1
|
Sayyed SK, Quraishi M, Prabakaran DS, Chandrasekaran B, Ramesh T, Rajasekharan SK, Raorane CJ, Sonawane T, Ravichandran V. Exploring Zinc C295 as a Dual HIV-1 Integrase Inhibitor: From Strand Transfer to 3'-Processing Suppression. Pharmaceuticals (Basel) 2024; 18:30. [PMID: 39861093 PMCID: PMC11768190 DOI: 10.3390/ph18010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/20/2024] [Accepted: 12/26/2024] [Indexed: 01/27/2025] Open
Abstract
Background: The global AIDS pandemic highlights the urgent need for novel antiretroviral therapies (ART). In our previous work, Zinc C295 was identified as a potent HIV-1 integrase strand transfer (ST) inhibitor. This study explores its potential to also inhibit 3'-processing (3'P), thereby establishing its dual-targeting capability. Methods: The inhibitory activity of Zinc C295 against 3'P was evaluated using a modified in vitro assay adapted from our earlier ST inhibition studies. Molecular docking and molecular dynamics simulations were employed to analyse Zinc C295's interactions with the 3'P allosteric site of HIV-1 integrase. Results: Zinc C295 demonstrated significant inhibition of HIV-1 integrase 3'P activity in in vitro assays (IC50 = 4.709 ± 0.97 µM). Computational analyses revealed key interactions of Zinc C295 within the enzyme's allosteric site, providing insights into its dual inhibitory mechanism. Conclusions: Zinc C295's dual inhibition of HIV-1 integrase ST and 3'P establishes it as a promising candidate for next-generation ART. Its dual-action mechanism may offer potential advantages in enhancing treatment efficacy and addressing drug resistance. Further studies are warranted to evaluate its therapeutic potential in clinical settings.
Collapse
Affiliation(s)
- Sharif Karim Sayyed
- Amity Institute of Biotechnology, Amity University Maharashtra, Mumbai 410206, Maharashtra, India; (S.K.S.); (M.Q.); (T.S.)
- TAQGEN, Molecular Virology Lab of Hootone Remedies, Mumbai 400050, Maharashtra, India
| | - Marzuqa Quraishi
- Amity Institute of Biotechnology, Amity University Maharashtra, Mumbai 410206, Maharashtra, India; (S.K.S.); (M.Q.); (T.S.)
| | - D. S. Prabakaran
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India; (D.S.P.); (S.K.R.)
- Department of Biotechnology, Ayya Nadar Janaki Ammal College (Autonomous), Srivilliputhur Main Road, Sivakasi 626124, Tamil Nadu, India
| | - Balaji Chandrasekaran
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas A&M University, College Station, TX 77845, USA;
| | - Thiyagarajan Ramesh
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Satish Kumar Rajasekharan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India; (D.S.P.); (S.K.R.)
| | | | - Tareeka Sonawane
- Amity Institute of Biotechnology, Amity University Maharashtra, Mumbai 410206, Maharashtra, India; (S.K.S.); (M.Q.); (T.S.)
| | - Vinothkannan Ravichandran
- Amity Institute of Biotechnology, Amity University Maharashtra, Mumbai 410206, Maharashtra, India; (S.K.S.); (M.Q.); (T.S.)
- Center for Drug Discovery and Development (CD3), Amity Institute of Biotechnology, Amity University Maharashtra, Mumbai 410206, Maharashtra, India
| |
Collapse
|
2
|
Shalbi F, Ali AR. A mini-review on integrase inhibitors: The cornerstone of next-generation HIV treatment. Eur J Med Chem 2024; 279:116900. [PMID: 39332384 DOI: 10.1016/j.ejmech.2024.116900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024]
Abstract
Integrase inhibitors represent one of the most remarkable and effective advances in the treatment of HIV-1 infection. Their lack of human cellular equivalence has established integrase as a unique and ideal target for HIV-1 treatment. Over the last two decades, a variety of drugs and small molecule inhibitors have been developed to control or treat HIV infection. Many of these FDA-approved drugs are considered first-line options for AIDS patients. Unfortunately, resistance to these drugs has dictated the development of novel and more efficacious antiretroviral drugs. In this review article, we illustrate the key classes of antiretroviral integrase inhibitors available. We provide a comprehensive analysis of recent advancements in the development of integrase inhibitors, focusing on novel compounds and their distinct mechanisms of action. Our literature review highlights emerging allosteric integrase inhibitors that offer improved efficacy, resistance profiles, and pharmacokinetics. By integrating these recent advancements and clinical insights, this review aims to provide a thorough and updated understanding of integrase inhibitors, emphasizing their evolving role in HIV treatment.
Collapse
Affiliation(s)
- Fathi Shalbi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Ahmed R Ali
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
3
|
Loaiza JD, Chvatal-Medina M, Hernandez JC, Rugeles MT. Integrase inhibitors: current protagonists in antiretroviral therapy. Immunotherapy 2023; 15:1477-1495. [PMID: 37822251 DOI: 10.2217/imt-2023-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023] Open
Abstract
Since HIV was identified as the etiological agent of AIDS, there have been significant advances in antiretroviral therapy (ART) that has reduced morbidity/mortality. Still, the viral genome's high mutation rate, suboptimal ART regimens, incomplete adherence to therapy and poor control of the viral load generate variants resistant to multiple drugs. Licensing over 30 anti-HIV drugs worldwide, including integrase inhibitors, has marked a milestone since they are potent and well-tolerated drugs. In addition, they favor a faster recovery of CD4+ T cells. They also increase the diversity profile of the gut microbiota and reduce inflammatory markers. All of these highlight the importance of including them in different ART regimens.
Collapse
Affiliation(s)
- John D Loaiza
- Grupo Inmunovirología, Facultad de medicina, Universidad de Antioquia, Medellín, 050010, Colombia
| | - Mateo Chvatal-Medina
- Grupo Inmunovirología, Facultad de medicina, Universidad de Antioquia, Medellín, 050010, Colombia
| | - Juan C Hernandez
- Infettare, Facultad de medicina, Universidad Cooperativa de Colombia, Medellín, 050012, Colombia
| | - Maria T Rugeles
- Grupo Inmunovirología, Facultad de medicina, Universidad de Antioquia, Medellín, 050010, Colombia
| |
Collapse
|
4
|
Raubenolt BA, Wong K, Rick SW. Molecular dynamics simulations of allosteric motions and competitive inhibition of the Zika virus helicase. J Mol Graph Model 2021; 108:108001. [PMID: 34388402 DOI: 10.1016/j.jmgm.2021.108001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/20/2021] [Accepted: 07/29/2021] [Indexed: 10/20/2022]
Abstract
The 2015 Zika outbreak sparked major global concern and emphasized the reality and dangers still posed by mosquito borne pathogens. While efforts have been made to develop a vaccine and other therapeutics, there is still a great demand for antiviral drugs targeting Zika and other flaviviruses. The non-structural protein 3 (NS3) helicase is a vital component of the viral replication complex, tasked with unwinding the viral dsRNA molecule into single strands. Given this critical function, the Zika virus helicase is a potential therapeutic target and the focus of many ongoing research efforts. Using a combination of drug docking and molecular dynamics simulations, we have identified a list of competitive helicase inhibitors targeting the ATP hydrolysis site and have discovered a potential allosteric site capable of distorting both of the protein's active sites.
Collapse
Affiliation(s)
- Bryan A Raubenolt
- Department of Chemistry, University of New Orleans, New Orleans, LA, 70148, USA.
| | - Katy Wong
- Department of Chemical and Biomolecular Engineering Tulane University, New Orleans, LA, 70118, USA.
| | - Steven W Rick
- Department of Chemistry, University of New Orleans, New Orleans, LA, 70148, USA.
| |
Collapse
|
5
|
Vansant G, Chen HC, Zorita E, Trejbalová K, Miklík D, Filion G, Debyser Z. The chromatin landscape at the HIV-1 provirus integration site determines viral expression. Nucleic Acids Res 2020; 48:7801-7817. [PMID: 32597987 PMCID: PMC7641320 DOI: 10.1093/nar/gkaa536] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/07/2020] [Accepted: 06/12/2020] [Indexed: 02/06/2023] Open
Abstract
HIV-1 persists lifelong in memory cells of the immune system as latent provirus that rebounds upon treatment interruption. Therefore, the latent reservoir is the main target for an HIV cure. Here, we studied the direct link between integration site and transcription using LEDGINs and Barcoded HIV-ensembles (B-HIVE). LEDGINs are antivirals that inhibit the interaction between HIV-1 integrase and the chromatin-tethering factor LEDGF/p75. They were used as a tool to retarget integration, while the effect on HIV expression was measured with B-HIVE. B-HIVE tracks insert-specific HIV expression by tagging a unique barcode in the HIV genome. We confirmed that LEDGINs retarget integration out of gene-dense and actively transcribed regions. The distance to H3K36me3, the marker recognized by LEDGF/p75, clearly increased. LEDGIN treatment reduced viral RNA expression and increased the proportion of silent provirus. Finally, silent proviruses obtained after LEDGIN treatment were located further away from epigenetic marks associated with active transcription. Interestingly, proximity to enhancers stimulated transcription irrespective of LEDGIN treatment, while the distance to H3K36me3 only changed after treatment with LEDGINs. The fact that proximity to these markers are associated with RNA expression support the direct link between provirus integration site and viral expression.
