1
|
Liotier J, Mwalukuku VM, Fauvel S, Riquelme AJ, Anta JA, Maldivi P, Demadrille R. Photochromic naphthopyran dyes incorporating a benzene, thiophene or furan spacer: effect on photochromic, optoelectronic and photovoltaic properties in dye-sensitized solar cells. SOLAR RRL 2022; 6:2100929. [PMID: 35966398 PMCID: PMC7613291 DOI: 10.1002/solr.202100929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Indexed: 06/15/2023]
Abstract
We recently demonstrated that diaryl-naphthopyran photochromic dyes are efficient for sensitization of TiO2 mesoporous electrodes, thus allowing the fabrication of photo-chromo-voltaic cells that can self-adapt their absorption of light and their generation of electricity with the light intensity. Herein we report the synthesis, the characterisation of two novel photochromic dyes based on diaryl-naphthopyran core i.e NPI-ThPh and NPI-FuPh for use in Dye Sensitized Solar Cells (DSSCs). Compared to our reference dye NPI, the molecules only vary by the nature of the spacer, a thiophene or a furan, connecting the photochromic unit and the phenyl-cyano-acrylic acid moiety used as the anchoring function. We found that swapping a phenyl for a thiophene or a furan leads to an improvement of the absorption properties of the molecules both in solution and after grafting on TiO2 electrodes, however their photochromic process becomes not fully reversible. Despite better absorption in the visible range, the new dyes show poorer photochromic and photovoltaic properties in devices compared to NPI. Thanks to UV-Vis spectroscopy, DFT calculation, electrical characterization of the cells, and impedance spectroscopy, we unravel the factors limiting their performances. Our study contributes to better understand the connection between photochromic and photovoltaic properties, which is key to develop better performing molecules of this class.
Collapse
Affiliation(s)
- Johan Liotier
- Univ. Grenoble Alpes, CEA, CNRS, IRIG-SyMMES, 38000 Grenoble, France
| | | | - Samuel Fauvel
- Univ. Grenoble Alpes, CEA, CNRS, IRIG-SyMMES, 38000 Grenoble, France
| | - Antonio J Riquelme
- Área de Química Física, Universidad Pablo de Olavide, E-41013 Seville, Spain
| | - Juan A Anta
- Área de Química Física, Universidad Pablo de Olavide, E-41013 Seville, Spain
| | - Pascale Maldivi
- Univ. Grenoble Alpes, CEA, CNRS, IRIG-SyMMES, 38000 Grenoble, France
| | - Renaud Demadrille
- Univ. Grenoble Alpes, CEA, CNRS, IRIG-SyMMES, 38000 Grenoble, France
| |
Collapse
|
2
|
Salah M, Abdelsamie AS, Frotscher M. Inhibitors of 17β-hydroxysteroid dehydrogenase type 1, 2 and 14: Structures, biological activities and future challenges. Mol Cell Endocrinol 2019; 489:66-81. [PMID: 30336189 DOI: 10.1016/j.mce.2018.10.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 08/27/2018] [Accepted: 10/04/2018] [Indexed: 12/16/2022]
Abstract
During the past 25 years, the modulation of estrogen action by inhibition of 17β-hydroxysteroid dehydrogenase types 1 and 2 (17β-HSD1 and 17β-HSD2), respectively, has been pursued intensively. In the search for novel treatment options for estrogen-dependent diseases (EDD) and in order to explore estrogenic signaling pathways, a large number of steroidal and nonsteroidal inhibitors of these enzymes has been described in the literature. The present review gives a survey on the development of inhibitor classes as well as the structural formulas and biological properties of their most interesting representatives. In addition, rationally designed dual inhibitors of both 17β-HSD1 and steroid sulfatase (STS) as well as the first inhibitors of 17β-HSD14 are covered.
