1
|
Lin Y, Zhou X, Zheng Y, Chen B, Liu Y, Zhang Y, Yan Q, Wang W, Chen F. Visible light-promoted C3-H alkoxycarbonylation of quinoxalin-2(1 H)-ones or coumarins with alkyloxalyl chlorides. Org Biomol Chem 2024; 22:8591-8595. [PMID: 39377703 DOI: 10.1039/d4ob01525h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Herein, we describe a green and efficient photoredox catalytic C3-H alkoxycarbonylation between quinoxalin-2(1H)-ones or coumarins and readily available alkyloxalyl chlorides under ambient conditions. A series of quinoxaline-3-carbonyl and coumarin-3-carbonyl compounds are prepared through the radical addition of in situ-generated alkoxycarbonyl radicals. Notably, this protocol features mild conditions, operational simplicity, and excellent functional group tolerance. More importantly, the carboxylated products can be readily derivatized into other important compounds that would be of great potential for the exploitation of pharmaceutically active compounds.
Collapse
Affiliation(s)
- Yanchun Lin
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, P. R. China.
| | - Xi Zhou
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, P. R. China.
| | - Yixuan Zheng
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, P. R. China.
| | - Bingran Chen
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, P. R. China.
| | - Yang Liu
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, P. R. China.
| | - Yi Zhang
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, P. R. China.
| | - Qiongjiao Yan
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, P. R. China.
| | - Wei Wang
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, P. R. China.
| | - Fener Chen
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, P. R. China.
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
- Shanghai Engineering Center of Industrial Catalysis for Chiral Drugs, Shanghai 200433, P. R. China
| |
Collapse
|
2
|
Luo Z, Wang M, Jiang G, Wang X, Zhao L, Hu Z, Li H, Ji Q. A mild and convenient protocol for the synthesis of quinoxalin-2(1 H)-ones and benzimidazoles. RSC Adv 2024; 14:35386-35390. [PMID: 39502186 PMCID: PMC11537211 DOI: 10.1039/d4ra06887d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 10/30/2024] [Indexed: 11/08/2024] Open
Abstract
We present a mild and simple method for the cyclization of N-protected o-phenylenediamines with carbonyl compounds in the presence of trifluoroacetic acid. This method reliably provides various substrates of benzimidazoles and quinoxalin-2(1H)-ones, with all reactions conducted at room temperature, demonstrating excellent substrate adaptability and a broad substrate scope.
Collapse
Affiliation(s)
- Zhenbiao Luo
- Department of Brewing Engineering, Moutai Institute Guizhou Renhuai 564507 China
| | - Mingyuan Wang
- Department of Brewing Engineering, Moutai Institute Guizhou Renhuai 564507 China
| | - Guidong Jiang
- Department of Brewing Engineering, Moutai Institute Guizhou Renhuai 564507 China
| | - Xinye Wang
- Department of Brewing Engineering, Moutai Institute Guizhou Renhuai 564507 China
| | - Liang Zhao
- Department of Brewing Engineering, Moutai Institute Guizhou Renhuai 564507 China
| | - Zhihui Hu
- Department of Brewing Engineering, Moutai Institute Guizhou Renhuai 564507 China
| | - Honghe Li
- Department of Brewing Engineering, Moutai Institute Guizhou Renhuai 564507 China
| | - Qing Ji
- Department of Brewing Engineering, Moutai Institute Guizhou Renhuai 564507 China
| |
Collapse
|
3
|
Tan R, Yang H, Jiang M, Song P. Visible-Light-Induced Singlet Oxygen-Promoted Arylation and Alkylation of Quinoxalin-2(1H)-ones and Quinolines. Molecules 2024; 29:5113. [PMID: 39519754 PMCID: PMC11547374 DOI: 10.3390/molecules29215113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/11/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
We report a green and efficient visible-light-driven method for the arylation and alkylation of quinoxalin-2(1H)-ones and quinolines. This catalyst-free process utilizes air as the oxidant, offering mild reaction conditions, environmental sustainability, and broad functional group compatibility. The approach enables the synthesis of aryl and alkyl derivatives of quinoxalin-2(1H)-ones and quinolines with high to excellent yields.
Collapse
Affiliation(s)
- Renjun Tan
- School of Science, Wuhan University of Technology, Wuhan 430070, China
- Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China; (R.T.)
| | - Hequn Yang
- School of Science, Wuhan University of Technology, Wuhan 430070, China
| | - Min Jiang
- School of Science, Wuhan University of Technology, Wuhan 430070, China
| | - Peijun Song
- Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China; (R.T.)
| |
Collapse
|
4
|
Wu L, Wang Z, Qiao Y, Xie L, Wang Q. Photoexcited nitroarenes for alkylation of quinoxalin-2(1 H)-ones. Chem Commun (Camb) 2024; 60:11311-11314. [PMID: 39295587 DOI: 10.1039/d4cc04315d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
A straightforward method for the dehydrogenative alkylation of quinoxalin-2(1H)-ones with alkylbenzenes has been developed, facilitated by a photoexcited nitroarene. The reaction's success hinges on the dual role of the photoexcited nitroarene molecule, acting as both a hydrogen atom transfer (HAT) reagent and an oxidant. This technique is both atom-economical and cost-effective, due to the readily available nitroarene, which serves as the sole intermediary in the reaction process.
