1
|
Balo R, Fernández AG, Chopdat A, Ayadi SE, Kato A, Estévez RJ, Fleet GWJ, Estévez JC. Stable D-xylose ditriflate in divergent syntheses of dihydroxy prolines, pyrrolidines, tetrahydrofuran-2-carboxylic acids, and cyclic β-amino acids. Org Biomol Chem 2022; 20:9447-9459. [PMID: 36408757 DOI: 10.1039/d2ob01255c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Double nucleophilic displacement of D-xylo-ditriflate by amines, water and alkyl cyanoacetates, respectively, gave a series of bicyclic divergent intermediates for the synthesis of a wide range of highly functionalized targets, including hydroxylated prolines, pyrrolidines, furanoic acids, and cyclopentanes.
Collapse
Affiliation(s)
- Rosalino Balo
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares and Departamento de Química Orgánica, Campus Vida, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Alberto G Fernández
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares and Departamento de Química Orgánica, Campus Vida, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Adam Chopdat
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares and Departamento de Química Orgánica, Campus Vida, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Soufian El Ayadi
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares and Departamento de Química Orgánica, Campus Vida, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Atsushi Kato
- Department of Hospital Pharmacy, University of Toyama, Toyama 930-0194, Japan
| | - Ramón J Estévez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares and Departamento de Química Orgánica, Campus Vida, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain. .,Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - George W J Fleet
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - Juan C Estévez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares and Departamento de Química Orgánica, Campus Vida, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
2
|
Bouquet J, Auberger N, Ashmus R, King D, Bordes A, Fontelle N, Nakagawa S, Madden Z, Proceviat C, Kato A, Désiré J, Vocadlo DJ, Blériot Y. Structural variation of the 3-acetamido-4,5,6-trihydroxyazepane iminosugar through epimerization and C-alkylation leads to low micromolar HexAB and NagZ inhibitors. Org Biomol Chem 2021; 20:619-629. [PMID: 34940771 DOI: 10.1039/d1ob02280f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the synthesis of seven-membered iminosugars derived from a 3S-acetamido-4R,5R,6S-trihydroxyazepane scaffold and their evaluation as inhibitors of functionally related exo-N-acetylhexosaminidases including human O-GlcNAcase (OGA), human lysosomal β-hexosaminidase (HexAB), and Escherichia coli NagZ. Capitalizing on the flexibility of azepanes and the active site tolerances of hexosaminidases, we explore the effects of epimerization of stereocenters at C-3, C-5 and C-6 and C-alkylation at the C-2 or C-7 positions. Accordingly, epimerization at C-6 (L-ido) and at C-5 (D-galacto) led to selective HexAB inhibitors whereas introduction of a propyl group at C-7 on the C-3 epimer furnished a potent NagZ inhibitor.
Collapse
Affiliation(s)
- J Bouquet
- Université de Poitiers, IC2MP, UMR CNRS 7285, OrgaSynth Team, Glyco group, 4 rue Michel Brunet, 86073 Poitiers cedex 09, France.
| | - N Auberger
- Université de Poitiers, IC2MP, UMR CNRS 7285, OrgaSynth Team, Glyco group, 4 rue Michel Brunet, 86073 Poitiers cedex 09, France.
| | - R Ashmus
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5S 1P6, Canada.
| | - D King
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5S 1P6, Canada.
| | - A Bordes
- Université de Poitiers, IC2MP, UMR CNRS 7285, OrgaSynth Team, Glyco group, 4 rue Michel Brunet, 86073 Poitiers cedex 09, France.
| | - N Fontelle
- Université de Poitiers, IC2MP, UMR CNRS 7285, OrgaSynth Team, Glyco group, 4 rue Michel Brunet, 86073 Poitiers cedex 09, France.
| | - S Nakagawa
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | - Z Madden
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5S 1P6, Canada.
| | - C Proceviat
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5S 1P6, Canada.
