fragments-is a burgeoning field of chemical biology that has impacted many areas in the life sciences. In this review, we provide a comprehensive survey of this area. We begin by discussing the various chemical and enzymatic methods now available for the manufacture of custom proteins containing noncoded elements. This section begins with a discussion of methods that are more chemical in origin and ends with those that employ biocatalysts. We also illustrate the commonalities that exist between these seemingly disparate methods and show how this is allowing for the development of integrated chemoenzymatic methods. This methodology discussion provides the technical foundation for the second part of the review where we cover the great many biological problems that have now been addressed using these tools. Finally, we end the piece with a short discussion on the frontiers of the field and the opportunities available for the future.
Collapse
Affiliation(s)
| | - Tom W. Muir
- Department of Chemistry, Princeton University, Frick Laboratory, Princeton, New Jersey 08544, United States
| |
Collapse
|
3
|
Spiller S, Panitz N, Limasale YDP, Atallah PM, Schirmer L, Bellmann-Sickert K, Blaszkiewicz J, Koehling S, Freudenberg U, Rademann J, Werner C, Beck-Sickinger AG. Modulation of Human CXCL12 Binding Properties to Glycosaminoglycans To Enhance Chemotactic Gradients. ACS Biomater Sci Eng 2019; 5:5128-5138. [DOI: 10.1021/acsbiomaterials.9b01139] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Sabrina Spiller
- Universität Leipzig, Faculty of Life Sciences, Institute of Biochemistry, Brüderstrasse 34, 04103 Leipzig, Germany
| | - Nydia Panitz
- Universität Leipzig, Faculty of Life Sciences, Institute of Biochemistry, Brüderstrasse 34, 04103 Leipzig, Germany
| | - Yanuar Dwi Putra Limasale
- Leibniz Institute of Polymer Research Dresden (IPF), Max Bergmann Center of Biomaterials Dresden (MBC), Hohe Strasse 6, 01069 Dresden, Germany
| | - Passant Morsi Atallah
- Leibniz Institute of Polymer Research Dresden (IPF), Max Bergmann Center of Biomaterials Dresden (MBC), Hohe Strasse 6, 01069 Dresden, Germany
| | - Lucas Schirmer
- Leibniz Institute of Polymer Research Dresden (IPF), Max Bergmann Center of Biomaterials Dresden (MBC), Hohe Strasse 6, 01069 Dresden, Germany
| | - Kathrin Bellmann-Sickert
- Universität Leipzig, Faculty of Life Sciences, Institute of Biochemistry, Brüderstrasse 34, 04103 Leipzig, Germany
| | - Joanna Blaszkiewicz
- Freie Universität Berlin, Medicinal Chemistry, Königin-Luise-Strasse 2+4, Berlin 14195, Germany
| | - Sebastian Koehling
- Freie Universität Berlin, Medicinal Chemistry, Königin-Luise-Strasse 2+4, Berlin 14195, Germany
| | - Uwe Freudenberg
- Leibniz Institute of Polymer Research Dresden (IPF), Max Bergmann Center of Biomaterials Dresden (MBC), Hohe Strasse 6, 01069 Dresden, Germany
| | - Jörg Rademann
- Freie Universität Berlin, Medicinal Chemistry, Königin-Luise-Strasse 2+4, Berlin 14195, Germany
| | - Carsten Werner
- Leibniz Institute of Polymer Research Dresden (IPF), Max Bergmann Center of Biomaterials Dresden (MBC), Hohe Strasse 6, 01069 Dresden, Germany
| | - Annette G. Beck-Sickinger
- Universität Leipzig, Faculty of Life Sciences, Institute of Biochemistry, Brüderstrasse 34, 04103 Leipzig, Germany
| |
Collapse
|
4
|
Micewicz ED, Nguyen C, Micewicz A, Waring AJ, McBride WH, Ruchala P. Position of lipidation influences anticancer activity of Smac analogs. Bioorg Med Chem Lett 2019; 29:1628-1635. [PMID: 31047753 PMCID: PMC6625762 DOI: 10.1016/j.bmcl.2019.04.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/25/2019] [Accepted: 04/25/2019] [Indexed: 10/26/2022]
Abstract
A small group of lipid-conjugated Smac mimetics was synthesized to probe the influence of the position of lipidation on overall anti-cancer activity. Specifically, new compounds were modified with lipid(s) in position 3 and C-terminus. Previously described position 2 lipidated analog M11 was also synthesized. The resulting mini library of Smacs lipidated in positions 2, 3 and C-terminus was screened extensively in vitro against a total number of 50 diverse cancer cell lines revealing that both the position of lipidation as well as the type of lipid, influence their anti-cancer activity and cancer type specificity. Moreover, when used in combination therapy with inhibitor of menin-MLL1 protein interactions, position 2 modified analog SM2 showed strong synergistic anti-cancer properties. The most promising lipid-conjugated analogs SM2 and SM6, showed favorable pharmacokinetics and in vivo activity while administered subcutaneously in the preclinical mouse model. Collectively, our findings suggest that lipid modification of Smacs may be a viable approach in the development of anti-cancer therapeutic leads.