Collapse
Affiliation(s)
- Gerlinde Vansant
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Flanders, Belgium
| | - Heng-Chang Chen
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Catalunya, Spain
| | - Eduard Zorita
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Catalunya, Spain
| | - Katerina Trejbalová
- Institute of Molecular Genetics, Czech Academy of Sciences, Videnska, Prague, Czech Republic
| | - Dalibor Miklík
- Institute of Molecular Genetics, Czech Academy of Sciences, Videnska, Prague, Czech Republic
| | - Guillaume Filion
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Catalunya, Spain.,University Pompeu Fabra, Barcelona, Catalunya, Spain
| | - Zeger Debyser
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Flanders, Belgium
| |
Collapse
|
6
|
Vansant G, Bruggemans A, Janssens J, Debyser Z. Block-And-Lock Strategies to Cure HIV Infection. Viruses 2020; 12:E84. [PMID: 31936859 PMCID: PMC7019976 DOI: 10.3390/v12010084] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/07/2020] [Accepted: 01/09/2020] [Indexed: 12/12/2022] Open
Abstract
Today HIV infection cannot be cured due to the presence of a reservoir of latently infected cells inducing a viral rebound upon treatment interruption. Hence, the latent reservoir is considered as the major barrier for an HIV cure. So far, efforts to completely eradicate the reservoir via a shock-and-kill approach have proven difficult and unsuccessful. Therefore, more research has been done recently on an alternative block-and-lock functional cure strategy. In contrast to the shock-and-kill strategy that aims to eradicate the entire reservoir, block-and-lock aims to permanently silence all proviruses, even after treatment interruption. HIV silencing can be achieved by targeting different factors of the transcription machinery. In this review, we first describe the underlying mechanisms of HIV transcription and silencing. Next, we give an overview of the different block-and-lock strategies under investigation.
Collapse
Affiliation(s)
- Gerlinde Vansant
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, Katholieke Universiteit, Leuven, 3000 Flanders, Belgium
| | - Anne Bruggemans
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, Katholieke Universiteit, Leuven, 3000 Flanders, Belgium
| | - Julie Janssens
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, Katholieke Universiteit, Leuven, 3000 Flanders, Belgium
| | - Zeger Debyser
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, Katholieke Universiteit, Leuven, 3000 Flanders, Belgium
| |
Collapse
|
7
|
Esposito F, Sechi M, Pala N, Sanna A, Koneru PC, Kvaratskhelia M, Naesens L, Corona A, Grandi N, di Santo R, D'Amore VM, Di Leva FS, Novellino E, Cosconati S, Tramontano E. Discovery of dihydroxyindole-2-carboxylic acid derivatives as dual allosteric HIV-1 Integrase and Reverse Transcriptase associated Ribonuclease H inhibitors. Antiviral Res 2019; 174:104671. [PMID: 31812637 DOI: 10.1016/j.antiviral.2019.104671] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/29/2019] [Accepted: 12/02/2019] [Indexed: 10/25/2022]
Abstract
The management of Human Immunodeficiency Virus type 1 (HIV-1) infection requires life-long treatment that is associated with chronic toxicity and possible selection of drug-resistant strains. A new opportunity for drug intervention is offered by antivirals that act as allosteric inhibitors targeting two viral functions (dual inhibitors). In this work, we investigated the effects of 5,6-dihydroxyindole-2-carboxylic acid (DHICA) derivatives on both HIV-1 Integrase (IN) and Reverse Transcriptase associated Ribonuclease H (RNase H) activities. Among the tested compounds, the dihydroxyindole-carboxamide 5 was able to inhibit in the low micromolar range (1-18 μM) multiple functions of IN, including functional IN-IN interactions, IN-LEDGF/p75 binding and IN catalytic activity. Docking and site-directed mutagenesis studies have suggested that compound 5 binds to a previously described HIV-1 IN allosteric pocket. These observations indicate that 5 is structurally and mechanistically distinct from the published allosteric HIV-1 IN inhibitors. Moreover, compound 5 also inhibited HIV-1 RNase H function, classifying this molecule as a dual HIV-1 IN and RNase H inhibitor able to impair the HIV-1 virus replication in cell culture. Overall, we identified a new scaffold as a suitable platform for the development of novel dual HIV-1 inhibitors.
Collapse
Affiliation(s)
- Francesca Esposito
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria SS554, 09042, Monserrato (CA), Italy.
| | - Mario Sechi
- Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100, Sassari, Italy
| | - Nicolino Pala
- Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100, Sassari, Italy
| | - Adele Sanna
- Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100, Sassari, Italy
| | - Pratibha Chowdary Koneru
- Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Mamuka Kvaratskhelia
- Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Lieve Naesens
- Rega Institute for Medical Research, KU Leuven, B-3000, Leuven, Belgium
| | - Angela Corona
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria SS554, 09042, Monserrato (CA), Italy
| | - Nicole Grandi
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria SS554, 09042, Monserrato (CA), Italy
| | - Roberto di Santo
- Department of Drug Chemistry and Technologies, Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" Università di Roma, Roma, Italy
| | - Vincenzo Maria D'Amore
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131, Naples, Italy
| | | | - Ettore Novellino
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131, Naples, Italy
| | - Sandro Cosconati
- DiSTABiF, University of Campania Luigi Vanvitelli, Via Vivaldi, 43, 81100, Caserta, Italy
| | - Enzo Tramontano
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria SS554, 09042, Monserrato (CA), Italy
| |
Collapse
|
8
|
Vansant G, Vranckx LS, Zurnic I, Van Looveren D, Van de Velde P, Nobles C, Gijsbers R, Christ F, Debyser Z. Impact of LEDGIN treatment during virus production on residual HIV-1 transcription. Retrovirology 2019; 16:8. [PMID: 30940165 PMCID: PMC6444612 DOI: 10.1186/s12977-019-0472-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 03/23/2019] [Indexed: 11/24/2022] Open
Abstract
Background Persistence of latent, replication-competent provirus is the main impediment towards the cure of HIV infection. One of the critical questions concerning HIV latency is the role of integration site selection in HIV expression. Inhibition of the interaction between HIV integrase and its chromatin tethering cofactor LEDGF/p75 is known to reduce integration and to retarget residual provirus to regions resistant to reactivation. LEDGINs, small molecule inhibitors of the interaction between HIV integrase and LEDGF/p75, provide an interesting tool to study the underlying mechanisms. During early infection, LEDGINs block the interaction with LEDGF/p75 and allosterically inhibit the catalytic activity of IN (i.e. the early effect). When present during virus production, LEDGINs interfere with proper maturation due to enhanced IN oligomerization in the progeny virions (i.e. the late effect). Results We studied the effect of LEDGINs present during virus production on the transcriptional state of the residual virus. Infection of cells with viruses produced in the presence of LEDGINs resulted in a residual reservoir that was refractory to activation. Integration of residual provirus was less favored near epigenetic markers associated with active transcription. However, integration near H3K36me3 and active genes, both targeted by LEDGF/p75, was not affected. Also in primary cells, LEDGIN treatment induced a reservoir resistant to activation due to a combined early and late effect. Conclusion LEDGINs present a research tool to study the link between integration and transcription, an essential question in retrovirology. LEDGIN treatment during virus production altered integration of residual provirus in a LEDGF/p75-independent manner, resulting in a reservoir that is refractory to activation. Electronic supplementary material The online version of this article (10.1186/s12977-019-0472-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gerlinde Vansant
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49, Box 1023, 3000, Leuven, Flanders, Belgium
| | - Lenard S Vranckx
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49, Box 1023, 3000, Leuven, Flanders, Belgium
| | - Irena Zurnic
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49, Box 1023, 3000, Leuven, Flanders, Belgium
| | - Dominique Van Looveren
- Laboratory for Viral Vector Technology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49, Box 1023, 3000, Leuven, Belgium
| | - Paulien Van de Velde
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49, Box 1023, 3000, Leuven, Flanders, Belgium
| | - Christopher Nobles
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Rik Gijsbers
- Laboratory for Viral Vector Technology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49, Box 1023, 3000, Leuven, Belgium
| | - Frauke Christ
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49, Box 1023, 3000, Leuven, Flanders, Belgium
| | - Zeger Debyser
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49, Box 1023, 3000, Leuven, Flanders, Belgium.
| |
Collapse
|
9
|
Probing Resistance Mutations in Retroviral Integrases by Direct Measurement of Dolutegravir Fluorescence. Sci Rep 2017; 7:14067. [PMID: 29070877 PMCID: PMC5656594 DOI: 10.1038/s41598-017-14564-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 10/11/2017] [Indexed: 12/12/2022] Open
Abstract
FDA-approved integrase strand transfer inhibitors (raltegravir, elvitegravir and dolutegravir) efficiently inhibit HIV-1 replication. Here, we present fluorescence properties of these inhibitors. Dolutegravir displays an excitation mode particularly dependent on Mg2+ chelation, allowing to directly probe its Mg2+-dependent binding to the prototype foamy virus (PFV) integrase. Dolutegravir-binding studied by both its fluorescence anisotropy and subsequent emission enhancement, strictly requires a preformed integrase/DNA complex, the ten terminal base pairs from the 3′-end of the DNA reactive strand being crucial to optimize dolutegravir-binding in the context of the ternary complex. From the protein side, mutation of any catalytic residue fully abolishes dolutegravir-binding. We also compared dolutegravir-binding to PFV F190Y, G187R and S217K mutants, corresponding to HIV-1 F121Y, G118R and G140S/Q148K mutations that confer low-to-high resistance levels against raltegravir/dolutegravir. The dolutegravir-binding properties derived from fluorescence-based binding assays and drug susceptibilities in terms of catalytic activity, are well correlated. Indeed, dolutegravir-binding to wild-type and F190Y integrases are comparable while strongly compromised with G187R and S217K. Accordingly, the two latter mutants are highly resistant to dolutegravir while F190Y shows only moderate or no resistance. Intrinsic fluorescence properties of dolutegravir are thus particularly suitable for a thorough characterization of both DNA-binding properties of integrase and resistance mutations.