| | - A Kato
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | - J Désiré
- Université de Poitiers, IC2MP, UMR CNRS 7285, OrgaSynth Team, Glyco group, 4 rue Michel Brunet, 86073 Poitiers cedex 09, France.
| | - D J Vocadlo
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5S 1P6, Canada.
| | - Y Blériot
- Université de Poitiers, IC2MP, UMR CNRS 7285, OrgaSynth Team, Glyco group, 4 rue Michel Brunet, 86073 Poitiers cedex 09, France.
| |
Collapse
|
3
|
Yan X, Shimadate Y, Kato A, Li YX, Jia YM, Fleet GWJ, Yu CY. Synthesis of Pyrrolidine Monocyclic Analogues of Pochonicine and Its Stereoisomers: Pursuit ofSimplified Structures and Potent β- N-Acetylhexosaminidase Inhibition. Molecules 2020; 25:E1498. [PMID: 32218360 PMCID: PMC7180638 DOI: 10.3390/molecules25071498] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/18/2020] [Accepted: 03/23/2020] [Indexed: 11/24/2022] Open
Abstract
Ten pairs of pyrrolidine analogues of pochonicine and its stereoisomers have been synthesized from four enantiomeric pairs of polyhydroxylated cyclic nitrones. Among the ten N-acetylamino pyrrolidine analogues, only compounds with 2,5-dideoxy-2,5-imino-d-mannitol (DMDP) and pochonicine (1) configurations showed potent inhibition of β-N-acetylhexosaminidases (β-HexNAcases); while 1-amino analogues lost almost all their inhibitions towards the tested enzymes. The assay results reveal the importance of the N-acetylamino group and the possible right configurations of pyrrolidine ring required for this type of inhibitors.
Collapse
Affiliation(s)
- Xin Yan
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (X.Y.); (Y.-M.J.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuna Shimadate
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan;
| | - Atsushi Kato
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan;
| | - Yi-Xian Li
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (X.Y.); (Y.-M.J.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yue-Mei Jia
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (X.Y.); (Y.-M.J.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - George W. J. Fleet
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX13TA, UK;
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China
| | - Chu-Yi Yu
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (X.Y.); (Y.-M.J.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China
| |
Collapse
|
4
|
Abrusán G, Marsh JA. Ligands and Receptors with Broad Binding Capabilities Have Common Structural Characteristics: An Antibiotic Design Perspective. J Med Chem 2019; 62:9357-9374. [PMID: 31188598 PMCID: PMC6858282 DOI: 10.1021/acs.jmedchem.9b00220] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Indexed: 01/08/2023]
Abstract
The spread of antibiotic resistance is one of the most serious global public-health problems. Here we show that a particular class of homomers with binding sites spanning multiple protein chains is particularly suitable for targeting by broad-spectrum antibacterial agents because due to the slow evolutionary change of such binding pockets, ligands of such homomers are much more likely to bind their homologs than ligands of monomers, or homomers with a single-chain binding site. Additionally, using de novo ligand design and deep learning, we show that the chemical compounds that can bind several different receptors have common structural characteristics and that halogens and fragments similar to the building blocks existing antimicrobials are overrepresented in them. Finally, we show that binding multiple receptors selects for flexible compounds, which are less likely to accumulate in Gram-negative bacteria; thus there is trade-off between reducing the emergence of resistance by multitargeting and broad-spectrum antibacterial activity.