Collapse
Affiliation(s)
- Ewa D Micewicz
- Department of Radiation Oncology, University of California at Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
| | - Christine Nguyen
- Department of Radiation Oncology, University of California at Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
| | - Alina Micewicz
- David Geffen School of Medicine at UCLA, Volunteering Program, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
| | - Alan J Waring
- Department of Medicine, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, 1000 West Carson Street, Torrance, CA 90502, USA
| | - William H McBride
- Department of Radiation Oncology, University of California at Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
| | - Piotr Ruchala
- Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, 760 Westwood Plaza, Los Angeles, CA 90024, USA; The Pasarow Mass Spectrometry Laboratory, The Jane and Terry Semel Institute for Neuroscience and Human Behavior, 760 Westwood Plaza, Los Angeles, CA 90024, USA.
| |
Collapse
|
5
|
Juhl C, Els-Heindl S, Schönauer R, Redlich G, Haaf E, Wunder F, Riedl B, Burkhardt N, Beck-Sickinger AG, Bierer D. Development of Potent and Metabolically Stable APJ Ligands with High Therapeutic Potential. ChemMedChem 2016; 11:2378-2384. [DOI: 10.1002/cmdc.201600307] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Cathleen Juhl
- Department of Medicinal Chemistry; Bayer Pharma AG; Aprather Weg 18 A 42096 Wuppertal Germany
| | - Sylvia Els-Heindl
- Institute of Biochemistry; Leipzig University; Brüderstraße 34 04103 Leipzig Germany
| | - Ria Schönauer
- Institute of Biochemistry; Leipzig University; Brüderstraße 34 04103 Leipzig Germany
| | - Gorden Redlich
- Global External Innovation & Alliances; Bayer Pharma AG; Aprather Weg 18 A 42096 Wuppertal Germany
| | - Erik Haaf
- Department of Pharmacokinetics and Metabolism; Bayer Pharma AG; Aprather Weg 18 A 42096 Wuppertal Germany
| | - Frank Wunder
- Lead Discovery Wuppertal; Bayer Pharma AG; Aprather Weg 18 A 42096 Wuppertal Germany
| | - Bernd Riedl
- Department of Medicinal Chemistry; Bayer Pharma AG; Aprather Weg 18 A 42096 Wuppertal Germany
| | - Nils Burkhardt
- Lead Discovery Wuppertal; Bayer Pharma AG; Aprather Weg 18 A 42096 Wuppertal Germany
| | | | - Donald Bierer
- Department of Medicinal Chemistry; Bayer Pharma AG; Aprather Weg 18 A 42096 Wuppertal Germany
| |
Collapse
|
6
|
Zernia S, Ott F, Bellmann-Sickert K, Frank R, Klenner M, Jahnke HG, Prager A, Abel B, Robitzki A, Beck-Sickinger AG. Peptide-Mediated Specific Immobilization of Catalytically Active Cytochrome P450 BM3 Variant. Bioconjug Chem 2016; 27:1090-7. [DOI: 10.1021/acs.bioconjchem.6b00074] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Sarah Zernia
- Institute
of Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany
| | - Florian Ott
- Institute
of Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany
| | | | - Ronny Frank
- Institute
of Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany
- Centre
for Biotechnology and Biomedicine, Leipzig University, Deutscher
Platz 5, 04103 Leipzig, Germany
| | - Marcus Klenner
- Institute
of Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany
- Centre
for Biotechnology and Biomedicine, Leipzig University, Deutscher
Platz 5, 04103 Leipzig, Germany
| | - Heinz-Georg Jahnke
- Institute
of Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany
- Centre
for Biotechnology and Biomedicine, Leipzig University, Deutscher
Platz 5, 04103 Leipzig, Germany
| | - Andrea Prager
- Leibniz-Institute of Surface Modification (IOM), Permoserstraße 15, 04318 Leipzig, Germany
| | - Bernd Abel
- Leibniz-Institute of Surface Modification (IOM), Permoserstraße 15, 04318 Leipzig, Germany
| | - Andrea Robitzki
- Institute
of Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany
- Centre
for Biotechnology and Biomedicine, Leipzig University, Deutscher
Platz 5, 04103 Leipzig, Germany
| | | |
Collapse
|
7
|