Collapse
Affiliation(s)
- Mohamed Salah
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C23, D-66123, Saarbrücken, Germany
| | - Ahmed S Abdelsamie
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus E81, 66123, Saarbrücken, Germany; Chemistry of Natural and Microbial Products Department, National Research Centre, Dokki, 12622, Cairo, Egypt
| | - Martin Frotscher
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C23, D-66123, Saarbrücken, Germany.
| |
Collapse
|
3
|
Type 2 17-β hydroxysteroid dehydrogenase as a novel target for the treatment of osteoporosis. Future Med Chem 2016; 7:1431-56. [PMID: 26230882 DOI: 10.4155/fmc.15.74] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Low estradiol level in postmenopausal women is implicated in osteoporosis, which occurs because of the high bone resorption rate. Estrogen formation is controlled by 17-β hydroxysteroid dehydrogenase 17-β HSD enzymes, where 17-β HSD type 1 contributes in the formation of estradiol, while type 2 catalyzes its catabolism. Inhibiting 17-β HSD2 can help in increasing estradiol concentration. Several promising 17-β HSD2 inhibitors that can act at low nanomolar range have been identified. However, there are some specific challenges associated with the application of these compounds. Our review provides an up-to-date summary of the current status and recent progress in the production of 17-β HSD2 inhibitors as well as the future challenges in their clinical application.
Collapse
|
4
|
Abdelsamie AS, Bey E, Gargano EM, van Koppen CJ, Empting M, Frotscher M. Towards the evaluation in an animal disease model: Fluorinated 17β-HSD1 inhibitors showing strong activity towards both the human and the rat enzyme. Eur J Med Chem 2015; 103:56-68. [DOI: 10.1016/j.ejmech.2015.08.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 08/07/2015] [Accepted: 08/13/2015] [Indexed: 01/22/2023]
|
5
|
Abdelsamie AS, Bey E, Hanke N, Empting M, Hartmann RW, Frotscher M. Inhibition of 17β-HSD1: SAR of bicyclic substituted hydroxyphenylmethanones and discovery of new potent inhibitors with thioether linker. Eur J Med Chem 2014; 82:394-406. [DOI: 10.1016/j.ejmech.2014.05.074] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 05/27/2014] [Accepted: 05/31/2014] [Indexed: 01/19/2023]
|
6
|
Perspicace E, Giorgio A, Carotti A, Marchais-Oberwinkler S, Hartmann RW. Novel N-methylsulfonamide and retro-N-methylsulfonamide derivatives as 17β-hydroxysteroid dehydrogenase type 2 (17β-HSD2) inhibitors with good ADME-related physicochemical parameters. Eur J Med Chem 2013; 69:201-15. [DOI: 10.1016/j.ejmech.2013.08.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Revised: 08/08/2013] [Accepted: 08/14/2013] [Indexed: 10/26/2022]
|
7
|
Perspicace E, Marchais-Oberwinkler S, Hartmann RW. Synthesis and biological evaluation of thieno[3,2-d]- pyrimidinones, thieno[3,2-d]pyrimidines and quinazolinones: conformationally restricted 17b-hydroxysteroid dehydrogenase type 2 (17b-HSD2) inhibitors. Molecules 2013; 18:4487-509. [PMID: 23591928 PMCID: PMC6270028 DOI: 10.3390/molecules18044487] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 04/08/2013] [Accepted: 04/10/2013] [Indexed: 11/16/2022] Open
Abstract
In this study, a series of conformationally restricted thieno[3,2-d]pyrimidinones, thieno[3,2-d]pyrimidines and quinazolinones was designed and synthesized with the goal of improving the biological activity as 17b-hydroxysteroid dehydrogenase type 2 inhibitors of the corresponding amidothiophene derivatives. Two moderately active compounds were discovered and this allowed the identification of the biologically active open conformer as well as the extension of the enzyme binding site characterisation.
Collapse
Affiliation(s)
- Enrico Perspicace
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C23, D-66123 Saarbrücken, Germany; E-Mails: (E.P.); (S.M.-O.)
| | - Sandrine Marchais-Oberwinkler
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C23, D-66123 Saarbrücken, Germany; E-Mails: (E.P.); (S.M.-O.)
| | - Rolf W. Hartmann
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C23, D-66123 Saarbrücken, Germany; E-Mails: (E.P.); (S.M.-O.)
