1
|
Bou-Fakhredin R, De Franceschi L, Motta I, Cappellini MD, Taher AT. Pharmacological Induction of Fetal Hemoglobin in β-Thalassemia and Sickle Cell Disease: An Updated Perspective. Pharmaceuticals (Basel) 2022; 15:ph15060753. [PMID: 35745672 PMCID: PMC9227505 DOI: 10.3390/ph15060753] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/12/2022] [Accepted: 06/13/2022] [Indexed: 12/04/2022] Open
Abstract
A significant amount of attention has recently been devoted to the mechanisms involved in hemoglobin (Hb) switching, as it has previously been established that the induction of fetal hemoglobin (HbF) production in significant amounts can reduce the severity of the clinical course in diseases such as β-thalassemia and sickle cell disease (SCD). While the induction of HbF using lentiviral and genome-editing strategies has been made possible, they present limitations. Meanwhile, progress in the use of pharmacologic agents for HbF induction and the identification of novel HbF-inducing strategies has been made possible as a result of a better understanding of γ-globin regulation. In this review, we will provide an update on all current pharmacological inducer agents of HbF in β-thalassemia and SCD in addition to the ongoing research into other novel, and potentially therapeutic, HbF-inducing agents.
Collapse
Affiliation(s)
- Rayan Bou-Fakhredin
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (R.B.-F.); (I.M.)
| | - Lucia De Franceschi
- Department of Medicine, University of Verona and Azienda Ospedaliera Universitaria Verona, 37128 Verona, Italy;
| | - Irene Motta
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (R.B.-F.); (I.M.)
- UOC General Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Maria Domenica Cappellini
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (R.B.-F.); (I.M.)
- UOC General Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Correspondence: (M.D.C.); (A.T.T.)
| | - Ali T. Taher
- Department of Internal Medicine, Division of Hematology-Oncology, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon
- Correspondence: (M.D.C.); (A.T.T.)
| |
Collapse
|
2
|
Lai ZS, Yeh TK, Chou YC, Hsu T, Lu CT, Kung FC, Hsieh MY, Lin CH, Chen CT, James Shen CK, Jiaang WT. Potent and orally active purine-based fetal hemoglobin inducers for treating β-thalassemia and sickle cell disease. Eur J Med Chem 2021; 209:112938. [PMID: 33109398 DOI: 10.1016/j.ejmech.2020.112938] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/23/2020] [Accepted: 10/10/2020] [Indexed: 11/25/2022]
Abstract
Reactivation of fetal hemoglobin (HbF) expression by therapeutic agents has been suggested as an alternative treatment to modulate anemia and the related symptoms of severe β-thalassemia and sickle cell disease (SCD). Hydroxyurea (HU) is the first US FDA-approved HbF inducer for treating SCD. However, approximately 25% of the patients with SCD do not respond to HU. A previous study identified TN1 (1) as a small-molecule HbF inducer. However, this study found that the poor potency and oral bioavailability of compound 1 limits the development of this inducer for clinical use. To develop drug-like compounds, further structure-activity relationship studies on the purine-based structure of 1 were conducted. Herein, we report our discovery of a more potent inducer, compound 13a, that can efficiently induce γ-globin gene expression at non-cytotoxic concentrations. The molecular mechanism of 13a, for the regulation HbF expression, was also investigated. In addition, we demonstrated that oral administration of 13a can ameliorate anemia and the related symptoms in SCD mice. The results of this study suggest that 13a can be further developed as a novel agent for treating hemoglobinopathies, such as β-thalassemia and SCD.
Collapse
Affiliation(s)
- Zheng-Sheng Lai
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan, ROC; Institute of Molecular Medicine, College of Medicine, National Taiwan University, No.7.Chung San South Road, Taipei, 10002, Taiwan, ROC
| | - Teng-Kuang Yeh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No. 35, Keyan Rd., Zhunan Town, Miaoli Country, 35053, Taiwan, ROC
| | - Yu-Chi Chou
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11529, Taiwan, ROC
| | - Tsu Hsu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No. 35, Keyan Rd., Zhunan Town, Miaoli Country, 35053, Taiwan, ROC
| | - Cheng-Tai Lu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No. 35, Keyan Rd., Zhunan Town, Miaoli Country, 35053, Taiwan, ROC
| | - Fang-Chun Kung
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No. 35, Keyan Rd., Zhunan Town, Miaoli Country, 35053, Taiwan, ROC
| | - Ming-Yen Hsieh
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan, ROC
| | - Chun-Hung Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan, ROC
| | - Chiung-Tong Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No. 35, Keyan Rd., Zhunan Town, Miaoli Country, 35053, Taiwan, ROC
| | - Che-Kun James Shen
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan, ROC
| | - Weir-Torn Jiaang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, No. 35, Keyan Rd., Zhunan Town, Miaoli Country, 35053, Taiwan, ROC.