Micewicz ED, Ratikan JA, Waring AJ, Whitelegge JP, McBride WH, Ruchala P. Lipid-conjugated Smac analogues. Bioorg Med Chem Lett 2015; 25:4419-27. [PMID: 26384289 PMCID: PMC4592835 DOI: 10.1016/j.bmcl.2015.09.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 09/02/2015] [Accepted: 09/07/2015] [Indexed: 11/26/2022]
Abstract
A small library of monovalent and bivalent Smac mimics was synthesized based on 2 types of monomers, with general structure NMeAla-Xaa-Pro-BHA (Xaa=Cys or Lys). Position 2 of the compounds was utilized to dimerize both types of monomers employing various bis-reactive linkers, as well as to modify selected compounds with lipids. The resulting library was screened in vitro against metastatic human breast cancer cell line MDA-MB-231, and the two most active compounds selected for in vivo studies. The most active lipid-conjugated analogue M11, showed in vivo activity while administered both subcutaneously and orally. Collectively, our findings suggest that lipidation may be a viable approach in the development of new Smac-based therapeutic leads.
Collapse
Affiliation(s)
- Ewa D Micewicz
- Department of Radiation Oncology, University of California at Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
| | - Josephine A Ratikan
- Department of Radiation Oncology, University of California at Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
| | - Alan J Waring
- Department of Medicine, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, 1000 West Carson Street, Torrance, CA 90502, USA; Department of Physiology and Biophysics, University of California Irvine, 1001 Health Sciences Road, Irvine, CA 92697, USA
| | - Julian P Whitelegge
- Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, 760 Westwood Plaza, Los Angeles, CA 90024, USA; The Pasarow Mass Spectrometry Laboratory, The Jane and Terry Semel Institute for Neuroscience and Human Behavior, 760 Westwood Plaza, Los Angeles, CA 90024, USA
| | - William H McBride
- Department of Radiation Oncology, University of California at Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
| | - Piotr Ruchala
- Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, 760 Westwood Plaza, Los Angeles, CA 90024, USA; The Pasarow Mass Spectrometry Laboratory, The Jane and Terry Semel Institute for Neuroscience and Human Behavior, 760 Westwood Plaza, Los Angeles, CA 90024, USA.
| |
Collapse
|
8
|
The effect of stromal cell-derived factor 1 in the migration of neural stem cells. Cell Biochem Biophys 2015; 70:1609-16. [PMID: 25241080 DOI: 10.1007/s12013-014-0103-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Neural stem cells (NSCs) have widely been used in the treatment of human neurological disorders as cell therapy via intracerebral or intraventricular infusion. However, the migration mechanism required for NSCs homing and recruitment remains to be elucidated. Recently, SDF-1/CXCR4 axis was shown to be responsible for in cell migration and differentiation during the neural development stage and involved in the pathophysiological process of neurological disorders. In this study, we investigated the effect of SDF-1 in migration of NSCs in vitro and in vivo. The expression of CXCR4 receptor was examined by immunocytochemistry and RT-PCR. The migratory ability of NSCs induced by SDF-1 was assessed by transwell chemotaxis assay. The traumatic brain injury rat model was well established, and the recruitment of NSCs and expression of SDF-1 were investigated in vivo. Our findings demonstrated that SDF-1, in vitro, significantly induced the migratory of NSCs in a dose-dependent manner. An overexpression of neural stem cell marker Nestin in the hippocampus was observed after TBI, and the expressions of SDF-1 surrounding the lesion areas were significantly increased. Our results suggested that the migration of NSCs was activated by chemotactic effect of SDF-1. It was also proved the relevance of SDF-1 in the migration of endogenous NSCs after brain injury. Taken together, these results demonstrated that SDF-1/CXCR4 axis may play crucial role in the migration of Nestin-positive cell after brain injury.