Collapse
|
10
|
Structural basis for the potent inhibition of the HIV integrase-LEDGF/p75 protein-protein interaction. J Mol Graph Model 2017; 75:189-198. [PMID: 28582696 DOI: 10.1016/j.jmgm.2017.05.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/23/2017] [Accepted: 05/24/2017] [Indexed: 11/20/2022]
Abstract
Integrase (IN) constitutes one of the key enzymes involved in the lifecycle of the Human Immunodeficiency Virus (HIV), the etiological agent of AIDS. The biological role of IN strongly depends on the recognition and binding of cellular cofactors belonging to the infected host cell. Thus, the inhibition of the protein-protein interaction (PPI) between IN and cellular cofactors has been envisioned as a promising therapeutic target. In the present work we explore a structure-activity relationship for a set of 14 compounds reported as inhibitors of the PPI between IN and the lens epithelium-derived growth factor (LEDGF/p75). Our results demonstrate that the possibility to adopt the bioactive conformation capable of interacting with the hotspots IN-LEDGF/p75 hotspots residues constitutes a critical feature to obtain a potent inhibition. A ligand efficiency (|Lig-Eff|) quantitative descriptor combining both interaction energetics and conformational requirements was developed and correlated with the reported biological activity. Our results contribute to the rational development of IN-LEDGF/p75 interaction inhibitors providing a solid quantitative structure-activity relationship aimed for the screening of new IN-LEDGF/p75 interaction inhibitors.
Collapse
|
11
|
Srivastav V, Tiwari M. QSAR and docking studies of coumarin derivatives as potent HIV-1 integrase inhibitors. ARAB J CHEM 2017. [DOI: 10.1016/j.arabjc.2013.01.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
12
|
Zhang FH, Debnath B, Xu ZL, Yang LM, Song LR, Zheng YT, Neamati N, Long YQ. Discovery of novel 3-hydroxypicolinamides as selective inhibitors of HIV-1 integrase-LEDGF/p75 interaction. Eur J Med Chem 2016; 125:1051-1063. [PMID: 27810592 DOI: 10.1016/j.ejmech.2016.10.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 09/27/2016] [Accepted: 10/19/2016] [Indexed: 12/27/2022]
Abstract
Currently, three HIV-1 integrase (IN) active site-directed inhibitors are in clinical use for the treatment of HIV infection. However, emergence of drug resistance mutations have limited the promise of a long-term cure. As an alternative, allosteric inhibition of IN activity has drawn great attention and several of such inhibitors are under early stage clinical development. Specifically, inhibitors of IN and the cellular cofactor LEDGF/p75 remarkably diminish proviral integration in cells and deliver a potent reduction in viral replicative capacity. Distinct from the extensively studied 2-(quinolin-3-yl) acetic acid or 1H-indol-3-yl-2-hydroxy-4-oxobut-2-enoic acid chemotypes, this study discloses a new class of selective IN-LEDGF/p75 inhibitors without the carboxylic acid functionality. More significantly, 3-hydroxypicolinamides also show low micromolar inhibition against IN dimerization, providing novel dual IN inhibitors with in vitro therapeutically selective antiviral effect for further development. Finally, our shape-based ROCS pharmacophore model of the 3-hydroxypicolinamide class of compounds provides a new insight into the binding mode of these novel IN-LEDGF/p75 inhibitors.
Collapse
Affiliation(s)
- Feng-Hua Zhang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Bikash Debnath
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109-2800, USA
| | - Zhong-Liang Xu
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Liu-Meng Yang
- Laboratory of Molecular Immunopharmacology, Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Li-Rui Song
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Yong-Tang Zheng
- Laboratory of Molecular Immunopharmacology, Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Nouri Neamati
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109-2800, USA.
| | - Ya-Qiu Long
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.
| |
Collapse
|
13
|
Sala M, Spensiero A, Esposito F, Scala MC, Vernieri E, Bertamino A, Manfra M, Carotenuto A, Grieco P, Novellino E, Cadeddu M, Tramontano E, Schols D, Campiglia P, Gomez-Monterrey IM. Development and Identification of a Novel Anti-HIV-1 Peptide Derived by Modification of the N-Terminal Domain of HIV-1 Integrase. Front Microbiol 2016; 7:845. [PMID: 27375570 PMCID: PMC4901077 DOI: 10.3389/fmicb.2016.00845] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 05/22/2016] [Indexed: 11/16/2022] Open
Abstract
The viral enzyme integrase (IN) is essential for the replication of human immunodeficiency virus type 1 (HIV-1) and represents an important target for the development of new antiretroviral drugs. In this study, we focused on the N-terminal domain (NTD), which is mainly involved into protein oligomerization process, for the development and synthesis of a library of overlapping peptide sequences, with specific length and specific offset covering the entire native protein sequence NTD IN 1–50. The most potent fragment, VVAKEIVAH (peptide 18), which includes a His residue instead of the natural Ser at position 39, inhibits the HIV-1 IN activity with an IC50 value of 4.5 μM. Amino acid substitution analysis on this peptide revealed essential residues for activity and allowed us to identify two nonapeptides (peptides 24 and 25), that show a potency of inhibition similar to the one of peptide 18. Interestingly, peptide 18 does not interfere with the dynamic interplay between IN subunits, while peptides 24 and 25 modulated these interactions in different manners. In fact, peptide 24 inhibited the IN-IN dimerization, while peptide 25 promoted IN multimerization, with IC50 values of 32 and 4.8 μM, respectively. In addition, peptide 25 has shown to have selective anti-infective cell activity for HIV-1. These results confirmed peptide 25 as a hit for further development of new chemotherapeutic agents against HIV-1.
Collapse
Affiliation(s)
- Marina Sala
- Department of Pharmacy, University of Salerno Salerno, Italy
| | | | - Francesca Esposito
- Department of Life and Environmental Sciences, Cittadella Universitaria di Monserrato, University of Cagliari Cagliari, Italy
| | - Maria C Scala
- Department of Pharmacy, University of Salerno Salerno, Italy
| | | | | | - Michele Manfra
- Department of Sciences, University of Basilicata Potenza, Italy
| | - Alfonso Carotenuto
- Department of Pharmacy, Medicicnal Chemistry and Toxicologic, University of Naples Federico II Napoli, Italy
| | - Paolo Grieco
- Department of Pharmacy, Medicicnal Chemistry and Toxicologic, University of Naples Federico II Napoli, Italy
| | - Ettore Novellino
- Department of Pharmacy, Medicicnal Chemistry and Toxicologic, University of Naples Federico II Napoli, Italy
| | - Marta Cadeddu
- Department of Life and Environmental Sciences, Cittadella Universitaria di Monserrato, University of Cagliari Cagliari, Italy
| | - Enzo Tramontano
- Department of Life and Environmental Sciences, Cittadella Universitaria di Monserrato, University of CagliariCagliari, Italy; Institute of Genetic and Biomedical Research, National Research Council, Citadella di MonserratoCagliari, Italy
| | - Dominique Schols
- Department of Microbiology and Immunology, Rega Institute for Medical Research Leuven, Belgium
| | | | - Isabel M Gomez-Monterrey
- Department of Pharmacy, Medicicnal Chemistry and Toxicologic, University of Naples Federico II Napoli, Italy
| |
Collapse
|
14
|
Barman A, Hamelberg D. Coupled Dynamics and Entropic Contribution to the Allosteric Mechanism of Pin1. J Phys Chem B 2016; 120:8405-15. [DOI: 10.1021/acs.jpcb.6b02123] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Arghya Barman
- Department
of Chemistry and
the Center for Biotechnology and Drug Design, Georgia State University, Atlanta, Georgia 30302-3965, United States
| | - Donald Hamelberg
- Department
of Chemistry and
the Center for Biotechnology and Drug Design, Georgia State University, Atlanta, Georgia 30302-3965, United States
| |
Collapse
|
15
|
Esposito F, Tintori C, Martini R, Christ F, Debyser Z, Ferrarese R, Cabiddu G, Corona A, Ceresola ER, Calcaterra A, Iovine V, Botta B, Clementi M, Canducci F, Botta M, Tramontano E. Kuwanon-L as a New Allosteric HIV-1 Integrase Inhibitor: Molecular Modeling and Biological Evaluation. Chembiochem 2015; 16:2507-12. [PMID: 26360521 DOI: 10.1002/cbic.201500385] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Indexed: 12/22/2022]
Abstract
HIV-1 integrase (IN) active site inhibitors are the latest class of drugs approved for HIV treatment. The selection of IN strand-transfer drug-resistant HIV strains in patients supports the development of new agents that are active as allosteric IN inhibitors. Here, a docking-based virtual screening has been applied to a small library of natural ligands to identify new allosteric IN inhibitors that target the sucrose binding pocket. From theoretical studies, kuwanon-L emerged as the most promising binder and was thus selected for biological studies. Biochemical studies showed that kuwanon-L is able to inhibit the HIV-1 IN catalytic activity in the absence and in the presence of LEDGF/p75 protein, the IN dimerization, and the IN/LEDGF binding. Kuwanon-L also inhibited HIV-1 replication in cell cultures. Overall, docking and biochemical results suggest that kuwanon-L binds to an allosteric binding pocket and can be considered an attractive lead for the development of new allosteric IN antiviral agents.