Collapse
Affiliation(s)
- György Abrusán
- MRC Human Genetics Unit, Institute
of Genetics and Molecular Medicine, University
of Edinburgh, Crewe Road, Edinburgh EH4 2XU, U.K.
| | - Joseph A. Marsh
- MRC Human Genetics Unit, Institute
of Genetics and Molecular Medicine, University
of Edinburgh, Crewe Road, Edinburgh EH4 2XU, U.K.
| |
Collapse
|
5
|
Marichev KO, Wang K, Dong K, Greco N, Massey LA, Deng Y, Arman H, Doyle MP. Synthesis of Chiral Tetrasubstituted Azetidines from Donor-Acceptor Azetines via Asymmetric Copper(I)-Catalyzed Imido-Ylide [3+1]-Cycloaddition with Metallo-Enolcarbenes. Angew Chem Int Ed Engl 2019; 58:16188-16192. [PMID: 31496021 DOI: 10.1002/anie.201909929] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Indexed: 01/05/2023]
Abstract
The all-cis stereoisomers of tetrasubstituted azetidine-2-carboxylic acids and derivatives that possess three chiral centers have been prepared in high yield and stereocontrol from silyl-protected Z-γ-substituted enoldiazoacetates and imido-sulfur ylides by asymmetric [3+1]-cycloaddition using chiral sabox copper(I) catalysis followed by Pd/C catalytic hydrogenation. Hydrogenation of the chiral p-methoxybenzyl azetine-2-carboxylates occurs with both hydrogen addition to the C=C bond and hydrogenolysis of the ester.
Collapse
Affiliation(s)
- Kostiantyn O Marichev
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle, San Antonio, TX, 78249, USA
| | - Kan Wang
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle, San Antonio, TX, 78249, USA
| | - Kuiyong Dong
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle, San Antonio, TX, 78249, USA
| | - Nicole Greco
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle, San Antonio, TX, 78249, USA
| | - Lynée A Massey
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle, San Antonio, TX, 78249, USA
| | - Yongming Deng
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle, San Antonio, TX, 78249, USA
| | - Hadi Arman
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle, San Antonio, TX, 78249, USA
| | - Michael P Doyle
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle, San Antonio, TX, 78249, USA
| |
Collapse
|
6
|
Marichev KO, Wang K, Dong K, Greco N, Massey LA, Deng Y, Arman H, Doyle MP. Synthesis of Chiral Tetrasubstituted Azetidines from Donor–Acceptor Azetines via Asymmetric Copper(I)‐Catalyzed Imido‐Ylide [3+1]‐Cycloaddition with Metallo‐Enolcarbenes. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201909929] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Kostiantyn O. Marichev
- Department of ChemistryThe University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Kan Wang
- Department of ChemistryThe University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Kuiyong Dong
- Department of ChemistryThe University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Nicole Greco
- Department of ChemistryThe University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Lynée A. Massey
- Department of ChemistryThe University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Yongming Deng
- Department of ChemistryThe University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Hadi Arman
- Department of ChemistryThe University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Michael P. Doyle
- Department of ChemistryThe University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| |
Collapse
|
7
|
Fan CL, Hu K, Wang JL, Hao XQ, Wei JJ, Song MP, Zheng C. Synthesis of quaternary succinimides promoted by Ferric Nitrate. Tetrahedron Lett 2018; 59:4606-4610. [DOI: 10.1016/j.tetlet.2018.11.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
8
|
Fraga-Timiraos AB, Francés-Monerris A, Rodríguez-Muñiz GM, Navarrete-Miguel M, Miranda MA, Roca-Sanjuán D, Lhiaubet-Vallet V. Experimental and Theoretical Study on the Cycloreversion of a Nucleobase-Derived Azetidine by Photoinduced Electron Transfer. Chemistry 2018; 24:15346-15354. [PMID: 30053323 DOI: 10.1002/chem.201803298] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Indexed: 12/16/2022]
Abstract
Azetidines are interesting compounds in medicine and chemistry as bioactive scaffolds and synthetic intermediates. However, photochemical processes involved in the generation and fate of azetidine-derived radical ions have scarcely been reported. In this context, the photoreduction of this four-membered heterocycle might be relevant in connection with the DNA (6-4) photoproduct obtained from photolyase. Herein, a stable azabipyrimidinic azetidine (AZTm ), obtained from cycloaddition between thymine and 6-azauracil units, is considered to be an interesting model of the proposed azetidine-like intermediate. Hence, its photoreduction and photo-oxidation are thoroughly investigated through a multifaceted approach, including spectroscopic, analytical, and electrochemical studies, complemented by CASPT2 and DFT calculations. Both injection and removal of an electron result in the formation of radical ions, which evolve towards repaired thymine and azauracil units. Whereas photoreduction energetics are similar to those of the cyclobutane thymine dimers, photo-oxidation is clearly more favorable in the azetidine. Ring opening occurs with relatively low activation barriers (<13 kcal mol-1 ) and the process is clearly exergonic for photoreduction. In general, a good correlation has been observed between the experimental results and theoretical calculations, which has allowed a synergic understanding of the phenomenon.