Collapse
|
9
|
Chang SL, Cavnar SP, Takayama S, Luker GD, Linderman JJ. Cell, isoform, and environment factors shape gradients and modulate chemotaxis. PLoS One 2015; 10:e0123450. [PMID: 25909600 PMCID: PMC4409393 DOI: 10.1371/journal.pone.0123450] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 03/04/2015] [Indexed: 12/02/2022] Open
Abstract
Chemokine gradient formation requires multiple processes that include ligand secretion and diffusion, receptor binding and internalization, and immobilization of ligand to surfaces. To understand how these events dynamically shape gradients and influence ensuing cell chemotaxis, we built a multi-scale hybrid agent-based model linking gradient formation, cell responses, and receptor-level information. The CXCL12/CXCR4/CXCR7 signaling axis is highly implicated in metastasis of many cancers. We model CXCL12 gradient formation as it is impacted by CXCR4 and CXCR7, with particular focus on the three most highly expressed isoforms of CXCL12. We trained and validated our model using data from an in vitro microfluidic source-sink device. Our simulations demonstrate how isoform differences on the molecular level affect gradient formation and cell responses. We determine that ligand properties specific to CXCL12 isoforms (binding to the migration surface and to CXCR4) significantly impact migration and explain differences in in vitro chemotaxis data. We extend our model to analyze CXCL12 gradient formation in a tumor environment and find that short distance, steep gradients characteristic of the CXCL12-γ isoform are effective at driving chemotaxis. We highlight the importance of CXCL12-γ in cancer cell migration: its high effective affinity for both extracellular surface sites and CXCR4 strongly promote CXCR4+ cell migration. CXCL12-γ is also more difficult to inhibit, and we predict that co-inhibition of CXCR4 and CXCR7 is necessary to effectively hinder CXCL12-γ-induced migration. These findings support the growing importance of understanding differences in protein isoforms, and in particular their implications for cancer treatment.
Collapse
Affiliation(s)
- S. Laura Chang
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Stephen P. Cavnar
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Shuichi Takayama
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Macromolecular Science and Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Gary D. Luker
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
- Center for Molecular Imaging, Department of Radiology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Jennifer J. Linderman
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
10
|
High metabolic in vivo stability and bioavailability of a palmitoylated ghrelin receptor ligand assessed by mass spectrometry. Bioorg Med Chem 2014; 23:3925-32. [PMID: 25541202 DOI: 10.1016/j.bmc.2014.12.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 11/30/2014] [Accepted: 12/04/2014] [Indexed: 11/20/2022]
Abstract
The constitutive activity of the ghrelin receptor is of high physiological and pathophysiological relevance. In-depth structure-activity relationship studies revealed a palmitoylated ghrelin receptor ligand that displays an in vitro binding affinity in the low nanomolar range. Activity studies revealed inverse agonistic as well as antagonistic properties and in vitro metabolic analysis indicated a high stability in blood serum and liver homogenate. For metabolic testing in vivo, a combined approach of stable isotopic labeling and mass spectrometry-based analysis was established. Therefore, a heavy isotopic version of the peptide containing a (13)C-labeled palmitic acid was synthesized and a 1:1 ratio of a (12)C/(13)C-peptide mixture was injected into rats. Biological samples were analyzed by multiple reaction monitoring allowing simultaneous peptide detection and quantification. Measurements revealed a suitable bioavailability over 24h in rat serum and subsequent high-resolution mass spectrometry investigations showed only negligible degradation and slow body clearance. Hence, this method combination allowed the identification and evaluation of a highly potent and metabolically stable ghrelin receptor ligand in vivo.