Collapse
Affiliation(s)
- Francesca Esposito
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, SS 554, 09042, Monserrato, Cagliari, Italy
| | - Cristina Tintori
- Department of Biotechnologies, Chemical and Pharmacy, University of Siena, via Alcide de Gasperi 2, 53100, Siena, Italy
| | - Riccardo Martini
- Department of Biotechnologies, Chemical and Pharmacy, University of Siena, via Alcide de Gasperi 2, 53100, Siena, Italy
| | - Frauke Christ
- Laboratory for Molecular Virology and Gene Therapy, KU Leuven, 3000, Leuven, Flanders, Belgium
| | - Zeger Debyser
- Laboratory for Molecular Virology and Gene Therapy, KU Leuven, 3000, Leuven, Flanders, Belgium
| | - Roberto Ferrarese
- Laboratory of Virology, San Raffaele Hospital, IRCCS, via Olgettina 60, 20132, Milano, Italy
| | - Gianluigi Cabiddu
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, SS 554, 09042, Monserrato, Cagliari, Italy
| | - Angela Corona
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, SS 554, 09042, Monserrato, Cagliari, Italy
| | - Elisa Rita Ceresola
- Laboratory of Virology, San Raffaele Hospital, IRCCS, via Olgettina 60, 20132, Milano, Italy
| | - Andrea Calcaterra
- Dipartimento di Chimica e Tecnologie del Farmaco, Università di Roma "La Sapienza", Piazzale Aldo Moro 5, 00185, Roma, Italy
| | - Valentina Iovine
- Dipartimento di Chimica e Tecnologie del Farmaco, Università di Roma "La Sapienza", Piazzale Aldo Moro 5, 00185, Roma, Italy
| | - Bruno Botta
- Dipartimento di Chimica e Tecnologie del Farmaco, Università di Roma "La Sapienza", Piazzale Aldo Moro 5, 00185, Roma, Italy
| | - Massimo Clementi
- Laboratory of Virology, San Raffaele Hospital, IRCCS, via Olgettina 60, 20132, Milano, Italy
| | - Filippo Canducci
- Laboratory of Virology, San Raffaele Hospital, IRCCS, via Olgettina 60, 20132, Milano, Italy.,Department of Department of Biotechnology and Life Sciences, University of Insubria, via Ravasi 2, 21100, Varese, Italy
| | - Maurizio Botta
- Department of Biotechnologies, Chemical and Pharmacy, University of Siena, via Alcide de Gasperi 2, 53100, Siena, Italy.
| | - Enzo Tramontano
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, SS 554, 09042, Monserrato, Cagliari, Italy.
| |
Collapse
|
16
|
Optimization of rhodanine scaffold for the development of protein–protein interaction inhibitors. Bioorg Med Chem 2015; 23:3208-14. [DOI: 10.1016/j.bmc.2015.04.072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 04/23/2015] [Accepted: 04/24/2015] [Indexed: 11/21/2022]
|
17
|
Tiefenbrunn T, Stout CD. Towards novel therapeutics for HIV through fragment-based screening and drug design. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 116:124-40. [DOI: 10.1016/j.pbiomolbio.2014.09.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 09/15/2014] [Accepted: 09/29/2014] [Indexed: 12/17/2022]
|
18
|
Zhang D, Debnath B, Yu S, Sanchez TW, Christ F, Liu Y, Debyser Z, Neamati N, Zhao G. Design and discovery of 5-hydroxy-6-oxo-1,6-dihydropyrimidine-4-carboxamide inhibitors of HIV-1 integrase. Bioorg Med Chem 2014; 22:5446-53. [DOI: 10.1016/j.bmc.2014.07.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Revised: 07/20/2014] [Accepted: 07/22/2014] [Indexed: 02/04/2023]
|
19
|
Kang D, Song Y, Chen W, Zhan P, Liu X. “Old Dogs with New Tricks”: exploiting alternative mechanisms of action and new drug design strategies for clinically validated HIV targets. MOLECULAR BIOSYSTEMS 2014; 10:1998-2022. [DOI: 10.1039/c4mb00147h] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Li BW, Zhang FH, Serrao E, Chen H, Sanchez TW, Yang LM, Neamati N, Zheng YT, Wang H, Long YQ. Design and discovery of flavonoid-based HIV-1 integrase inhibitors targeting both the active site and the interaction with LEDGF/p75. Bioorg Med Chem 2014; 22:3146-58. [PMID: 24794743 DOI: 10.1016/j.bmc.2014.04.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 04/09/2014] [Accepted: 04/10/2014] [Indexed: 11/19/2022]
Abstract
HIV integrase (IN) is an essential enzyme for the viral replication. Currently, three IN inhibitors have been approved for treating HIV-1 infection. All three drugs selectively inhibit the strand transfer reaction by chelating a divalent metal ion in the enzyme active site. Flavonoids are a well-known class of natural products endowed with versatile biological activities. Their β-ketoenol or catechol structures can serve as a metal chelation motif and be exploited for the design of novel IN inhibitors. Using the metal chelation as a common pharmacophore, we introduced appropriate hydrophobic moieties into the flavonol core to design natural product-based novel IN inhibitors. We developed selective and efficient syntheses to generate a series of mono 3/5/7/3'/4'-substituted flavonoid derivatives. Most of these new compounds showed excellent HIV-1 IN inhibitory activity in enzyme-based assays and protected against HIV-1 infection in cell-based assays. The 7-morpholino substituted 7c showed effective antiviral activity (EC50=0.826 μg/mL) and high therapeutic index (TI>242). More significantly, these hydroxyflavones block the IN-LEDGF/p75 interaction with low- to sub-micromolar IC50 values and represent a novel scaffold to design new generation of drugs simultaneously targeting the catalytic site as well as protein-protein interaction domains.
Collapse
Affiliation(s)
- Bo-Wen Li
- School of Chemistry and Environment, South China Normal University, Guangzhou 510006, China; CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Feng-Hua Zhang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Erik Serrao
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA 90089, USA
| | - Huan Chen
- Laboratory of Molecular Immunopharmacology, Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Tino W Sanchez
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA 90089, USA
| | - Liu-Meng Yang
- Laboratory of Molecular Immunopharmacology, Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Nouri Neamati
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA 90089, USA
| | - Yong-Tang Zheng
- Laboratory of Molecular Immunopharmacology, Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Hui Wang
- School of Chemistry and Environment, South China Normal University, Guangzhou 510006, China.
| | - Ya-Qiu Long
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.
| |
Collapse
|
21
|
Demeulemeester J, Chaltin P, Marchand A, De Maeyer M, Debyser Z, Christ F. LEDGINs, non-catalytic site inhibitors of HIV-1 integrase: a patent review (2006 - 2014). Expert Opin Ther Pat 2014; 24:609-32. [PMID: 24666332 DOI: 10.1517/13543776.2014.898753] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Integration of the viral genome into the host cell chromatin is a central step in the replication cycle of the HIV. Blocking the viral integrase (IN) enzyme therefore provides an attractive therapeutic strategy, as evidenced by the recent clinical approval of three IN strand transfer inhibitors. Viral resistance and cross-resistance among these inhibitors, however, warrant the search for compounds targeting HIV integration through alternative mechanisms of action. AREAS COVERED The most potent class of allosteric IN inhibitors was independently identified at the University of Leuven, Belgium, and at Boehringer Ingelheim, Canada. These compounds, coined LEDGINs (after the lens epithelium-derived growth factor/p75 cofactor binding pocket on IN) or non-catalytic site IN inhibitors (NCINIs) by the respective groups, have shown remarkable antiviral activity. This review provides a brief introduction to the compound class and discusses the recent patent literature (2006 to the present). EXPERT OPINION LEDGINs are still early in development. Trials with clinical candidate BI-224436 were put on hold despite promising results. Literature, however, reveals that almost all major pharmaceutical companies active in the treatment of HIV/AIDS have taken a significant interest in this class. As a result, several of these inhibitors may soon enter clinical trials.
Collapse
Affiliation(s)
- Jonas Demeulemeester
- KU Leuven, Laboratory for Biomolecular Modeling, Department of Chemistry , Leuven , Belgium
| | | | | | | | | | | |
Collapse
|
22
|
Xue W, Liu H, Yao X. Molecular modeling study on the allosteric inhibition mechanism of HIV-1 integrase by LEDGF/p75 binding site inhibitors. PLoS One 2014; 9:e90799. [PMID: 24599328 PMCID: PMC3944435 DOI: 10.1371/journal.pone.0090799] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 02/05/2014] [Indexed: 01/28/2023] Open
Abstract
HIV-1 integrase (IN) is essential for the integration of viral DNA into the host genome and an attractive therapeutic target for developing antiretroviral inhibitors. LEDGINs are a class of allosteric inhibitors targeting LEDGF/p75 binding site of HIV-1 IN. Yet, the detailed binding mode and allosteric inhibition mechanism of LEDGINs to HIV-1 IN is only partially understood, which hinders the structure-based design of more potent anti-HIV agents. A molecular modeling study combining molecular docking, molecular dynamics simulation, and binding free energy calculation were performed to investigate the interaction details of HIV-1 IN catalytic core domain (CCD) with two recently discovered LEDGINs BI-1001 and CX14442, as well as the LEDGF/p75 protein. Simulation results demonstrated the hydrophobic domain of BI-1001 and CX14442 engages one subunit of HIV-1 IN CCD dimer through hydrophobic interactions, and the hydrophilic group forms hydrogen bonds with HIV-1 IN CCD residues from other subunit. CX14442 has a larger tert-butyl group than the methyl of BI-1001, and forms better interactions with the highly hydrophobic binding pocket of HIV-1 IN CCD dimer interface, which can explain the stronger affinity of CX14442 than BI-1001. Analysis of the binding mode of LEDGF/p75 with HIV-1 IN CCD reveals that the LEDGF/p75 integrase binding domain residues Ile365, Asp366, Phe406 and Val408 have significant contributions to the binding of the LEDGF/p75 to HIV1-IN. Remarkably, we found that binding of BI-1001 and CX14442 to HIV-1 IN CCD induced the structural rearrangements of the 140 s loop and oration displacements of the side chains of the three conserved catalytic residues Asp64, Asp116, and Glu152 located at the active site. These results we obtained will be valuable not only for understanding the allosteric inhibition mechanism of LEDGINs but also for the rational design of allosteric inhibitors of HIV-1 IN targeting LEDGF/p75 binding site.
Collapse
Affiliation(s)
- Weiwei Xue
- State Key Laboratory of Applied Organic Chemistry, Department of Chemistry, Lanzhou University, Lanzhou, China
| | - Huanxiang Liu
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Xiaojun Yao
- State Key Laboratory of Applied Organic Chemistry, Department of Chemistry, Lanzhou University, Lanzhou, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| |
Collapse
|
23
|
A new potential approach to block HIV-1 replication via protein-protein interaction and strand-transfer inhibition. Bioorg Med Chem 2014; 22:2269-79. [PMID: 24618511 DOI: 10.1016/j.bmc.2014.02.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 01/28/2014] [Accepted: 02/10/2014] [Indexed: 01/11/2023]
Abstract
Therapeutic treatment of AIDS is recently characterized by a crescent effort towards the identification of multiple ligands able to target different steps of HIV-1 life cycle. Taking into consideration our previously obtained SAR information and combining some important chemical structural features we report herein the synthesis of novel benzyl-indole derivatives as anti-HIV agents. Through this work we identified new dual target small molecules able to inhibit both IN-LEDGF/p75 interaction and the IN strand-transfer step considered as two crucial phases of viral life cycle.