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus C23, D-66123 Saarbrücken, Germany
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +49-681-302-70300; Fax: +49-681-302-70308
| |
Collapse
|
8
|
Marchais-Oberwinkler S, Xu K, Wetzel M, Perspicace E, Negri M, Meyer A, Odermatt A, Möller G, Adamski J, Hartmann RW. Structural Optimization of 2,5-Thiophene Amides as Highly Potent and Selective 17β-Hydroxysteroid Dehydrogenase Type 2 Inhibitors for the Treatment of Osteoporosis. J Med Chem 2012; 56:167-81. [DOI: 10.1021/jm3014053] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
| | - Kuiying Xu
- Pharmaceutical and Medicinal
Chemistry, Saarland University, D-66041
Saarbrücken, Germany
| | - Marie Wetzel
- Pharmaceutical and Medicinal
Chemistry, Saarland University, D-66041
Saarbrücken, Germany
| | - Enrico Perspicace
- Pharmaceutical and Medicinal
Chemistry, Saarland University, D-66041
Saarbrücken, Germany
| | - Matthias Negri
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus
C23, D-66123 Saarbrücken, Germany
| | - Arne Meyer
- Division of Molecular and Systems
Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstraße 50, CH-4056 Basel,
Switzerland
| | - Alex Odermatt
- Division of Molecular and Systems
Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstraße 50, CH-4056 Basel,
Switzerland
| | - Gabriele Möller
- Genome Analysis
Center, Institute
of Experimental Genetic, Helmholtz Zentrum München, D-85764 Neuherberg, Germany
| | - Jerzy Adamski
- Genome Analysis
Center, Institute
of Experimental Genetic, Helmholtz Zentrum München, D-85764 Neuherberg, Germany
- Lehrstuhl für Experimentelle
Genetik, Technische Universität München, D-85350 Freising-Weihenstephan, Germany
| | - Rolf W. Hartmann
- Pharmaceutical and Medicinal
Chemistry, Saarland University, D-66041
Saarbrücken, Germany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus
C23, D-66123 Saarbrücken, Germany
| |
Collapse
|
9
|
Al-Soud YA, Marchais-Oberwinkler S, Frotscher M, Hartmann RW. Synthesis and Biological Evaluation of Phenyl Substituted 1H-1,2,4-Triazoles as Non-Steroidal Inhibitors of 17β-Hydroxysteroid Dehydrogenase Type 2. Arch Pharm (Weinheim) 2012; 345:610-21. [DOI: 10.1002/ardp.201200025] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 03/13/2012] [Accepted: 03/15/2012] [Indexed: 11/12/2022]
|
10
|
Henn C, Einspanier A, Marchais-Oberwinkler S, Frotscher M, Hartmann RW. Lead Optimization of 17β-HSD1 Inhibitors of the (Hydroxyphenyl)naphthol Sulfonamide Type for the Treatment of Endometriosis. J Med Chem 2012; 55:3307-18. [DOI: 10.1021/jm201735j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Claudia Henn
- Pharmaceutical and Medicinal
Chemistry, Saarland University, Campus
C2 3, D-66041 Saarbrücken, Germany
- Helmholtz-Institute for Pharmaceutical
Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Campus C2 3, 66123 Saarbrücken,
Germany
| | - Almuth Einspanier
- Faculty of Veterinary
Medicine, Institute of Physiological Chemistry, An den Tierkliniken
1, 04103 Leipzig, Germany
| | | | - Martin Frotscher
- Pharmaceutical and Medicinal
Chemistry, Saarland University, Campus
C2 3, D-66041 Saarbrücken, Germany
| | - Rolf W. Hartmann
- Pharmaceutical and Medicinal
Chemistry, Saarland University, Campus
C2 3, D-66041 Saarbrücken, Germany
- Helmholtz-Institute for Pharmaceutical
Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Campus C2 3, 66123 Saarbrücken,
Germany
| |
Collapse
|
11
|
Spadaro A, Negri M, Marchais-Oberwinkler S, Bey E, Frotscher M. Hydroxybenzothiazoles as new nonsteroidal inhibitors of 17β-hydroxysteroid dehydrogenase type 1 (17β-HSD1). PLoS One 2012; 7:e29252. [PMID: 22242164 PMCID: PMC3252304 DOI: 10.1371/journal.pone.0029252] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 11/23/2011] [Indexed: 01/25/2023] Open
Abstract