Collapse
Affiliation(s)
- Lingang Wu
- School of Chemistry and Chemical Engineering, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252000, Shandong, People's Republic of China.
| | - Zhaoxue Wang
- School of Chemistry and Chemical Engineering, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252000, Shandong, People's Republic of China.
| | - Yanling Qiao
- School of Chemistry and Chemical Engineering, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252000, Shandong, People's Republic of China.
| | - Lei Xie
- School of Chemistry and Chemical Engineering, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252000, Shandong, People's Republic of China.
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China.
| |
Collapse
|
5
|
Srinivasu V, Pattanaik S, Sureshkumar D. Photoredox cross-dehydrogenative C(sp 2)-C(sp 3) coupling of heteroarenes with secondary amines through 1,5-HAT. Chem Commun (Camb) 2024; 60:9757-9760. [PMID: 39150701 DOI: 10.1039/d4cc02818j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
The functionalization of α-C(sp3)-H bonds in amines has become a focal point of contemporary research. Here, we report a new approach utilizing photocatalysis α-C(sp3)-H bond functionalization in alicyclic and aliphatic secondary amines facilitated by intramolecular 1,5-hydrogen atom transfer (HAT). This finding unlocks a sustainable method for rapidly constructing complex heterocyclics via cross-dehydrogenative C-C coupling of protected amines and nitrogen-containing heterocycles. This protocol boasts broad applicability to various substrates, exhibits tolerance to numerous functional groups, and supports the late-stage modification of drug molecules.
Collapse
Affiliation(s)
- Vinjamuri Srinivasu
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, West Bengal, India.
| | - Swadhin Pattanaik
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Berhampur-760010, Odisha, India
| | - Devarajulu Sureshkumar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, West Bengal, India.
| |
Collapse
|
6
|
Liu D, Patureau FW. Visible-Light-Induced Photocatalytic Deoxygenative Benzylation of Quinoxalin-2-(1 H)-ones with Carboxylic Acid Anhydrides. Org Lett 2024; 26:6841-6846. [PMID: 39110606 DOI: 10.1021/acs.orglett.4c02316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
A visible-light-induced photocatalytic deoxygenative benzylation of quinoxalin-2-(1H)-ones is herein described. This novel approach provides a mild, simple, and practical route to 3-benzylquinoxalin-2(1H)-ones from ubiquitous and safe carboxylic acid anhydrides. A wide range of substrates with different substituents were well-tolerated and efficiently transformed to various functionalized 3-benzylquinoxalin-2(1H)-ones with great potential for valuable applications in drug discovery. Mechanistic investigations suggest H2O as a proton source, while hydroxyl-containing quinoxalin-2(1H)-ones may be key intermediates of the photocatalytic deoxygenative process.
Collapse
Affiliation(s)
- Dan Liu
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Frederic W Patureau
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| |
Collapse
|
7
|
Cao S, Chen JX, Zhang XL, Song X, Song WY, Wu YS, Zhang YH, Liu Z. Merging Quinoxalin-2(1 H)-ones Excitation with Cobaloxime Catalysis: C3 Alkylation of Quinoxalin-2(1 H)-ones with Unactivated Alkyl Iodides and Carboxylic Acids under Light. Org Lett 2024; 26:5833-5838. [PMID: 38934368 DOI: 10.1021/acs.orglett.4c02021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Reported herein is a practical, economical, and efficient construction of 3-alkylated quinoxalin-2(1H)-ones with alkyl carboxylic acids and alkyl iodides by quinoxalin-2(1H)-one excitation and cobaloxime catalysis. Primary, secondary, and tertiary alkyl iodides and carboxylic acids all could be efficiently transferred into target products with excellent functional group tolerance. Mechanism studies reveal that the quinoxalin-2(1H)-one derivatives could be directly excited and yield alkyl carbon radicals from alkyl carboxylic acids and alkyl iodides with the aid of the cobaloxime complex.