Collapse
Affiliation(s)
- Ana B Fraga-Timiraos
- Instituto de Tecnología Química UPV-CSIC, Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos, s/n, 46022, Valencia, Spain
| | - Antonio Francés-Monerris
- Laboratoire de Physique et Chimie Théoriques (LPCT), Université de Lorraine, CNRS, 54000, Nancy, France
| | - Gemma M Rodríguez-Muñiz
- Instituto de Tecnología Química UPV-CSIC, Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos, s/n, 46022, Valencia, Spain
| | - Miriam Navarrete-Miguel
- Instituto de Ciencia Molecular, Universitat de València, P.O. Box 22085, 46071, Valencia, Spain
| | - Miguel A Miranda
- Instituto de Tecnología Química UPV-CSIC, Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos, s/n, 46022, Valencia, Spain
| | - Daniel Roca-Sanjuán
- Instituto de Ciencia Molecular, Universitat de València, P.O. Box 22085, 46071, Valencia, Spain
| | - Virginie Lhiaubet-Vallet
- Instituto de Tecnología Química UPV-CSIC, Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos, s/n, 46022, Valencia, Spain
| |
Collapse
|
9
|
Kato A, Nakagome I, Nakagawa S, Kinami K, Adachi I, Jenkinson SF, Désiré J, Blériot Y, Nash RJ, Fleet GWJ, Hirono S. In silico analyses of essential interactions of iminosugars with the Hex A active site and evaluation of their pharmacological chaperone effects for Tay-Sachs disease. Org Biomol Chem 2018; 15:9297-9304. [PMID: 28959811 DOI: 10.1039/c7ob02281f] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The affinity of a series of iminosugar-based inhibitors exhibiting various ring sizes toward Hex A and their essential interactions with the enzyme active site were investigated. All the Hex A-inhibiting iminosugars tested formed hydrogen bonds with Arg178, Asp322, Tyr421 and Glu462 and had the favorable cation-π interaction with Trp460. Among them, DMDP amide (6) proved to be the most potent competitive inhibitor with a Ki value of 0.041 μM. We analyzed the dynamic properties of both DMDP amide (6) and DNJNAc (1) in aqueous solution using molecular dynamics (MD) calculations; the distance of the interaction between Asp322 and 3-OH and Glu323 and 6-OH was important for stable interactions with Hex A, reducing fluctuations in the plasticity of the active site. DMDP amide (6) dose-dependently increased intracellular Hex A activity in the G269S mutant cells and restored Hex A activity up to approximately 43% of the wild type level; this effect clearly exceeded the border line treatment for Tay-Sachs disease, which is regarded as 10-15% of the wild type level. This is a significantly greater effect than that of pyrimethamine, which is currently in Phase 2 clinical trials. DMDP amide (6), therefore, represents a new promising pharmacological chaperone candidate for the treatment of Tay-Sachs disease.