17β-estradiol (E2), the most potent estrogen in humans, known to be involved in the development and progession of estrogen-dependent diseases (EDD) like breast cancer and endometriosis. 17β-HSD1, which catalyses the reduction of the weak estrogen estrone (E1) to E2, is often overexpressed in breast cancer and endometriotic tissues. An inhibition of 17β-HSD1 could selectively reduce the local E2-level thus allowing for a novel, targeted approach in the treatment of EDD. Continuing our search for new nonsteroidal 17β-HSD1 inhibitors, a novel pharmacophore model was derived from crystallographic data and used for the virtual screening of a small library of compounds. Subsequent experimental verification of the virtual hits led to the identification of the moderately active compound 5. Rigidification and further structure modifications resulted in the discovery of a novel class of 17β-HSD1 inhibitors bearing a benzothiazole-scaffold linked to a phenyl ring via keto- or amide-bridge. Their putative binding modes were investigated by correlating their biological data with features of the pharmacophore model. The most active keto-derivative 6 shows IC₅₀-values in the nanomolar range for the transformation of E1 to E2 by 17β-HSD1, reasonable selectivity against 17β-HSD2 but pronounced affinity to the estrogen receptors (ERs). On the other hand, the best amide-derivative 21 shows only medium 17β-HSD1 inhibitory activity at the target enzyme as well as fair selectivity against 17β-HSD2 and ERs. The compounds 6 and 21 can be regarded as first benzothiazole-type 17β-HSD1 inhibitors for the development of potential therapeutics.
Collapse
Affiliation(s)
- Alessandro Spadaro
- Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbrücken, Germany
- ElexoPharm GmbH, Saarbrücken, Germany
| | - Matthias Negri
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarbrücken, Germany
| | | | | | - Martin Frotscher
- Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbrücken, Germany
- * E-mail:
| |
Collapse
|
12
|
Discovery of a new class of bicyclic substituted hydroxyphenylmethanones as 17β-hydroxysteroid dehydrogenase type 2 (17β-HSD2) inhibitors for the treatment of osteoporosis. Eur J Med Chem 2012; 47:1-17. [DOI: 10.1016/j.ejmech.2011.09.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 08/31/2011] [Accepted: 09/02/2011] [Indexed: 11/23/2022]
|
13
|
Wetzel M, Marchais-Oberwinkler S, Perspicace E, Möller G, Adamski J, Hartmann RW. Introduction of an Electron Withdrawing Group on the Hydroxyphenylnaphthol Scaffold Improves the Potency of 17β-Hydroxysteroid Dehydrogenase Type 2 (17β-HSD2) Inhibitors. J Med Chem 2011; 54:7547-57. [PMID: 21972996 DOI: 10.1021/jm2008453] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
| | | | | | - Gabriele Möller
- Genome Analysis Center, Institute
of Experimental Genetic, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Jerzy Adamski
- Genome Analysis Center, Institute
of Experimental Genetic, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Lehrstuhl für Experimentelle
Genetik, Technische Universität München, 85350 Freising-Weihenstephan, Germany
| | | |
Collapse
|
14
|
Xu K, Al-Soud YA, Wetzel M, Hartmann RW, Marchais-Oberwinkler S. Triazole ring-opening leads to the discovery of potent nonsteroidal 17β-hydroxysteroid dehydrogenase type 2 inhibitors. Eur J Med Chem 2011; 46:5978-90. [PMID: 22037253 DOI: 10.1016/j.ejmech.2011.10.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 09/30/2011] [Accepted: 10/04/2011] [Indexed: 10/16/2022]
Abstract