Collapse
Affiliation(s)
- Shuo Cao
- School of Pharmacy, Shandong Second Medical University Weifang, 261053 China
| | - Jia-Xin Chen
- School of Pharmacy, Shandong Second Medical University Weifang, 261053 China
| | - Xiu-Li Zhang
- School of Pharmacy, Shandong Second Medical University Weifang, 261053 China
| | - Xian Song
- School of Pharmacy, Shandong Second Medical University Weifang, 261053 China
| | - Wen-Yu Song
- School of Pharmacy, Shandong Second Medical University Weifang, 261053 China
| | - Yu-Sheng Wu
- School of Pharmacy, Shandong Second Medical University Weifang, 261053 China
| | - Yan-Hui Zhang
- School of Medical Imaging, Shandong Second Medical University Weifang, 261053 China
| | - Zan Liu
- School of Pharmacy, Shandong Second Medical University Weifang, 261053 China
| |
Collapse
|
8
|
Shi SH, Li HY, Liu HY, Tian R, Zhu HT. Redox Relay-Induced C-S Radical Cross-Coupling Strategy: Application in Nontraditional Site-Selective Thiocyanation of Quinoxalinones. J Org Chem 2024; 89:6826-6837. [PMID: 38669146 DOI: 10.1021/acs.joc.4c00215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Oxidative cross-coupling is a powerful strategy to form C-heteroatom bonds. However, oxidative cross-coupling for constructing C-S bond is still a challenge due to sulfur overoxidation and poisoning transition-metal catalysts. Now, electrochemical redox relay using sulfur radicals formed in situ from inorganic sulfur source offers a solution to this problem. Herein, electrochemical redox relay-induced C-S radical cross-coupling of quinoxalinones and ammonium thiocyanate with bromine anion as mediator is presented. The electrochemical redox relay comprised initially the formation of sulfur radical via indirect electrochemical oxidation, simultaneous electrochemical reduction of the imine bond, electro-oxidation-triggered radical coupling involving dearomatization-rearomatization, and the reformation of the imine bond through anodic oxidation. Applying this strategy, various quinoxalinones bearing multifarious electron-deficient/-rich substituents at different positions were well compatible with moderate to excellent yields and good steric hindrance compatibility under constant current conditions in an undivided cell without transition-metal catalysts and additional redox reagents. Synthetic applications of this methodology were demonstrated through gram-scale preparation and follow-up transformation. Notably, such a unique strategy may offer new opportunities for the development of new quinoxalinone-core leads.
Collapse
Affiliation(s)
- Shi-Hui Shi
- Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi 716000, China
| | - Hao-Yu Li
- Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi 716000, China
| | - Hao-Yang Liu
- Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi 716000, China
| | - Rui Tian
- Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi 716000, China
| | - Hai-Tao Zhu
- Shannxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, China
| |
Collapse
|
9
|
Prince, Monika, Kumar P, Singh BK. Visible-Light-Driven Regioselective Decarboxylative Acylation of N-Methyl-3-phenylquinoxalin-2(1 H)-one by Dual Palladium-Photoredox Catalysis Through C-H Activation. ACS OMEGA 2024; 9:651-657. [PMID: 38239288 PMCID: PMC10796110 DOI: 10.1021/acsomega.3c06367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/18/2023] [Accepted: 11/28/2023] [Indexed: 01/22/2024]
Abstract
We report herein an efficient visible-light-promoted approach for the regioselective decarboxylative C-H acylation of N-methyl-3-phenylquinoxalin-2(1H)-ones using α-oxo-2-phenylacetic acids via dual palladium-photoredox catalysis. The reactions were carried out at room temperature in the presence of 24 W blue LEDs. The established protocol tolerated a wide range of functional groups and enabled the synthesis of several acylated N-methyl-3-phenylquinoxalin-2(1H)-ones in good to excellent yields. The proposed mechanism for this transformation was supported by control experiments.
Collapse
Affiliation(s)
- Prince
- Bio-organic
Chemistry Laboratory, Department of Chemistry, University of Delhi, New Delhi 110007, India
| | - Monika
- Bio-organic
Chemistry Laboratory, Department of Chemistry, University of Delhi, New Delhi 110007, India
| | - Prashant Kumar
- Bio-organic
Chemistry Laboratory, Department of Chemistry, University of Delhi, New Delhi 110007, India
- Department
of Chemistry, SRM University Delhi-NCR Sonepat, Sonepat, Haryana 131029, India
| | - Brajendra Kumar Singh
- Bio-organic
Chemistry Laboratory, Department of Chemistry, University of Delhi, New Delhi 110007, India
| |
Collapse
|
10
|
Mamedov VA, Mustakimova LV, Qu ZW, Zhu H, Syakaev VV, Galimullina VR, Shamsutdinova LR, Rizvanov IK, Gubaidullin AT, Sinyashin OG, Grimme S. Divergent Synthesis of 3-(Indol-2-yl)quinoxalin-2-ones and 4-(Benzimidazol-2-yl)-3-methyl(aryl)cinnolines via Polyphosphoric Acid (PPA)-Mediated Intramolecular Rearrangements of 3-(Methyl/aryl(2-phenylhydrazono)methyl)quinoxalin-2-ones. J Org Chem 2023. [PMID: 38033308 DOI: 10.1021/acs.joc.3c01626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Herein, we report a polyphosphoric acid (PPA)-mediated divergent metal-free operation to access a diverse collection of 3-(indol-2-yl)quinoxalin-2-ones and 4-(benzimidazol-2-yl)-3-methylcinnolines in moderate to excellent overall yields. The described process involves two distinct, and competing rearrangements of 3-(methyl(2-phenylhydrazono)methyl)quinoxalin-2-ones, namely [3,3]-sigmatropic Fischer rearrangement with the formation of an indole ring to produce 3-(indol-2-yl)-quinoxalin-2-ones, and Mamedov rearrangement with simultaneous construction of benzimidazole and cinnoline rings to form the new biheterocyclic system─4-(benzimidazol-2-yl)-3-methylcinnolines. The reaction mechanism of both rearrangement channels is explored by extensive dispersion-corrected DFT calculations. It is partcularly remarkable that when 3-(aryl(2-phenylhydrazono)methyl)quinoxalin-2-ones is used, instead of 3-(methyl(2-phenylhydrazono)methyl)quinoxalin-2-ones, reactions proceed regioselectively with the formation of only rearrangement products─4-(benzimidazol-2-yl)-3-arylcinnolines with high yields. This operationally simple protocol enables a rapid access to these scaffolds and is compatible with a wide scope of starting materials. In addition, the new rearrangement found features a promising approach for the design of unique compound libraries for drug design and discovery programs.