Collapse
|
11
|
Bellmann-Sickert K, Stone TA, Poulsen BE, Deber CM. Efflux by small multidrug resistance proteins is inhibited by membrane-interactive helix-stapled peptides. J Biol Chem 2014; 290:1752-9. [PMID: 25425644 DOI: 10.1074/jbc.m114.616185] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Bacterial cell membranes contain several protein pumps that resist the toxic effects of drugs by efficiently extruding them. One family of these pumps, the small multidrug resistance proteins (SMRs), consists of proteins of about 110 residues that need to oligomerize to form a structural pathway for substrate extrusion. As such, SMR oligomerization sites should constitute viable targets for efflux inhibition, by disrupting protein-protein interactions between helical segments. To explore this proposition, we are using Hsmr, an SMR from Halobacter salinarum that dimerizes to extrude toxicants. Our previous work established that (i) Hsmr dimerization is mediated by a helix-helix interface in Hsmr transmembrane (TM) helix 4 (residues (90)GLALIVAGV(98)); and (ii) a peptide comprised of the full TM4(85-105) sequence inhibits Hsmr-mediated ethidium bromide efflux from bacterial cells. Here we define the minimal linear sequence for inhibitor activity (determined as TM4(88-100), and then "staple" this sequence via Grubbs metathesis to produce peptides typified by acetyl-A-(Sar)3-(88)VVGLXLIZXGVVV(100)-KKK-NH2 (X = 2-(4'-pentenyl)alanine at positions 92 and 96; Z = Val, Gly, or Asn at position 95)). The Asn(95) peptide displayed specific efflux inhibition and resensitization of Hsmr-expressing cells to ethidium bromide; and was non-hemolytic to human red blood cells. Stapling essentially prevented peptide degradation in blood plasma and liver homogenates versus an unstapled counterpart. The overall results confirm that the stapled analog of TM4(88-100) retains the structural complementarity required to disrupt the Hsmr TM4-TM4 locus in Hsmr, and portend the general validity of stapled peptides as therapeutics for the disruption of functional protein-protein interactions in membranes.
Collapse
Affiliation(s)
- Kathrin Bellmann-Sickert
- From the Division of Molecular Structure and Function, Research Institute, The Hospital for Sick Children, Toronto, Ontario M5G 0A4 and
| | - Tracy A Stone
- From the Division of Molecular Structure and Function, Research Institute, The Hospital for Sick Children, Toronto, Ontario M5G 0A4 and the Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Bradley E Poulsen
- From the Division of Molecular Structure and Function, Research Institute, The Hospital for Sick Children, Toronto, Ontario M5G 0A4 and the Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Charles M Deber
- From the Division of Molecular Structure and Function, Research Institute, The Hospital for Sick Children, Toronto, Ontario M5G 0A4 and the Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
12
|
Beck-Sickinger AG, Panitz N. Semi-synthesis of chemokines. Curr Opin Chem Biol 2014; 22:100-7. [DOI: 10.1016/j.cbpa.2014.09.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 09/19/2014] [Accepted: 09/19/2014] [Indexed: 01/04/2023]
|
13
|
Baumann L, Beck-Sickinger AG. Photoactivatable Chemokines - Controlling Protein Activity by Light. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201302242] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
14
|
Baumann L, Beck-Sickinger AG. Photoactivatable Chemokines - Controlling Protein Activity by Light. Angew Chem Int Ed Engl 2013; 52:9550-3. [DOI: 10.1002/anie.201302242] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Indexed: 01/08/2023]
|
15
|
Socher E, Grossmann TN. Chemical biology 2012: from drug targets to biological systems and back. Chembiochem 2013. [PMID: 23184865 DOI: 10.1002/cbic.201200697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Multiple sites sharing a common target: This year's EMBO conference on chemical biology encouraged over 340 researchers to come to Heidelberg, Germany, and discuss the use of diverse chemical strategies and tools to investigate biological questions and better understand cellular processes.