Collapse
Affiliation(s)
- Atsushi Kato
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Glawar AFG, Martínez RF, Ayers BJ, Hollas MA, Ngo N, Nakagawa S, Kato A, Butters TD, Fleet GWJ, Jenkinson SF. Structural essentials for β-N-acetylhexosaminidase inhibition by amides of prolines, pipecolic and azetidine carboxylic acids. Org Biomol Chem 2018; 14:10371-10385. [PMID: 27735004 DOI: 10.1039/c6ob01549b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This paper explores the computer modelling aided design and synthesis of β-N-acetylhexosaminidase inhibitors along with their applicability to human disease treatment through biological evaluation in both an enzymatic and cellular setting. We investigated the importance of individual stereocenters, variations in structure-activity relationships along with factors influencing cell penetration. To achieve these goals we modified nitrogen heterocycles in terms of ring size, side chains present and ring nitrogen derivatization. By reducing the inhibitor interactions with the active site down to the essentials we were able to determine that besides the established 2S,3R trans-relationship, the presence and stereochemistry of the CH2OH side chain is of crucial importance for activity. In terms of cellular penetration, N-butyl side chains favour cellar uptake, while hydroxy- and carboxy-group bearing sidechains on the ring nitrogen retarded cellular penetration. Furthermore we show an early proof of principle study that β-N-acetylhexosaminidase inhibitors can be applicable to use in a potential anti-invasive anti-cancer strategy.
Collapse
Affiliation(s)
- A F G Glawar
- Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK. and Oxford Glycobiology Institute, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - R F Martínez
- Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - B J Ayers
- Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - M A Hollas
- Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - N Ngo
- Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - S Nakagawa
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | - A Kato
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | - T D Butters
- Oxford Glycobiology Institute, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - G W J Fleet
- Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK. and Oxford Glycobiology Institute, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - S F Jenkinson
- Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| |
Collapse
|
11
|
Hazelard D, Compain P. Square sugars: challenges and synthetic strategies. Org Biomol Chem 2017; 15:3806-3827. [DOI: 10.1039/c7ob00386b] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The synthesis of square sugars requires innovative strategies based on efficient stereoselective methodologies, from organocatalysis to metal carbene insertion.
Collapse
Affiliation(s)
- Damien Hazelard
- Laboratoire de Synthèse Organique et Molécules Bioactives (SYBIO)
- Université de Strasbourg/CNRS (UMR 7509)
- Ecole Europèenne de Chimie, Polyméres et Matériaux (ECPM)
- 25 rue Becquerel
- France
| | - Philippe Compain
- Laboratoire de Synthèse Organique et Molécules Bioactives (SYBIO)
- Université de Strasbourg/CNRS (UMR 7509)
- Ecole Europèenne de Chimie, Polyméres et Matériaux (ECPM)
- 25 rue Becquerel
- France
| |
Collapse
|
12
|
Stütz AE, Wrodnigg TM. Carbohydrate-Processing Enzymes of the Lysosome: Diseases Caused by Misfolded Mutants and Sugar Mimetics as Correcting Pharmacological Chaperones. Adv Carbohydr Chem Biochem 2016; 73:225-302. [PMID: 27816107 DOI: 10.1016/bs.accb.2016.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Lysosomal storage diseases are hereditary disorders caused by mutations on genes encoding for one of the more than fifty lysosomal enzymes involved in the highly ordered degradation cascades of glycans, glycoconjugates, and other complex biomolecules in the lysosome. Several of these metabolic disorders are associated with the absence or the lack of activity of carbohydrate-processing enzymes in this cell compartment. In a recently introduced therapy concept, for susceptible mutants, small substrate-related molecules (so-called pharmacological chaperones), such as reversible inhibitors of these enzymes, may serve as templates for the correct folding and transport of the respective protein mutant, thus improving its concentration and, consequently, its enzymatic activity in the lysosome. Carbohydrate-processing enzymes in the lysosome, related lysosomal diseases, and the scope and limitations of reported reversible inhibitors as pharmacological chaperones are discussed with a view to possibly extending and improving research efforts in this area of orphan diseases.