Collapse
Affiliation(s)
- Vakhid A Mamedov
- A.E. Arbuzov Institute of Organic and Physical Chemistry, RFC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, 420088 Kazan, Russian Federation
| | - Liliya V Mustakimova
- A.E. Arbuzov Institute of Organic and Physical Chemistry, RFC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, 420088 Kazan, Russian Federation
| | - Zheng-Wang Qu
- Mulliken Center for Theoretical Chemistry University of Bonn Beringstr. 4, 53115 Bonn, Germany
| | - Hui Zhu
- Mulliken Center for Theoretical Chemistry University of Bonn Beringstr. 4, 53115 Bonn, Germany
| | - Victor V Syakaev
- A.E. Arbuzov Institute of Organic and Physical Chemistry, RFC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, 420088 Kazan, Russian Federation
| | - Venera R Galimullina
- A.E. Arbuzov Institute of Organic and Physical Chemistry, RFC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, 420088 Kazan, Russian Federation
| | - Leisan R Shamsutdinova
- A.E. Arbuzov Institute of Organic and Physical Chemistry, RFC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, 420088 Kazan, Russian Federation
| | - Il'dar Kh Rizvanov
- A.E. Arbuzov Institute of Organic and Physical Chemistry, RFC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, 420088 Kazan, Russian Federation
| | - Aidar T Gubaidullin
- A.E. Arbuzov Institute of Organic and Physical Chemistry, RFC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, 420088 Kazan, Russian Federation
| | - Oleg G Sinyashin
- A.E. Arbuzov Institute of Organic and Physical Chemistry, RFC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, 420088 Kazan, Russian Federation
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry University of Bonn Beringstr. 4, 53115 Bonn, Germany
| |
Collapse
|
11
|
Liu Y, Zhou T, Xuan L, Lin Y, Li F, Wang H, Lyu J, Yan Q, Zhou H, Wang W, Chen FE. Visible-Light-Driven C,N-Selective Heteroarylation of N-Fluoroalkyl Hydroxylamine Reagents with Quinoxalin-2(1 H)-ones. Org Lett 2023. [PMID: 37991496 DOI: 10.1021/acs.orglett.3c03594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Herein, we disclose a direct and powerful strategy for the synthesis of highly valuable α-trifluoromethylamine and N-trifluoroethylamine derivatives from a visible-light-promoted C,N-selective heteroarylation of N-trifluoroethyl hydroxylamine reagents with quinoxalin-2(1H)-ones under ambient conditions. The chemoselectivity of the process (trifluoroalkylation or N-trifluoroethylamination) can easily be dictated and modulated by a selection of N-trifluoroethyl hydroxylamine substrates. The key to success is the protecting group on the N atom of hydroxylamine reagents, which can control the process of 1,2-H shift of the in situ-generated N-trifluoroethyl radical. Remarkable features of this method include mild conditions, easy operation, high selectivity, and excellent functional group tolerability. More importantly, the trifluoroalkylated products can be readily derivatized into other interesting imidazo-fused heterocycles that would be of great potential for the exploitation of pharmaceutically relevant molecules.
Collapse
Affiliation(s)
- Yang Liu
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Tongyao Zhou
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Liangming Xuan
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Yanchun Lin
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Fuqi Li
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Haifeng Wang
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Jian Lyu
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Qiongjiao Yan
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Hui Zhou
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health. College of Chemistry, Central China Normal University (CCNU), Wuhan 430079, P. R. China
| | - Wei Wang
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Fen-Er Chen
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, P. R. China
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
- Shanghai Engineering Center of Industrial Catalysis for Chiral Drugs, Shanghai 200433, P. R. China
| |
Collapse
|
12
|
Gupta S, Srinivasu V, Sureshkumar D. Metal and catalyst-free strategy to access 1,3-thio-heteroaryl BCP derivatives. Org Biomol Chem 2023; 21:8136-8140. [PMID: 37772462 DOI: 10.1039/d3ob01377d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
The widespread presence of bicyclo[1.1.1]pentane (BCP) and sulfur motifs in pharmaceutical compounds underscores the significance of synthesizing suitably functionalized BCP thioethers. In response, we have developed a metal-free and photocatalyst-free strategy that harnesses visible light-induced radical cascades. This approach culminates in the synthesis of essential thio-BCP derivatives, which serve as crucial precursors for the formation of the corresponding sulfoxides, sulfones, and sulfoximines. Importantly, this methodology exhibits potential for large-scale applications, displaying commendable tolerance towards various functional groups while operating under mild reaction conditions.