17β-Hydroxysteroid dehydrogenase type 2 (17β-HSD2) catalyzes the oxidation of the highly potent steroids: the estrogen estradiol (E2) and the androgen testosterone (T) to the less active estrone and androstenedione, respectively. Inhibition of this enzyme may help maintain the local E2 level in bone tissue when the circulating E2 level drops and is therefore a novel and promising approach for the treatment of osteoporosis. In this work, a series of new nonsteroidal and achiral 17β-HSD2 inhibitors, namely N-benzyl-diphenyl-3(or 4)-carboxamide and N-benzyl-5-phenyl-thiophene-2-carboxamide was designed and the compounds were synthesized in a two to three steps reaction. A small library was built applying parallel synthesis. Highly potent 17β-HSD2 inhibitors could be identified in the thiophene-2-carboxamide class with IC(50) in the low nanomolar range. These compounds also showed a good selectivity profile toward 17β-HSD1 and toward the estrogen receptors α and β. The most interesting 17β-HSD2 inhibitor identified in this study is the 5-(2-fluoro-3-methoxyphenyl)-N-(3-hydroxybenzyl)-N-methylthiophene-2-carboxamide 6w displaying an IC(50) of 61 nM and a selectivity factor of 73 toward 17β-HSD1.
Collapse
Affiliation(s)
- Kuiying Xu
- Pharmaceutical and Medicinal Chemistry, Saarland University, Germany
| | | | | | | | | |
Collapse
|
15
|
Klein T, Henn C, Negri M, Frotscher M. Structural basis for species specific inhibition of 17β-hydroxysteroid dehydrogenase type 1 (17β-HSD1): computational study and biological validation. PLoS One 2011; 6:e22990. [PMID: 21857977 PMCID: PMC3153478 DOI: 10.1371/journal.pone.0022990] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 07/07/2011] [Indexed: 11/19/2022] Open
Abstract
17β-Hydroxysteroid dehydrogenase type 1 (17β-HSD1) catalyzes the reduction of estrone to estradiol, which is the most potent estrogen in humans. Inhibition of 17β-HSD1 and thereby reducing the intracellular estradiol concentration is thus a promising approach for the treatment of estrogen dependent diseases. In the past, several steroidal and non-steroidal inhibitors of 17β-HSD1 have been described but so far there is no cocrystal structure of the latter in complex with 17β-HSD1. However, a distinct knowledge of active site topologies and protein-ligand interactions is a prerequisite for structure-based drug design and optimization. An elegant strategy to enhance this knowledge is to compare inhibition values obtained for one compound toward ortholog proteins from various species, which are highly conserved in sequence and differ only in few residues. In this study the inhibitory potencies of selected members of different non-steroidal inhibitor classes toward marmoset 17β-HSD1 were determined and the data were compared with the values obtained for the human enzyme. A species specific inhibition profile was observed in the class of the (hydroxyphenyl)naphthols. Using a combination of computational methods, including homology modelling, molecular docking, MD simulation, and binding energy calculation, a reasonable model of the three-dimensional structure of marmoset 17β-HSD1 was developed and inhibition data were rationalized on the structural basis. In marmoset 17β-HSD1, residues 190 to 196 form a small α-helix, which induces conformational changes compared to the human enzyme. The docking poses suggest these conformational changes as determinants for species specificity and energy decomposition analysis highlighted the outstanding role of Asn152 as interaction partner for inhibitor binding. In summary, this strategy of comparing the biological activities of inhibitors toward highly conserved ortholog proteins might be an alternative to laborious x-ray or site-directed mutagenesis experiments in certain cases. Additionally, it facilitates inhibitor design and optimization by offering new information on protein-ligand interactions.
Collapse
Affiliation(s)
- Tobias Klein
- Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbrücken, Germany
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarbrücken, Germany
| | - Claudia Henn
- Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbrücken, Germany
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarbrücken, Germany
| | - Matthias Negri
- Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbrücken, Germany
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarbrücken, Germany
| | - Martin Frotscher
- Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbrücken, Germany
| |
Collapse
|