Collapse
Affiliation(s)
- Arnold E Stütz
- Glycogroup, Institute of Organic Chemistry, Graz University of Technology, Graz, Austria
| | - Tanja M Wrodnigg
- Glycogroup, Institute of Organic Chemistry, Graz University of Technology, Graz, Austria
| |
Collapse
|
13
|
3-Azidoazetidines as the first scaffolds for β-amino azetidine carboxylic acid peptidomimetics: azetidine iminosugars containing an acetamido group do not inhibit β- N -acetylhexosaminidases. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.tetasy.2016.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
14
|
Pancholi AK, Geden JV, Clarkson GJ, Shipman M. Asymmetric Synthesis of 2-Substituted Azetidin-3-ones via Metalated SAMP/RAMP Hydrazones. J Org Chem 2016; 81:7984-92. [PMID: 27447363 DOI: 10.1021/acs.joc.6b01284] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
2-Substituted azetidin-3-ones can be prepared in good yields and enantioselectivities (up to 85% ee) by a one-pot procedure involving the metalation of the SAMP/RAMP hydrazones of N-Boc-azetidin-3-one, reaction with a wide range of electrophiles, including alkyl, allyl, and benzyl halides and carbonyl compounds, followed by hydrolysis using oxalic acid.
Collapse
Affiliation(s)
- Alpa K Pancholi
- Department of Chemistry, University of Warwick , Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Joanna V Geden
- Department of Chemistry, University of Warwick , Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Guy J Clarkson
- Department of Chemistry, University of Warwick , Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Michael Shipman
- Department of Chemistry, University of Warwick , Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
15
|
Dowling MS, Fernando DP, Hou J, Liu B, Smith AC. Two Scalable Syntheses of (S)-2-Methylazetidine. J Org Chem 2016; 81:3031-6. [PMID: 26895201 DOI: 10.1021/acs.joc.6b00149] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Two orthogonal routes for preparing (S)-2-methylazetidine as a bench stable, crystalline (R)-(-)-CSA salt are presented. One route features the in situ generation and cyclization of a 1,3-bis-triflate to form the azetidine ring, while the second route involves chemoselective reduction of N-Boc azetidine-2-carboxylic acid. Both sequences afford the desired product in good overall yields (61% and 49%) and high enantiomeric excess (>99% ee), avoid column chromatography, and are suitable for the large-scale production of this material.
Collapse
Affiliation(s)
- Matthew S Dowling
- Pfizer Worldwide Research & Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Dilinie P Fernando
- Pfizer Worldwide Research & Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Jie Hou
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Bo Liu
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Aaron C Smith
- Pfizer Worldwide Research & Development, Eastern Point Road, Groton, Connecticut 06340, United States
| |
Collapse
|
16
|
Liu Z, Jenkinson SF, Vermaas T, Adachi I, Wormald MR, Hata Y, Kurashima Y, Kaji A, Yu CY, Kato A, Fleet GWJ. 3-Fluoroazetidinecarboxylic Acids and trans,trans-3,4-Difluoroproline as Peptide Scaffolds: Inhibition of Pancreatic Cancer Cell Growth by a Fluoroazetidine Iminosugar. J Org Chem 2015; 80:4244-58. [DOI: 10.1021/acs.joc.5b00463] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zilei Liu
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K
| | - Sarah F. Jenkinson
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K
| | - Tom Vermaas
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K
| | - Isao Adachi
- Department
of Hospital Pharmacy, University of Toyama, Toyama 930-0194, Japan
| | - Mark R. Wormald
- Glycobiology
Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, U.K
| | - Yukako Hata
- Faculty
of Pharmaceutical Sciences, Hokuriku University, Kanazawa 920-1181, Japan
| | - Yukiko Kurashima
- Faculty
of Pharmaceutical Sciences, Hokuriku University, Kanazawa 920-1181, Japan
| | - Akira Kaji
- Faculty
of Pharmaceutical Sciences, Hokuriku University, Kanazawa 920-1181, Japan
| | - Chu-Yi Yu
- CAS