Collapse
Affiliation(s)
- Surbhi Gupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia-741246, West Bengal, India.
| | - Vinjamuri Srinivasu
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia-741246, West Bengal, India.
| | - Devarajulu Sureshkumar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia-741246, West Bengal, India.
| |
Collapse
|
13
|
Ma C, Shen J, Qu C, Shao T, Cao S, Yin Y, Zhao X, Jiang Z. Enantioselective Chemodivergent Three-Component Radical Tandem Reactions through Asymmetric Photoredox Catalysis. J Am Chem Soc 2023; 145:20141-20148. [PMID: 37639692 DOI: 10.1021/jacs.3c08883] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Chemodivergent synthesis has been achieved in asymmetric photocatalysis. Under a dual catalyst system consisting of a chiral phosphoric acid and DPZ as a photosensitizer, different inorganic bases enabled the formation of two sets of valuable products from the three-component radical tandem transformations of 2-bromo-1-arylenthan-1-ones, styrenes, and quinoxalin-2(1H)-ones. The key to success was the distinct pKa environment, in which the radicals that formed on the quinoxalin-2(1H)-one rings after two radical addition processes underwent either single-electron oxidation or single-electron reduction. In addition, this work represents the first use of quinoxalin-2(1H)-ones in asymmetric photoredox catalysis.
Collapse
Affiliation(s)
- Chaorui Ma
- Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, P. R. China
- International S&T Cooperation Base of Chiral Chemistry, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Jingyu Shen
- International S&T Cooperation Base of Chiral Chemistry, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Chaofan Qu
- International S&T Cooperation Base of Chiral Chemistry, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Tianju Shao
- Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Shanshan Cao
- Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Yanli Yin
- International S&T Cooperation Base of Chiral Chemistry, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Xiaowei Zhao
- International S&T Cooperation Base of Chiral Chemistry, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Zhiyong Jiang
- Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, P. R. China
- International S&T Cooperation Base of Chiral Chemistry, Henan University, Kaifeng, Henan 475004, P. R. China
| |
Collapse
|
14
|
Lin L, Wang P, Dong T, Tsui GC, Liao S. Radical Fluorosulfonyl Heteroarylation of Unactivated Alkenes with Quinoxalin-2(1 H)-ones and Related N-Heterocycles. Org Lett 2023; 25:1088-1093. [PMID: 36775923 DOI: 10.1021/acs.orglett.2c04315] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
The incorporation of sulfonyl fluoride groups into molecules has been proved effective to enhance their biological activities or introduce new functions. Herein, we report a transition-metal-free and visible-light-mediated radical 1-fluorosulfonyl-2-heteroarylation of alkenes, which could allow access to a series of SO2F-containing quinoxalin-2(1H)-ones, which are a critical structural motif widely present in a number of biologically active molecules. Further application of the method to the modification of other heterocycles and drug molecules as well as ligation chemistry via SuFEx click reactions is also demonstrated.
Collapse
Affiliation(s)
- Lu Lin
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Peng Wang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Tao Dong
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR 12333, China
| | - Gavin Chit Tsui
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR 12333, China
| | - Saihu Liao
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China.,State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| |
Collapse
|
15
|
Bisoyi A, Tripathy AR, Yedase GS, P SS, Choudhury U, Yatham VR. Photoinduced Decarboxylative C3-H Alkylation of Quinoxalin-2(1 H)-ones. J Org Chem 2023; 88:2631-2641. [PMID: 36734694 DOI: 10.1021/acs.joc.2c02823] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
An efficient, catalyst- and additive-free, visible-light-driven radical C3-H alkylation of quinoxalin-2(1H)-one derivatives has been developed. This reaction utilizes alkyl-NHP-esters as an alkyl radical donor and quinoxalin-2(1H)-one derivatives as an alkyl radical acceptor. The operationally simple protocol works under mild reaction conditions and tolerates a variety of functional groups. Furthermore, the synthetic utility of the methodology was successfully implemented for synthesizing biologically relevant C3-alkyl substituted quinoxalin-2(1H)-one derivatives.
Collapse
Affiliation(s)
- Akash Bisoyi
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram 695551, India
| | - Alisha Rani Tripathy
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram 695551, India
| | - Girish Suresh Yedase
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram 695551, India
| | - Shifana Sinu P
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram 695551, India
| | - Udita Choudhury
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram 695551, India
| | - Veera Reddy Yatham
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram 695551, India
| |
Collapse
|
16
|
Shen L, Yuan JW, Zhang B, Song SY, Yang LR, Xiao YM, Zhang SR, Qu LB. Photoredox-catalyzed three-component difluorobenzylation of quinoxalin-2(1 H)-ones with unactivated vinylarenes and BrCF 2CO 2Et/HCF 2CO 2H. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF CHEMICAL SCIENCES 2023. [DOI: 10.1515/znb-2022-0126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Abstract
An environmentally friendly strategy for the photo-catalyzed three-component reaction between quinoxalin-2(1H)-ones, vinylarenes, with inexpensive and easily accessible ethyl bromodifluoroacetate/sodium difluoromethanesulfinate is described. This protocol exhibits mild conditions, high efficiency, and excellent functional group tolerance, providing a highly efficient approach for the synthesis of difluorobenzylated quinoxalin-2(1H)-ones by the formation of two carbon-carbon bonds. A radical mechanism is responsible for this three-component transformation.