Collapse
|
24
|
Wang J. Cure for acquired immunodeficiency syndrome--a global battle. Chin J Integr Med 2014; 20:83-7. [PMID: 24352683 DOI: 10.1007/s11655-013-1571-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Indexed: 11/27/2022]
Affiliation(s)
- Jie Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China,
| |
Collapse
|
25
|
Crowther GJ, Booker ML, He M, Li T, Raverdy S, Novelli JF, He P, Dale NRG, Fife AM, Barker RH, Kramer ML, Van Voorhis WC, Carlow CKS, Wang MW. Cofactor-independent phosphoglycerate mutase from nematodes has limited druggability, as revealed by two high-throughput screens. PLoS Negl Trop Dis 2014; 8:e2628. [PMID: 24416464 PMCID: PMC3886921 DOI: 10.1371/journal.pntd.0002628] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 11/21/2013] [Indexed: 11/19/2022] Open
Abstract
Cofactor-independent phosphoglycerate mutase (iPGAM) is essential for the growth of C. elegans but is absent from humans, suggesting its potential as a drug target in parasitic nematodes such as Brugia malayi, a cause of lymphatic filariasis (LF). iPGAM's active site is small and hydrophilic, implying that it may not be druggable, but another binding site might permit allosteric inhibition. As a comprehensive assessment of iPGAM's druggability, high-throughput screening (HTS) was conducted at two different locations: ∼220,000 compounds were tested against the C. elegans iPGAM by Genzyme Corporation, and ∼160,000 compounds were screened against the B. malayi iPGAM at the National Center for Drug Screening in Shanghai. iPGAM's catalytic activity was coupled to downstream glycolytic enzymes, resulting in NADH consumption, as monitored by a decline in visible-light absorbance at 340 nm. This assay performed well in both screens (Z′-factor >0.50) and identified two novel inhibitors that may be useful as chemical probes. However, these compounds have very modest potency against the B. malayi iPGAM (IC50 >10 µM) and represent isolated singleton hits rather than members of a common scaffold. Thus, despite the other appealing properties of the nematode iPGAMs, their low druggability makes them challenging to pursue as drug targets. This study illustrates a “druggability paradox” of target-based drug discovery: proteins are generally unsuitable for resource-intensive HTS unless they are considered druggable, yet druggability is often difficult to predict in the absence of HTS data. Parasitic worms like Brugia malayi cause widespread lymphatic filariasis (LF) in southeast Asia and sub-Saharan Africa. The adult worms causing most of the symptoms of LF are difficult to treat with existing drugs. As a possible step toward new LF drugs, we searched for inhibitors of the B. malayi cofactor-independent phosphoglycerate mutase (iPGAM), an enzyme thought to be critical to survival and development of this parasite. Despite testing over 100,000 compounds at each of two screening centers, we found only two compounds that consistently inhibited the B. malayi enzyme more strongly than the cofactor-dependent enzyme found in humans. These compounds have limited potency and are not especially great starting points for drug development. The 3-dimensional structure of iPGAM suggests that the active site is difficult to access from the surrounding solvent, which may partly explain our very low yield of inhibitors. We conclude that iPGAM may not be an ideal drug target in B. malayi or related organisms because it is difficult to inhibit with druglike compounds.
Collapse
Affiliation(s)
- Gregory J. Crowther
- Division of Allergy & Infectious Diseases, University of Washington, Seattle, Washington, United States of America
| | - Michael L. Booker
- Genzyme Corporation, Waltham, Massachusetts, United States of America
| | - Min He
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ting Li
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Sylvine Raverdy
- Division of Parasitology, New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Jacopo F. Novelli
- Division of Parasitology, New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Panqing He
- Division of Allergy & Infectious Diseases, University of Washington, Seattle, Washington, United States of America
| | - Natalie R. G. Dale
- Division of Allergy & Infectious Diseases, University of Washington, Seattle, Washington, United States of America
| | - Amy M. Fife
- Genzyme Corporation, Waltham, Massachusetts, United States of America
| | - Robert H. Barker
- Genzyme Corporation, Waltham, Massachusetts, United States of America
| | - Martin L. Kramer
- Genzyme Corporation, Waltham, Massachusetts, United States of America
| | - Wesley C. Van Voorhis
- Division of Allergy & Infectious Diseases, University of Washington, Seattle, Washington, United States of America
| | - Clotilde K. S. Carlow
- Division of Parasitology, New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Ming-Wei Wang
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- * E-mail:
| |
Collapse
|
26
|
Wang J, Sánchez-Roselló M, Aceña JL, del Pozo C, Sorochinsky AE, Fustero S, Soloshonok VA, Liu H. Fluorine in Pharmaceutical Industry: Fluorine-Containing Drugs Introduced to the Market in the Last Decade (2001–2011). Chem Rev 2013; 114:2432-506. [DOI: 10.1021/cr4002879] [Citation(s) in RCA: 3202] [Impact Index Per Article: 266.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jiang Wang
- Key
Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - María Sánchez-Roselló
- Department
of Organic Chemistry, Faculty of Pharmacy, University of Valencia, Av. Vicente Andrés Estellés, 46100 Burjassot, Valencia, Spain
- Laboratorio
de Moléculas Orgánicas, Centro de Investigación Príncipe Felipe, C/ Eduardo Primo Yúfera 3, 46012 Valencia, Spain
| | - José Luis Aceña
- Department
of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018 San Sebastian, Spain
| | - Carlos del Pozo
- Department
of Organic Chemistry, Faculty of Pharmacy, University of Valencia, Av. Vicente Andrés Estellés, 46100 Burjassot, Valencia, Spain
| | - Alexander E. Sorochinsky
- Department
of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018 San Sebastian, Spain
- IKERBASQUE, Basque Foundation for Science, Alameda Urquijo, 36-5 Plaza Bizkaia, 48011 Bilbao, Spain
- Institute
of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, Murmanska Street 1, 02660 Kyiv-94, Ukraine
| | - Santos Fustero
- Department
of Organic Chemistry, Faculty of Pharmacy, University of Valencia, Av. Vicente Andrés Estellés, 46100 Burjassot, Valencia, Spain
- Laboratorio
de Moléculas Orgánicas, Centro de Investigación Príncipe Felipe, C/ Eduardo Primo Yúfera 3, 46012 Valencia, Spain
| | - Vadim A. Soloshonok
- Department
of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018 San Sebastian, Spain
- IKERBASQUE, Basque Foundation for Science, Alameda Urquijo, 36-5 Plaza Bizkaia, 48011 Bilbao, Spain
| | - Hong Liu
- Key
Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| |
Collapse
|
27
|
Serrao E, Xu ZL, Debnath B, Christ F, Debyser Z, Long YQ, Neamati N. Discovery of a novel 5-carbonyl-1H-imidazole-4-carboxamide class of inhibitors of the HIV-1 integrase–LEDGF/p75 interaction. Bioorg Med Chem 2013; 21:5963-72. [DOI: 10.1016/j.bmc.2013.07.047] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Revised: 07/17/2013] [Accepted: 07/26/2013] [Indexed: 01/08/2023]
|
28
|
De Luca L, Morreale F, Christ F, Debyser Z, Ferro S, Gitto R. New scaffolds of natural origin as Integrase-LEDGF/p75 interaction inhibitors: virtual screening and activity assays. Eur J Med Chem 2013; 68:405-11. [PMID: 23994868 DOI: 10.1016/j.ejmech.2013.07.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 07/16/2013] [Accepted: 07/17/2013] [Indexed: 01/08/2023]
Abstract
The disruption of crucial interactions between HIV-1 Integrase and cellular cofactor LEDGF/p75 represents an emerging approach for the design and development of new antiretroviral agents. In this study we report the successful application of a structure-based virtual screening strategy for the discovery of natural hit structures able to inhibit Integrase-LEDGF/p75 interaction. The application of sequential filters (drug-likeness, 3D-pharmacophore mapping, docking, molecular dynamics simulations) yielded a hit list of compounds, out of which 9 were tested in the in vitro AlphaScreen assays and 8 exhibited a detectable inhibition of the interaction between the two proteins. The best inhibitors belong to different chemical classes and could be represent a good starting point for further optimization and structure-activity relationship studies.
Collapse
Affiliation(s)
- Laura De Luca
- Dipartimento di Scienze del Farmaco e Prodotti per la Salute, Università di Messina, Viale Annunziata, I-98168 Messina, Italy.