| |
Collapse
|
3
|
Ward CM, Li B, Pace BS. Original Research: Stable expression of miR-34a mediates fetal hemoglobin induction in K562 cells. Exp Biol Med (Maywood) 2016; 241:719-29. [PMID: 26940952 PMCID: PMC4950382 DOI: 10.1177/1535370216636725] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Sickle cell anemia is a common genetic disorder caused by a point mutation in the sixth codon of the β-globin gene affecting people of African descent worldwide. A wide variety of clinical phenotypes ranging from mild to severe symptoms and complications occur due to hemoglobin S polymerization, red blood cell sickling, and vaso-occlusion. Research efforts are ongoing to develop strategies of fetal hemoglobin (HbF; α2γ2) induction to inhibit sickle hemoglobin polymerization and improve clinical outcomes. Insights have been gained from investigating mutations in the β-globin locus or transcription factors involved in the mechanisms of hemoglobin switching. Recent efforts to expand molecular targets that modulate γ-globin expression involve microRNAs that work through posttranscriptional gene regulation. Therefore, the goal of our study was to identify novel microRNA genes involved in fetal hemoglobin expression. Using in silico analysis, we identified a miR-34a binding site in the γ-globin mRNA which was tested for functional relevance. Stable expression of the shMIMIC miR-34a lentivirus vector increased fetal hemoglobin levels in single cell K562 clones consistent with silencing of a γ-globin gene repressor. Furthermore, miR-34a promoted cell differentiation supported by increased expression of KLF1, glycophorin A, and the erythropoietin receptor. Western blot analysis of known negative regulators of γ-globin including YY1, histone deacetylase 1, and STAT3, which are regulated by miR-34a showed no change in YY1 and histone deacetylase 1 levels; however, total- and phosphorylated-STAT3 levels were decreased in single cell miR-34a K562 clones. These data support a mechanism of fetal hemoglobin activation by miR-34a involving STAT3 gene silencing.
Collapse
Affiliation(s)
- Christina M Ward
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA Department of Pediatrics, Augusta University, Augusta, GA 30912, USA
| | - Biaoru Li
- Department of Pediatrics, Augusta University, Augusta, GA 30912, USA
| | - Betty S Pace
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA Department of Pediatrics, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
4
|
Pharmacological Induction of Human Fetal Globin Gene in Hydroxyurea-Resistant Primary Adult Erythroid Cells. Mol Cell Biol 2015; 35:2541-53. [PMID: 25986606 DOI: 10.1128/mcb.00035-15] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 05/06/2015] [Indexed: 11/20/2022] Open
Abstract
Pharmacological induction of the fetal γ globin gene and the consequent formation of HbF (α2/γ2) in adult erythroid cells are one feasible therapeutic strategy for sickle cell disease (SCD) and severe β-thalassemias. Hydroxyurea (HU) is the current drug of choice for SCD, but serious side effects limit its clinical use. Moreover, 30 to 50% of patients are irresponsive to HU treatment. We have used high-throughput screening to identify benzo[de]benzo[4,5]imidazo[2,1-a]isoquinolin-7-one and its derivatives (compounds I to VI) as potent γ globin inducers. Of the compounds, I to V exert superior γ globin induction and have better therapeutic potential than HU, likely because of their activation of the p38 mitogen-activated protein kinase (MAPK) signaling pathway and modulation of expression levels and/or chromosome binding of γ globin gene regulators, including BCL11A, and chromatin structure over the γ globin promoter. Unlike sodium butyrate (NaB), the global levels of acetylated histones H3 and H4 are not changed by compound II treatment. Remarkably, compound II induces the γ globin gene in HU-resistant primary human adult erythroid cells, the p38 signaling pathway of which appears to be irresponsive to HU and NaB as well as compound II. This study provides a new framework for the development of new and superior compounds for treating SCD and severe β-thalassemias.
Collapse
|
5
|
Li H, Xie W, Gore ER, Montoute MN, Bee WT, Zappacosta F, Zeng X, Wu Z, Kallal L, Ames RS, Pope AJ, Benowitz A, Erickson-Miller CL. Development of phenotypic screening assays for γ-globin induction using primary human bone marrow day 7 erythroid progenitor cells. ACTA ACUST UNITED AC 2013; 18:1212-22. [PMID: 24163393 DOI: 10.1177/1087057113499776] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Sickle cell anemia (SCA) is a genetic disorder of the β-globin gene. SCA results in chronic ischemia with pain and tissue injury. The extent of SCA symptoms can be ameliorated by treatment with drugs, which result in increasing the levels of γ-globin in patient red blood cells. Hydroxyurea (HU) is a Food and Drug Administration-approved drug for SCA, but it has dose-limiting toxicity, and patients exhibit highly variable treatment responses. To identify compounds that may lead to the development of better and safer medicines, we have established a method using primary human bone marrow day 7 erythroid progenitor cells (EPCs) to screen for compounds that induce γ-globin production. First, human marrow CD34(+) cells were cultured and expanded for 7 days and characterized for the expression of erythroid differentiation markers (CD71, CD36, and CD235a). Second, fresh or cryopreserved EPCs were treated with compounds for 3 days in 384-well plates followed by γ-globin quantification by an enzyme-linked immunosorbent assay (ELISA), which was validated using HU and decitabine. From the 7408 compounds screened, we identified at least one new compound with confirmed γ-globin-inducing activity. Hits are undergoing analysis in secondary assays. In this article, we describe the method of generating fit-for-purpose EPCs; the development, optimization, and validation of the ELISA and secondary assays for γ-globin detection; and screening results.
Collapse
Affiliation(s)
- Hu Li
- 1Molecular Discovery Research, GlaxoSmithKline, Collegeville, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|