Collapse
Affiliation(s)
- Lu Shen
- School of Chemistry and Chemical Engineering , Henan University of Technology , Zhengzhou 450001 , P. R. China
| | - Jin-Wei Yuan
- School of Chemistry and Chemical Engineering , Henan University of Technology , Zhengzhou 450001 , P. R. China
| | - Bing Zhang
- School of Chemistry and Chemical Engineering , Henan University of Technology , Zhengzhou 450001 , P. R. China
| | - Sai-Yi Song
- School of Chemistry and Chemical Engineering , Henan University of Technology , Zhengzhou 450001 , P. R. China
| | - Liang-Ru Yang
- School of Chemistry and Chemical Engineering , Henan University of Technology , Zhengzhou 450001 , P. R. China
| | - Yong-Mei Xiao
- School of Chemistry and Chemical Engineering , Henan University of Technology , Zhengzhou 450001 , P. R. China
| | - Shou-Ren Zhang
- Henan Key Laboratory of Nanocomposites and Applications , Institute of Nanostructured Functional Materials, Huanghe Science and Technology College , Zhengzhou 450006 , P. R. China
| | - Ling-Bo Qu
- College of Chemistry , Zhengzhou University , Zhengzhou 450001 , P. R. China
| |
Collapse
|
17
|
Shi Y, Hou J, Wang K, Ding Y, Wei T, Yu Z, Su W, Xie Y. Regioselective Benzylation of Quinoxalin‐2(1H)‐ones with Methylarenes Under Transition‐Metal‐Free Conditions. ChemistrySelect 2022. [DOI: 10.1002/slct.202203468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Yuan Shi
- College of Pharmaceutical Science Zhejiang University of Technology Hangzhou 310014 China
| | - Jiahao Hou
- College of Pharmaceutical Science Zhejiang University of Technology Hangzhou 310014 China
| | - Kai Wang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Zhejiang University of Technology Hangzhou 310014 China
| | - Yuxin Ding
- College of Pharmaceutical Science Zhejiang University of Technology Hangzhou 310014 China
| | - Tingting Wei
- College of Pharmaceutical Science Zhejiang University of Technology Hangzhou 310014 China
| | - Zhichen Yu
- College of Pharmaceutical Science Zhejiang University of Technology Hangzhou 310014 China
| | - Weike Su
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Zhejiang University of Technology Hangzhou 310014 China
| | - Yuanyuan Xie
- College of Pharmaceutical Science Zhejiang University of Technology Hangzhou 310014 China
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Zhejiang University of Technology Hangzhou 310014 China
- Key Laboratory of Pharmaceutical Engineering of Zhejiang Province Hangzhou 310014 China
| |
Collapse
|
18
|
Li Y, Fu ZT, Shen Y, Zhu J, Luo K, Wu L. Divergent Auto‐oxidative Alkylation and Alkanoacylation of Quinoxalin‐2(1H)‐ones with Aliphatic Aldehydes. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yuan Li
- Nanjing Agricultural University Department of Chemistry Nanjing CHINA
| | - Zi-Tong Fu
- Nanjing Agricultural University Department of Chemistry Nanjing CHINA
| | - Yawei Shen
- Nanjing Agricultural University Department of Chemistry Nanjing CHINA
| | - Jie Zhu
- Nanjing Agricultural University Department of Chemistry Nanjing CHINA
| | - Kai Luo
- Nanjing Agricultural University College of Sciences Weigang No. 1 210095 Nanjing CHINA
| | - Lei Wu
- Nanjing Agricultural University Department of Chemistry Nanjing CHINA
| |
Collapse
|
19
|
Mamedov VA, Mamedova VL, Syakaev VV, Voronina JK, Mahrous EM, Khikmatova GZ, Korshin DE, Shamsutdinova LR, Rizvanov IK. Synthesis of 3-benzylquinoxalin-2(1H)-ones and 4-formyl-3-benzyl-3,4-dihydroquinoxalin-2(1H)-ones from 3-aryloxirane-2-carboxamides via 5-arylidene-2,2-dimethyl-1,3-oxazolidin-4-ones. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
20
|
Wang M, Zhang Z, Xiong C, Sun P, Zhou C. Microwave‐Accelerated Cross‐Dehydrogenative Coupling of Quinoxalin‐2(1
H
)‐ones with Alkanes under Transition‐Metal‐Free Conditions. ChemistrySelect 2022. [DOI: 10.1002/slct.202200816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Min Wang
- Nanjing Normal University Jiangsu Collaborative Innovation Center of Biomedical Functional Materials Nanjing 210023 China
- Huaibei Normal University Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education Huaibei Anhui 235000 China
| | - Zhongyi Zhang
- Huaibei Normal University Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education Huaibei Anhui 235000 China
| | - Chunxia Xiong
- Huaibei Normal University Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education Huaibei Anhui 235000 China
| | - Peipei Sun
- Nanjing Normal University Jiangsu Collaborative Innovation Center of Biomedical Functional Materials Nanjing 210023 China
| | - Chao Zhou
- Huaibei Normal University Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education Huaibei Anhui 235000 China
| |
Collapse
|
21
|
Xie D, Tian RG, Zhang XT, Tian SK. Copper-catalyzed C-3 benzylation of quinoxalin-2(1 H)-ones with benzylsulfonyl hydrazides. Org Biomol Chem 2022; 20:4518-4521. [PMID: 35604002 DOI: 10.1039/d2ob00744d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An unprecedented use of benzylsulfonyl hydrazides as benzylating agents has been demonstrated in the direct C-3 benzylation of quinoxalin-2(1H)-ones. A range of benzylsulfonyl hydrazides participated in the C-3 benzylation of quinoxalin-2(1H)-ones with CuCN as the catalyst and DTBP as the oxidant, delivering structurally diverse 3-benzylquinoxalin-2(1H)-ones in moderate to good yields.