| | | | | | | | | | | |
Collapse
|
29
|
Ferro S, De Luca L, Morreale F, Christ F, Debyser Z, Gitto R, Chimirri A. Synthesis and biological evaluation of novel antiviral agents as protein–protein interaction inhibitors. J Enzyme Inhib Med Chem 2013; 29:237-42. [DOI: 10.3109/14756366.2013.766609] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Stefania Ferro
- Dipartimento di Scienze del Farmaco e dei Prodotti per la Salute, Università di Messina
MessinaItaly
| | - Laura De Luca
- Dipartimento di Scienze del Farmaco e dei Prodotti per la Salute, Università di Messina
MessinaItaly
| | - Francesca Morreale
- Dipartimento di Scienze del Farmaco e dei Prodotti per la Salute, Università di Messina
MessinaItaly
| | - Frauke Christ
- Molecular Virology and Gene Therapy KU Leuven and IRC KULAK
Leuven, FlandersBelgium
| | - Zeger Debyser
- Molecular Virology and Gene Therapy KU Leuven and IRC KULAK
Leuven, FlandersBelgium
| | - Rosaria Gitto
- Dipartimento di Scienze del Farmaco e dei Prodotti per la Salute, Università di Messina
MessinaItaly
| | - Alba Chimirri
- Dipartimento di Scienze del Farmaco e dei Prodotti per la Salute, Università di Messina
MessinaItaly
| |
Collapse
|
30
|
Desimmie BA, Schrijvers R, Demeulemeester J, Borrenberghs D, Weydert C, Thys W, Vets S, Van Remoortel B, Hofkens J, De Rijck J, Hendrix J, Bannert N, Gijsbers R, Christ F, Debyser Z. LEDGINs inhibit late stage HIV-1 replication by modulating integrase multimerization in the virions. Retrovirology 2013; 10:57. [PMID: 23721378 PMCID: PMC3671127 DOI: 10.1186/1742-4690-10-57] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 05/07/2013] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND LEDGINs are novel allosteric HIV integrase (IN) inhibitors that target the lens epithelium-derived growth factor (LEDGF)/p75 binding pocket of IN. They block HIV-1 integration by abrogating the interaction between LEDGF/p75 and IN as well as by allosterically inhibiting the catalytic activity of IN. RESULTS Here we demonstrate that LEDGINs reduce the replication capacity of HIV particles produced in their presence. We systematically studied the molecular basis of this late effect of LEDGINs and demonstrate that HIV virions produced in their presence display a severe replication defect. Both the late effect and the previously described, early effect on integration contribute to LEDGIN antiviral activity as shown by time-of-addition, qPCR and infectivity assays. The late effect phenotype requires binding of LEDGINs to integrase without influencing proteolytic cleavage or production of viral particles. LEDGINs augment IN multimerization during virion assembly or in the released viral particles and severely hamper the infectivity of progeny virions. About 70% of the particles produced in LEDGIN-treated cells do not form a core or display aberrant empty cores with a mislocalized electron-dense ribonucleoprotein. The LEDGIN-treated virus displays defective reverse transcription and nuclear import steps in the target cells. The LEDGIN effect is possibly exerted at the level of the Pol precursor polyprotein. CONCLUSION Our results suggest that LEDGINs modulate IN multimerization in progeny virions and impair the formation of regular cores during the maturation step, resulting in a decreased infectivity of the viral particles in the target cells. LEDGINs thus profile as unique antivirals with combined early (integration) and late (IN assembly) effects on the HIV replication cycle.
Collapse
Affiliation(s)
- Belete Ayele Desimmie
- Department of Pharmaceutical and Pharmacological Sciences, Laboratory for Molecular Virology and Gene Therapy, KU Leuven, Kapucijnenvoer 33, Leuven, Flanders, 3000, Belgium
| | - Rik Schrijvers
- Department of Pharmaceutical and Pharmacological Sciences, Laboratory for Molecular Virology and Gene Therapy, KU Leuven, Kapucijnenvoer 33, Leuven, Flanders, 3000, Belgium
| | - Jonas Demeulemeester
- Department of Pharmaceutical and Pharmacological Sciences, Laboratory for Molecular Virology and Gene Therapy, KU Leuven, Kapucijnenvoer 33, Leuven, Flanders, 3000, Belgium
| | - Doortje Borrenberghs
- Laboratory for Photochemistry and Spectroscopy, KU Leuven, Celestijnenlaan 200F, Heverlee, Flanders, 3001, Belgium
| | - Caroline Weydert
- Department of Pharmaceutical and Pharmacological Sciences, Laboratory for Molecular Virology and Gene Therapy, KU Leuven, Kapucijnenvoer 33, Leuven, Flanders, 3000, Belgium
| | - Wannes Thys
- Department of Pharmaceutical and Pharmacological Sciences, Laboratory for Molecular Virology and Gene Therapy, KU Leuven, Kapucijnenvoer 33, Leuven, Flanders, 3000, Belgium
| | - Sofie Vets
- Department of Pharmaceutical and Pharmacological Sciences, Laboratory for Molecular Virology and Gene Therapy, KU Leuven, Kapucijnenvoer 33, Leuven, Flanders, 3000, Belgium
| | - Barbara Van Remoortel
- Department of Pharmaceutical and Pharmacological Sciences, Laboratory for Molecular Virology and Gene Therapy, KU Leuven, Kapucijnenvoer 33, Leuven, Flanders, 3000, Belgium
| | - Johan Hofkens
- Laboratory for Photochemistry and Spectroscopy, KU Leuven, Celestijnenlaan 200F, Heverlee, Flanders, 3001, Belgium
| | - Jan De Rijck
- Department of Pharmaceutical and Pharmacological Sciences, Laboratory for Molecular Virology and Gene Therapy, KU Leuven, Kapucijnenvoer 33, Leuven, Flanders, 3000, Belgium
| | - Jelle Hendrix
- Laboratory for Photochemistry and Spectroscopy, KU Leuven, Celestijnenlaan 200F, Heverlee, Flanders, 3001, Belgium
| | - Norbert Bannert
- Robert Koch Institute, Centre for HIV and Retrovirology, Nordufer 20, Berlin, 13353, Germany
| | - Rik Gijsbers
- Department of Pharmaceutical and Pharmacological Sciences, Laboratory for Molecular Virology and Gene Therapy, KU Leuven, Kapucijnenvoer 33, Leuven, Flanders, 3000, Belgium
| | - Frauke Christ
- Department of Pharmaceutical and Pharmacological Sciences, Laboratory for Molecular Virology and Gene Therapy, KU Leuven, Kapucijnenvoer 33, Leuven, Flanders, 3000, Belgium
| | - Zeger Debyser
- Department of Pharmaceutical and Pharmacological Sciences, Laboratory for Molecular Virology and Gene Therapy, KU Leuven, Kapucijnenvoer 33, Leuven, Flanders, 3000, Belgium
| |
Collapse
|
31
|
Engelman A, Kessl JJ, Kvaratskhelia M. Allosteric inhibition of HIV-1 integrase activity. Curr Opin Chem Biol 2013; 17:339-45. [PMID: 23647983 DOI: 10.1016/j.cbpa.2013.04.010] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 04/03/2013] [Accepted: 04/09/2013] [Indexed: 01/28/2023]
Abstract
HIV-1 integrase is an important therapeutic target in the fight against HIV/AIDS. Integrase strand transfer inhibitors (INSTIs), which target the enzyme active site, have witnessed clinical success over the past 5 years, but the generation of drug resistance poses challenges to INSTI-based therapies moving forward. Integrase is a dynamic protein, and its ordered multimerization is critical to enzyme activity. The integrase tetramer, bound to viral DNA, interacts with host LEDGF/p75 protein to tether integration to active genes. Allosteric integrase inhibitors (ALLINIs) that compete with LEDGF/p75 for binding to integrase disrupt integrase assembly with viral DNA and allosterically inhibit enzyme function. ALLINIs display steep dose response curves and synergize with INSTIs ex vivo, highlighting this novel inhibitor class for clinical development.
Collapse
Affiliation(s)
- Alan Engelman
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, 450 Brookline Avenue, CLS-1010, Boston, MA 02215, USA.
| | | | | |
Collapse
|
32
|
Han YS, Xiao WL, Quashie PK, Mesplède T, Xu H, Deprez E, Delelis O, Pu JX, Sun HD, Wainberg MA. Development of a fluorescence-based HIV-1 integrase DNA binding assay for identification of novel HIV-1 integrase inhibitors. Antiviral Res 2013; 98:441-8. [PMID: 23583286 DOI: 10.1016/j.antiviral.2013.04.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 03/25/2013] [Accepted: 04/01/2013] [Indexed: 10/27/2022]
Abstract
Human immunodeficiency virus integrase (HIV-1 IN) inhibitors that are currently approved or are in advanced clinical trials specifically target the strand transfer step of integration. However, considerable cross-resistance exists among some members of this class of IN inhibitors. Intriguingly, though, HIV-1 IN possesses multiple sites, distinct from those involved in the strand transfer step, that could be targeted to develop new HIV-1 IN inhibitors. We have developed a fluorescent HIV-1 IN DNA binding assay that can identify small molecules termed IN binding inhibitors (INBIs) that inhibit IN binding to viral DNA. This assay has been optimized with respect to concentrations of each protein, long terminal repeat (LTR) DNA substrate, salt, and time, and has been used successfully to measure the HIV-1 IN DNA binding activity of a well-characterized INBI termed FZ41. In addition, we have used the assay to screen a small library of natural products, resulting in the identification of nigranoic acid as a new INBI. The proposed fluorescence assay is easy and inexpensive, and provides a high-throughput detection method for determination of HIV-1 IN DNA binding activity, monitoring of enzyme kinetics, and high-throughput screening for the identification of new INBIs.
Collapse
Affiliation(s)
- Ying-Shan Han
- McGill University AIDS Centre, Lady Davis for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Hu G, Li X, Li Y, Sun X, Liu G, Li W, Huang J, Shen X, Tang Y. Inhibitors of HIV-1 Integrase-Human LEDGF/p75 Interaction Identified from Natural Products via Virtual Screening. CHINESE J CHEM 2012. [DOI: 10.1002/cjoc.201200897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
34
|
De Luca L, Morreale F, Chimirri A. Insight into the Fundamental Interactions between LEDGF Binding Site Inhibitors and Integrase Combining Docking and Molecular Dynamics Simulations. J Chem Inf Model 2012. [DOI: 10.1021/ci300361e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Laura De Luca
- Dipartimento
di Scienze del Farmaco e Prodotti per
la Salute, Università di Messina, Viale Annunziata, I-98168
Messina, Italy
| | - Francesca Morreale
- Dipartimento
di Scienze del Farmaco e Prodotti per
la Salute, Università di Messina, Viale Annunziata, I-98168
Messina, Italy
| | - Alba Chimirri
- Dipartimento
di Scienze del Farmaco e Prodotti per
la Salute, Università di Messina, Viale Annunziata, I-98168
Messina, Italy
| |
Collapse
|
35
|
Wielens J, Headey SJ, Rhodes DI, Mulder RJ, Dolezal O, Deadman JJ, Newman J, Chalmers DK, Parker MW, Peat TS, Scanlon MJ. Parallel screening of low molecular weight fragment libraries: do differences in methodology affect hit identification? ACTA ACUST UNITED AC 2012; 18:147-59. [PMID: 23139382 DOI: 10.1177/1087057112465979] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Fragment screening is becoming widely accepted as a technique to identify hit compounds for the development of novel lead compounds. In neighboring laboratories, we have recently, and independently, performed a fragment screening campaign on the HIV-1 integrase core domain (IN) using similar commercially purchased fragment libraries. The two campaigns used different screening methods for the preliminary identification of fragment hits; one used saturation transfer difference nuclear magnetic resonance spectroscopy (STD-NMR), and the other used surface plasmon resonance (SPR) spectroscopy. Both initial screens were followed by X-ray crystallography. Using the STD-NMR/X-ray approach, 15 IN/fragment complexes were identified, whereas the SPR/X-ray approach found 6 complexes. In this article, we compare the approaches that were taken by each group and the results obtained, and we look at what factors could potentially influence the final results. We find that despite using different approaches with little overlap of initial hits, both approaches identified binding sites on IN that provided a basis for fragment-based lead discovery and further lead development. Comparison of hits identified in the two studies highlights a key role for both the conditions under which fragment binding is measured and the criteria selected to classify hits.