Collapse
Affiliation(s)
- Elke Socher
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| | | |
Collapse
|
16
|
Baumann L, Steinhagen M, Beck-Sickinger AG. Preparation of C-terminally modified chemokines by expressed protein ligation. Methods Mol Biol 2013; 1047:103-118. [PMID: 23943481 DOI: 10.1007/978-1-62703-544-6_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In order to link structural features on a molecular level to the function of chemokines, site-specific modification strategies are strongly required. These can be used to incorporate fluorescent dyes and/or physical probes to allow investigations in a wide range of biological and physical techniques, e.g., nuclear magnetic resonance (NMR) spectroscopy, fluorescence microscopy, fluorescence resonance energy transfer (FRET), or fluorescence correlation spectroscopy (FCS). Only a limited number of functional groups within the 20 canonical amino acids allow ligation strategies that can be helpful to introduce novel functionalities, which in turn expand the scope of chemoselective and orthogonal reactivity of (semi)synthetic chemokines. In the present chapter we mainly focus on the fabulous history of native chemical ligation (NCL) and provide a general protocol for the preparation of C-terminally modified SDF-1α including tips and tricks for practical work. We believe that this protocol can be easily adapted to other chemokines and many proteins in general.
Collapse
Affiliation(s)
- Lars Baumann
- Institute of Biochemistry, Universität Leipzig, Leipzig, Germany
| | | | | |
Collapse
|
17
|
Takekoshi T, Ziarek JJ, Volkman BF, Hwang ST. A locked, dimeric CXCL12 variant effectively inhibits pulmonary metastasis of CXCR4-expressing melanoma cells due to enhanced serum stability. Mol Cancer Ther 2012; 11:2516-25. [PMID: 22869557 DOI: 10.1158/1535-7163.mct-12-0494] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The CXC chemokine receptor-4 (CXCR4) plays a critical role in cancer by positively regulating cancer cell metastasis and survival. We previously showed that high concentrations of the CXCR4 ligand, wild-type CXCL12 (wtCXCL12), could inhibit colorectal cancer metastasis in vivo, and we have hypothesized that wtCXCL12 dimerizes at high concentration to become a potent antagonist of CXCR4. To address this hypothesis, we engineered a covalently locked, dimeric variant of CXCL12 (CXCL122). Herein, we show that CXCL122 can not only inhibit implantation of lung metastasis of CXCR4-B16-F10 melanoma cells more effectively than AMD3100, but that CXCL122 also blocks the growth of established pulmonary tumors. To identify a basis for the in vivo efficacy of CXCL122, we conducted Western blot analysis and ELISA analyses, which revealed that CXCL122 was stable for at least 12 hours in serum, whereas wtCXCL12 was quickly degraded. CXCL122 also maintained its antagonist properties in in vitro chemotaxis assays for up to 24 hours in serum, whereas wtCXCL12 was ineffective after 6 hours. Heat-inactivation of serum prolonged the stability and function of wtCXCL12 by more than 6 hours, suggesting enzymatic degradation as a possible mechanism for wtCXCL12 inactivation. In vitro analysis of amino-terminal cleavage by enzymes dipeptidylpeptidase IV (DPPIV/CD26) and matrix metalloproteinase-2 (MMP-2) resulted in 25-fold and 2-fold slower degradation rates, respectively, of CXCL122 compared with wtCXCL12. In summary, our results suggest CXCL122 possesses greater potential as an antimetastatic drug as compared with AMD3100 or wtCXCL12, potentially due to enhanced serum stability in the presence of N-terminal degrading enzymes.
Collapse
Affiliation(s)
- Tomonori Takekoshi
- Department of Dermatology, Medical College of Wisconsin, FEC 4100, 9200 W. Wisconsin Ave, Milwaukee, WI 53226, USA
| | | | | | | |
Collapse
|
18
|
A novel, biased-like SDF-1 derivative acts synergistically with starPEG-based heparin hydrogels and improves eEPC migration in vitro. J Control Release 2012; 162:68-75. [DOI: 10.1016/j.jconrel.2012.04.049] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 04/22/2012] [Accepted: 04/24/2012] [Indexed: 01/30/2023]
|
19
|
Beck-Sickinger AG, Budisa N. Genetically Encoded Photocrosslinkers as Molecular Probes To Study G-Protein-Coupled Receptors (GPCRs). Angew Chem Int Ed Engl 2011; 51:310-2. [DOI: 10.1002/anie.201107211] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Indexed: 11/12/2022]
|
20
|
Beck-Sickinger AG, Budisa N. Genetisch kodierte Photovernetzer als molekulare Sonden zur Untersuchung von G-Protein-gekoppelten Rezeptoren (GPCR). Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201107211] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|