Key Laboratory of Molecular Recognition and Function, Institute of
Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- National
Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, P.R. China
| | - Atsushi Kato
- Department
of Hospital Pharmacy, University of Toyama, Toyama 930-0194, Japan
| | - George W. J. Fleet
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K
- National
Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, P.R. China
| |
Collapse
|
17
|
Szcześniak P, Maziarz E, Stecko S, Furman B. Synthesis of Polyhydroxylated Piperidine and Pyrrolidine Peptidomimetics via One-Pot Sequential Lactam Reduction/Joullié–Ugi Reaction. J Org Chem 2015; 80:3621-33. [DOI: 10.1021/acs.joc.5b00335] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Piotr Szcześniak
- Institute of Organic Chemistry, Polish Academy of Sciences Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Elżbieta Maziarz
- Institute of Organic Chemistry, Polish Academy of Sciences Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Sebastian Stecko
- Institute of Organic Chemistry, Polish Academy of Sciences Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Bartłomiej Furman
- Institute of Organic Chemistry, Polish Academy of Sciences Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
18
|
Ayers BJ, Glawar AFG, Martínez RF, Ngo N, Liu Z, Fleet GWJ, Butters TD, Nash RJ, Yu CY, Wormald MR, Nakagawa S, Adachi I, Kato A, Jenkinson SF. Nine of 16 Stereoisomeric Polyhydroxylated Proline Amides Are Potent β-N-Acetylhexosaminidase Inhibitors. J Org Chem 2014; 79:3398-409. [DOI: 10.1021/jo500157p] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Benjamin J. Ayers
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Andreas F. G. Glawar
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
- Oxford
Glycobiology Institute, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K
| | - R. Fernando Martínez
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Nigel Ngo
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Zilei Liu
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - George W. J. Fleet
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Terry D. Butters
- Oxford
Glycobiology Institute, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K
| | - Robert J. Nash
- Phytoquest Limited,
IBERS, Plas Gogerddan, Ceredigion, Aberystwyth, SY23 3EB, U.K
| | - Chu-Yi Yu
- CAS
Key Laboratory of Molecular Recognition and Function, Institute of
Chemistry, Chinese Academy of Science, Beijing 100190, China
| | - Mark R. Wormald
- Oxford
Glycobiology Institute, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K
| | - Shinpei Nakagawa
- Department
of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Isao Adachi
- Department
of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Atsushi Kato
- Department
of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Sarah F. Jenkinson
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| |
Collapse
|
19
|
Martínez RF, Fleet GW. Carbohydrate derived bicyclic azetidin-3-ones as scaffolds for highly functionalized azetidines. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.tetasy.2014.01.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
20
|
Crabtree EV, Martínez RF, Nakagawa S, Adachi I, Butters TD, Kato A, Fleet GWJ, Glawar AFG. Synthesis of the enantiomers of XYLNAc and LYXNAc: comparison of β-N-acetylhexosaminidase inhibition by the 8 stereoisomers of 2-N-acetylamino-1,2,4-trideoxy-1,4-iminopentitols. Org Biomol Chem 2014; 12:3932-43. [DOI: 10.1039/c4ob00097h] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Jasiński M, Moreno-Clavijo E, Reissig HU. Synthesis of a Series of Enantiopure Polyhydroxylated Bicyclic N-Heterocycles from anL-Erythrose-Derived Nitrone and Alkoxyallenes. European J Org Chem 2013. [DOI: 10.1002/ejoc.201301406] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
22
|
A compendium of cyclic sugar amino acids and their carbocyclic and heterocyclic nitrogen analogues. Amino Acids 2013; 45:613-89. [DOI: 10.1007/s00726-013-1521-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 05/21/2013] [Indexed: 12/19/2022]
|