Collapse
|
36
|
Underwood MR, Johns BA, Sato A, Martin JN, Deeks SG, Fujiwara T. The activity of the integrase inhibitor dolutegravir against HIV-1 variants isolated from raltegravir-treated adults. J Acquir Immune Defic Syndr 2012; 61:297-301. [PMID: 22878423 PMCID: PMC3804312 DOI: 10.1097/qai.0b013e31826bfd02] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Dolutegravir (DTG, S/GSK1349572) is an integrase inhibitor with low nanomolar potency. Susceptibility to dolutegravir and raltegravir was determined for raltegravir-resistant clinical isolates. METHODS Genotypic and phenotypic susceptibility to integrase inhibitors was examined using 39 clinical isolate samples obtained from 18 adults who had exhibited incomplete viral suppression on a raltegravir-based regimen. RESULTS Of 39 samples evaluated, 30 had genotypic and phenotypic resistance to raltegravir. All samples lacking raltegravir resistance retained complete susceptibility to dolutegravir. Of the 30 samples with genotypic evidence of raltegravir resistance, the median level of phenotypic resistance to raltegravir was high (median fold change in inhibitory concentration at 50%, >81; range, 3.7 to >87), while the level of resistance to dolutegravir was close to that of wild-type variants (median fold change, 1.5; range, 0.9-19.0). Longitudinal samples from 5 subjects collected during long-term failure of raltegravir revealed time-dependent general decreases in phenotypic susceptibility to raltegravir, with minimal changes in phenotypic susceptibility to dolutegravir. The median fold change to dolutegravir for isolates containing changes at G140S + Q148H, G140S + Q148R, T97A + Y143R, and N155H (thus including raltegravir signature resistance codons) were 3.75, 13.3, 1.05, and 1.37, respectively. CONCLUSIONS Dolutegravir retained in vitro activity against clinical isolates obtained from subjects who failed raltegravir-based therapy at near wild-type levels for variants containing the Y143 and N155 resistance mutations. Isolates with Q148 plus additional integrase mutations possessed a broader range of and more reduced susceptibility to dolutegravir.
Collapse
Affiliation(s)
- Mark R Underwood
- Infectious Diseases Therapy Area Unit, Medicines Discovery & Development, GlaxoSmithKline, Research Triangle Park, NC 27709, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Hu G, Li X, Zhang X, Li Y, Ma L, Yang LM, Liu G, Li W, Huang J, Shen X, Hu L, Zheng YT, Tang Y. Discovery of inhibitors to block interactions of HIV-1 integrase with human LEDGF/p75 via structure-based virtual screening and bioassays. J Med Chem 2012; 55:10108-17. [PMID: 23046280 DOI: 10.1021/jm301226a] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This study aims to identify inhibitors that bind at the interface of HIV-1 integrase (IN) and human LEDGF/p75, which represents a novel target for anti-HIV therapy. To date, only a few such inhibitors have been reported. Here structure-based virtual screening was performed to search for the inhibitors from an in-house library of natural products and their derivatives. Among the 38 compounds selected by our strategy, 18 hits were discovered. The two most potent inhibitors showed IC(50) values at 0.32 and 0.26 μM, respectively. Three compounds were subsequently selected for anti-HIV assays, among which (E)-3-(2-chlorophenyl)-1-(2,4-dihydroxyphenyl)prop-2-en-1-one (NPD170) showed the highest antiviral activity (EC(50) = 1.81 μM). The antiviral mechanism of these compounds was further explored, and the results validated that the compounds interrupted the binding of transfected IN to endogenous LEDGF/p75. These findings could be helpful for anti-HIV drug discovery.
Collapse
Affiliation(s)
- Guoping Hu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Moody IS, Verde SC, Overstreet CM, Edward Robinson W, Weiss GA. In vitro evolution of an HIV integrase binding protein from a library of C-terminal domain γS-crystallin variants. Bioorg Med Chem Lett 2012; 22:5584-9. [PMID: 22858140 DOI: 10.1016/j.bmcl.2012.07.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 07/01/2012] [Accepted: 07/03/2012] [Indexed: 11/29/2022]
Abstract
A protein without natural binding functions was engineered to bind HIV-1 integrase. Phage display selections applied a library of variants based on the C-terminal domain of the eye lens protein human γS-crystallin. Multiple loop regions were altered to encode libraries with ≈3.6 × 10(11) different variants. A crystallin variant, termed integrase binding protein-10 (IBP-10), inhibits integrase catalysis with nanomolar K(i) values. IBP-10 interacts with the integrase C-terminal domain and inhibits integrase substrate affinity. This allosteric mechanism allows IBP-10 to inhibit drug-resistant integrase variants. The results demonstrate the applicability of the crystallin scaffold for the discovery of binding partners and enzyme inhibitors.
Collapse
Affiliation(s)
- Issa S Moody
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, CA 92697-3900, USA
| | | | | | | | | |
Collapse
|
39
|
Phage display-directed discovery of LEDGF/p75 binding cyclic peptide inhibitors of HIV replication. Mol Ther 2012; 20:2064-75. [PMID: 22828501 DOI: 10.1038/mt.2012.132] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The interaction between the human immunodeficiency virus (HIV) integrase (IN) and its cellular cofactor lens epithelium-derived growth factor (LEDGF/p75) is crucial for HIV replication. While recently discovered LEDGINs inhibit HIV-1 replication by occupying the LEDGF/p75 pocket in IN, it remained to be demonstrated whether LEDGF/p75 by itself can be targeted. By phage display we identified cyclic peptides (CPs) as the first LEDGF/p75 ligands that inhibit the LEDGF/p75-IN interaction. The CPs inhibit HIV replication in different cell lines without overt toxicity. In accord with the role of LEDGF/p75 in HIV integration and its inhibition by LEDGINs, CP64, and CP65 block HIV replication primarily by inhibiting the integration step. The CPs retained activity against HIV strains resistant to raltegravir or LEDGINs. Saturation transfer difference (STD) NMR showed residues in CP64 that strongly interact with LEDGF/p75 but not with HIV IN. Mutational analysis identified tryptophan as an important residue responsible for the activity of the peptides. Serial passaging of virus in the presence of CPs did not yield resistant strains. Our work provides proof-of-concept for direct targeting of LEDGF/p75 as novel therapeutic strategy and the CPs thereby serve as scaffold for future development of new HIV therapeutics.
Collapse
|
40
|
Maes M, Loyter A, Friedler A. Peptides that inhibit HIV-1 integrase by blocking its protein-protein interactions. FEBS J 2012; 279:2795-809. [PMID: 22742518 DOI: 10.1111/j.1742-4658.2012.08680.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
HIV-1 integrase (IN) is one of the key enzymes in the viral replication cycle. It mediates the integration of viral cDNA into the host cell genome. IN activity requires interactions with several viral and cellular proteins, as well as IN oligomerization. Inhibition of IN is an important target for the development of anti-HIV therapies, but there is currently only one anti-HIV drug used in the clinic that targets IN. Several other small-molecule anti-IN drug leads are either undergoing clinical trials or in earlier stages of development. These molecules specifically inhibit one of the IN-mediated reactions necessary for successful integration. However, small-molecule inhibitors of protein-protein interactions are difficult to develop. In this review, we focus on peptides that inhibit IN. Peptides have advantages over small-molecule inhibitors of protein-protein interactions: they can mimic the structures of the binding domains within proteins, and are large enough to competitively inhibit protein-protein interactions. The development of peptides that bind IN and inhibit its protein-protein interactions will increase our understanding of the IN mode of action, and lead to the development of new drug leads, such as small molecules derived from these peptides, for better anti-HIV therapy.