Collapse
Affiliation(s)
- Dong Xie
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Ren-Gui Tian
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Xue-Ting Zhang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Shi-Kai Tian
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China.
| |
Collapse
|
22
|
Discovery of potent antitubercular agents: Design, synthesis and biological evaluation of 4-(3-(4-substitutedpiperazin-1-yl)-quinoxalin-2-yl)-naphthalen-1-ol analogues. Toxicol In Vitro 2022; 82:105370. [PMID: 35489549 DOI: 10.1016/j.tiv.2022.105370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 03/10/2022] [Accepted: 04/21/2022] [Indexed: 11/22/2022]
Abstract
A series of twenty-five novel 4-(3-(4-substituted piperazin-1-yl)-quinoxalin-2-yl)-naphthalen-1-ol analogues were synthesized, characterized and screened for in vitro antitubercular activity against Mycobacterium tuberculosis H37Rv strain. These compounds exhibited minimum inhibitory concentration in the range of 1.56-50 μg/mL. Among these derivatives, compounds 5a, 5b, 5f, 5m, 5p, and 5r displayed moderate activity (MIC 6.25 μg/mL). Compounds 5c, 5d, 5g, 5l, and 5o showed significant antitubercular activity (MIC 3.125 μg/mL), while compounds 5h, 5n, and 5q exhibited potent antitubercular activity (MIC 1.56 μg/mL). In addition, MTT assay was performed on the active analogues of the series against mouse macrophage cells to assess the cytotoxic effect of the newly synthesized compounds, and a selectivity index of the compounds was established. Selectivity index values of the most active compounds (5h, 5n, and 5q) are >47, indicating the compounds' suitability for further potential drug development. A molecular docking study was performed to understand the putative binding mode and binding strength of the selected significantly active and weakly active compounds with the target enzyme mycobacterial topoisomerase II using moxifloxacin as standard. In-silico ADME prediction and bioavailability studies of the titled compounds obey Lipinski's rule of five and Jorgensen's rule of three. To further ascertain the structure of the compounds, a suitable single crystal for the compounds 5a, 6, and 7d was developed and studied.
Collapse
|
23
|
Wang L, Li L, Gao Y, Mingli S, Liu J, Li P. Visible‐light‐induced site‐selective difunctionalization of 2,3‐dihydrofuran with quinoxalin‐2(1H)‐ones and peroxides. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Lei Wang
- Huaibei Normal University Chemistry 100 Dongshan Road 235000 Huaibei CHINA
| | - Laiqiang Li
- Huaibei Normal University Chemistry Huaibei CHINA
| | - Yanhui Gao
- Huaibei Normal University Chemistry Huaibei CHINA
| | - Sun Mingli
- Huaibei Normal University Chemistry Huaibei CHINA
| | - Jie Liu
- Huaibei Normal University Chemistry Huaibei CHINA
| | - Pinhua Li
- Huaibei Normal University Chemistry Huaibei CHINA
| |
Collapse
|
24
|
Kishor G, Ramesh V, Rao VR, Pabbaraja S, Adiyala PR. Regioselective C-3-alkylation of quinoxalin-2(1 H)-ones via C-N bond cleavage of amine derived Katritzky salts enabled by continuous-flow photoredox catalysis. RSC Adv 2022; 12:12235-12241. [PMID: 35517836 PMCID: PMC9053435 DOI: 10.1039/d2ra00753c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/24/2022] [Indexed: 11/26/2022] Open
Abstract
An efficient, transition metal-free visible-light-driven continuous-flow C-3-alkylation of quinoxalin-2(1H)-ones has been demonstrated by employing Katritzky salts as alkylating agents in the presence of eosin-y as a photoredox catalyst and DIPEA as a base at room temperature. The present protocol was accomplished by utilizing abundant and inexpensive alkyl amine (both primary and secondary alkyl) and as well as this a few amino acid feedstocks were converted into their corresponding redox-active pyridinium salts and subsequently into alkyl radicals. A wide variety of C-3-alkylated quinoxalin-2(1H)-ones were synthesized in moderate to high yields. Further this environmentally benign protocol is carried out in a PFA (Perfluoroalkoxy alkane) capillary based micro reactor under blue LED irradiation, enabling excellent yields (72% to 91%) and shorter reaction times (0.81 min) as compared to a batch system (16 h).