Collapse
Affiliation(s)
- Michal Maes
- Institute of Chemistry, The Hebrew University of Jerusalem, Israel
| | | | | |
Collapse
|
41
|
De Luca L, Ferro S, Morreale F, Christ F, Debyser Z, Chimirri A, Gitto R. Fragment hopping approach directed at design of HIV IN-LEDGF/p75 interaction inhibitors. J Enzyme Inhib Med Chem 2012; 28:1002-9. [DOI: 10.3109/14756366.2012.703184] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Laura De Luca
- Dipartimento Farmaco-Chimico, Università di Messina,
Messina, Italy
| | - Stefania Ferro
- Dipartimento Farmaco-Chimico, Università di Messina,
Messina, Italy
| | | | - Frauke Christ
- Molecular Virology and Gene Therapy KU Leuven and IRC KULAK,
Leuven, Flanders, Belgium
| | - Zeger Debyser
- Molecular Virology and Gene Therapy KU Leuven and IRC KULAK,
Leuven, Flanders, Belgium
| | - Alba Chimirri
- Dipartimento Farmaco-Chimico, Università di Messina,
Messina, Italy
| | - Rosaria Gitto
- Dipartimento Farmaco-Chimico, Università di Messina,
Messina, Italy
| |
Collapse
|
42
|
Tsiang M, Jones GS, Niedziela-Majka A, Kan E, Lansdon EB, Huang W, Hung M, Samuel D, Novikov N, Xu Y, Mitchell M, Guo H, Babaoglu K, Liu X, Geleziunas R, Sakowicz R. New class of HIV-1 integrase (IN) inhibitors with a dual mode of action. J Biol Chem 2012; 287:21189-203. [PMID: 22535962 DOI: 10.1074/jbc.m112.347534] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
tert-Butoxy-(4-phenyl-quinolin-3-yl)-acetic acids (tBPQA) are a new class of HIV-1 integrase (IN) inhibitors that are structurally distinct from IN strand transfer inhibitors but analogous to LEDGINs. LEDGINs are a class of potent antiviral compounds that interacts with the lens epithelium-derived growth factor (LEDGF) binding pocket on IN and were identified through competition binding against LEDGF. LEDGF tethers IN to the host chromatin and enables targeted integration of viral DNA. The prevailing understanding of the antiviral mechanism of LEDGINs is that they inhibit LEDGF binding to IN, which prevents targeted integration of HIV-1. We showed that in addition to the properties already known for LEDGINs, the binding of tBPQAs to the IN dimer interface inhibits IN enzymatic activity in a LEDGF-independent manner. Using the analysis of two long terminal repeat junctions in HIV-infected cells, we showed that the inhibition by tBPQAs occurs at or prior to the viral DNA 3'-processing step. Biochemical studies revealed that this inhibition operates by compound-induced conformational changes in the IN dimer that prevent proper assembly of IN onto viral DNA. For the first time, tBPQAs were demonstrated to be allosteric inhibitors of HIV-1 IN displaying a dual mode of action: inhibition of IN-viral DNA assembly and inhibition of IN-LEDGF interaction.
Collapse
Affiliation(s)
- Manuel Tsiang
- Gilead Sciences, Inc, Foster City, California 94404, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Tintori C, Demeulemeester J, Franchi L, Massa S, Debyser Z, Christ F, Botta M. Discovery of small molecule HIV-1 integrase dimerization inhibitors. Bioorg Med Chem Lett 2012; 22:3109-14. [PMID: 22483582 DOI: 10.1016/j.bmcl.2012.03.064] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Revised: 03/15/2012] [Accepted: 03/15/2012] [Indexed: 10/28/2022]
Abstract
Human immunodeficiency virus-1 integrase (HIV-1 IN) inserts the viral DNA into host cell chromatin in a multistep process. This enzyme exists in equilibrium between monomeric, dimeric, tetrameric and high order oligomeric states. However, monomers of IN are not capable of supporting its catalytic functions and the active form has been shown to be at least a dimer. As a consequence, the development of inhibitors targeting IN dimerization constitutes a promising novel antiviral strategy. In this work, we successfully combined different computational techniques in order to identify small molecule inhibitors of IN dimerization. Additionally, a novel AlphaScreen-based IN dimerization assay was used to evaluate the inhibitory activities of the selected compounds. To the best of our knowledge, this study represents the first successful virtual screening and evaluation of small molecule HIV-1 IN dimerization inhibitors, which may serve as attractive hit compounds for the development of novel anti-HIV.
Collapse
Affiliation(s)
- Cristina Tintori
- Dipartimento Farmaco Chimico Tecnologico, University of Siena, Via Alcide de Gasperi 2, I-53100 Siena, Italy
| | | | | | | | | | | | | |
Collapse
|
44
|
MiR-217 is involved in Tat-induced HIV-1 long terminal repeat (LTR) transactivation by down-regulation of SIRT1. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1017-23. [PMID: 22406815 DOI: 10.1016/j.bbamcr.2012.02.014] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 02/09/2012] [Accepted: 02/23/2012] [Indexed: 12/29/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression and may contribute to the development and progression of many infective diseases including human immunodeficiency virus 1 (HIV-1) infection. The Tat protein is fundamental to viral gene expression. In this study, our goal was to investigate the regulation of a specific miRNA (known as miR-217) in multinuclear activation of galactosidase indicator (MAGI) cells and explore the mechanisms by which miR-217 influenced Tat-induced HIV-1 transactivation through down-regulation of SIRT1 expression. We showed that miR-217 was up-regulated when Tat was expressed in multinuclear activation of galactosidase indicator cells. Forced expression of "miR-217 mimics" increased Tat-induced LTR transactivation. In addition, miR-217 significantly inhibited SIRT1 protein expression by acting on the 3'-UTR of the SIRT1 mRNA. In turn, the decrease in SIRT1 protein abundance provoked by miR-217 affected two important types of downstream signaling molecules that were regulated by Tat. Lower expression of SIRT1 caused by miR-217 enhanced Tat-induced phosphorylation of IKK and p65-NFkB and also exacerbated the loss of AMPK phosphorylation triggered by Tat. Our results uncover previously unknown links between Tat and a specific host cell miRNA that targets SIRT1. We also demonstrate that this regulatory mechanism impinges on p65-NFkB and AMPK signaling: two important host cell pathways that influence HIV-1 pathogenesis. Our results also suggest that strategies to augment SIRT1 protein expression by down-regulation of miR-217 may have therapeutic benefits to prevent HIV-1 replication.
Collapse
|
45
|
Demeulemeester J, Tintori C, Botta M, Debyser Z, Christ F. Development of an AlphaScreen-based HIV-1 integrase dimerization assay for discovery of novel allosteric inhibitors. ACTA ACUST UNITED AC 2012; 17:618-28. [PMID: 22337657 DOI: 10.1177/1087057111436343] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In recent years, HIV-1 integrase (IN) has become an established target in the field of antiretroviral drug discovery. However, its sole clinically approved inhibitor, the integrase strand transfer inhibitor (INSTI) raltegravir, has a surprisingly low genetic barrier for resistance. Furthermore, the only two other integrase inhibitors currently in advanced clinical trials, elvitegravir and dolutegravir, share its mechanism of action and certain resistance pathways. To maintain a range of treatment options, drug discovery efforts are now turning toward allosteric IN inhibitors, which should be devoid of cross-resistance with INSTIs. As IN requires a precise and dynamic equilibrium between several oligomeric species for its activities, the modulation of this equilibrium presents an interesting allosteric target. We report on the development, characterization, and validation of an AlphaScreen-based assay for high-throughput screening for modulators of HIV-1 IN dimerization. Compounds identified as hits in this assay proved to act as allosteric IN inhibitors. Additionally, the assay offers a flexible platform to study IN dimerization.
Collapse
|
46
|
Bosch L, Delelis O, Subra F, Deprez E, Witvrow M, Vilarrasa J. Thymidine- and AZT-linked 5-(1,3-dioxoalkyl)tetrazoles and 4-(1,3-dioxoalkyl)-1,2,3-triazoles. Tetrahedron Lett 2012. [DOI: 10.1016/j.tetlet.2011.11.079] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
47
|
Demeulemeester J, Christ F, De Maeyer M, Debyser Z. Fueling HIV-1 integrase drug design with structural insights. DRUG DISCOVERY TODAY. TECHNOLOGIES 2012; 9:e175-e226. [PMID: 24064310 DOI: 10.1016/j.ddtec.2012.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
|
48
|
Cavalluzzo C, Voet A, Christ F, Singh BK, Sharma A, Debyser Z, Maeyer MD, Eycken EVD. De novo design of small molecule inhibitors targeting the LEDGF/p75-HIVintegrase interaction. RSC Adv 2012. [DOI: 10.1039/c1ra00582k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
49
|
Peletskaya E, Andrake M, Gustchina A, Merkel G, Alexandratos J, Zhou D, Bojja RS, Satoh T, Potapov M, Kogon A, Potapov V, Wlodawer A, Skalka AM. Localization of ASV integrase-DNA contacts by site-directed crosslinking and their structural analysis. PLoS One 2011; 6:e27751. [PMID: 22145019 PMCID: PMC3228729 DOI: 10.1371/journal.pone.0027751] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 10/24/2011] [Indexed: 01/26/2023] Open
Abstract
Background We applied crosslinking techniques as a first step in preparation of stable avian sarcoma virus (ASV) integrase (IN)-DNA complexes for crystallographic investigations. These results were then compared with the crystal structures of the prototype foamy virus (PFV) intasome and with published data for other retroviral IN proteins. Methodology/Results Photoaffinity crosslinking and site-directed chemical crosslinking were used to localize the sites of contacts with DNA substrates on the surface of ASV IN. Sulfhydryl groups of cysteines engineered into ASV IN and amino-modified nucleotides in DNA substrates were used for attachment of photocrosslinkers. Analysis of photocrosslinking data revealed several specific DNA-protein contacts. To confirm contact sites, thiol-modified nucleotides were introduced into oligo-DNA substrates at suggested points of contact and chemically crosslinked to the cysteines via formation of disulfide bridges. Cysteines incorporated in positions 124 and 146 in the ASV IN core domain were shown to interact directly with host and viral portions of the Y-mer DNA substrate, respectively. Crosslinking of an R244C ASV IN derivative identified contacts at positions 11 and 12 on both strands of viral DNA. The most efficient disulfide crosslinking was observed for complexes of the ASV IN E157C and D64C derivatives with linear viral DNA substrate carrying a thiol-modified scissile phosphate. Conclusion Analysis of our crosslinking results as well as published results of retroviral IN protein from other laboratories shows good agreement with the structure of PFV IN and derived ASV, HIV, and MuLV models for the core domain, but only partial agreement for the N- and C-terminal domains. These differences might be explained by structural variations and evolutionary selection for residues at alternate positions to perform analogous functions, and by methodological differences: i.e., a static picture of a particular assembly from crystallography vs. a variety of interactions that might occur during formation of functional IN complexes in solution.
Collapse
|
50
|
4-[1-(4-Fluorobenzyl)-4-hydroxy-1H-indol-3-yl]-2-hydroxy-4-oxobut-2-enoic acid as a prototype to develop dual inhibitors of HIV-1 integration process. Antiviral Res 2011; 92:102-7. [DOI: 10.1016/j.antiviral.2011.07.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 06/16/2011] [Accepted: 07/05/2011] [Indexed: 01/22/2023]
|