Collapse
Affiliation(s)
- Gandhari Kishor
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT) Hyderabad 500007 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Vankudoth Ramesh
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT) Hyderabad 500007 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Vadithya Ranga Rao
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT) Hyderabad 500007 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Srihari Pabbaraja
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT) Hyderabad 500007 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Praveen Reddy Adiyala
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT) Hyderabad 500007 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
25
|
Dong S, Li Y, Zhao Z, Li R, He J, Yin J, Yan B, Zhang X. A Review of the Application of Heterostructure Catalysts in Hydrogen Evolution Reaction. ChemistrySelect 2022. [DOI: 10.1002/slct.202104041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shizhi Dong
- College of Materials Science and Engineering Liaoning Technical University Fuxin 123000 China
| | - Yanshuai Li
- College of Materials Science and Engineering Liaoning Technical University Fuxin 123000 China
| | - Zhilong Zhao
- College of Materials Science and Engineering Liaoning Technical University Fuxin 123000 China
| | - Ruichuan Li
- College of Materials Science and Engineering Liaoning Technical University Fuxin 123000 China
| | - Jiaqi He
- College of Materials Science and Engineering Liaoning Technical University Fuxin 123000 China
| | - Jinpeng Yin
- College of Materials Science and Engineering Liaoning Technical University Fuxin 123000 China
| | - Bing Yan
- College of Materials Science and Engineering Liaoning Technical University Fuxin 123000 China
| | - Xing Zhang
- College of Materials Science and Engineering Liaoning Technical University Fuxin 123000 China
| |
Collapse
|
26
|
Zhang H, Xu J, Ouyang Y, Yue X, Zhou C, Ni Z, Li W. Molecular oxygen-mediated selective hydroxyalkylation and alkylation of quinoxalin-2(1H)-ones with alkylboronic acids. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.09.069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
27
|
Direct benzylation reactions from benzyl halides enabled by transition-metal-free photocatalysis. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
28
|
Jiang X, Wu K, Bai R, Zhang P, Zhang Y. Functionalized quinoxalinones as privileged structures with broad-ranging pharmacological activities. Eur J Med Chem 2022; 229:114085. [PMID: 34998058 DOI: 10.1016/j.ejmech.2021.114085] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/16/2021] [Accepted: 12/24/2021] [Indexed: 02/08/2023]
Abstract
Quinoxalinones are a class of heterocyclic compounds which attract extensive attention owing to their potential in the field of organic synthesis and medicinal chemistry. During the past few decades, many new synthetic strategies toward the functionalization of quinoxalinone based scaffolds have been witnessed. Regrettably, there are only a few reports on the pharmacological activities of quinoxalinone scaffolds from a medicinal chemistry perspective. Therefore, herein we intend to outline the applications of multifunctional quinoxalinones as privileged structures possessing various biological activities, including anticancer, neuroprotective, antibacterial, antiviral, antiparasitic, anti-inflammatory, antiallergic, anti-cardiovascular, anti-diabetes, antioxidation, etc. We hope that this review will facilitate the development of quinoxalinone derivatives in medicinal chemistry.
Collapse
Affiliation(s)
- Xiaoying Jiang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China; College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Kaiyu Wu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Renren Bai
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China.
| | - Pengfei Zhang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, PR China.
| | - Yi Zhang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China.
| |
Collapse
|
29
|
He L, Liang C, Ouyang Y, Li L, Guo Y, Zhang P, Li W. α-Functionalization of ketones promoted by sunlight and heterogeneous catalysis in the aqueous phase. Org Biomol Chem 2022; 20:790-795. [PMID: 34994749 DOI: 10.1039/d1ob02249k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Herein, a protocol that combines heterogeneous catalysis and solar photocatalysis for the regioselective α-substitution of asymmetric ketones with quinoxalinones has been reported. The result indicates that the reaction is more likely to occur on the α-carbon. This strategy provides a green and efficient way for the α-functionalization of ketones. A singlet oxygen involved mechanism is suggested for the transformation.
Collapse
Affiliation(s)
- Lei He
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Chenfeng Liang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Yani Ouyang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Lin Li
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Yirui Guo
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Pengfei Zhang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Wanmei Li
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China.
| |
Collapse
|
30
|
Yan Q, Cui W, Li J, Xu G, Song X, Lv J, Yang D. C–H benzylation of quinoxalin-2(1 H)-ones via visible-light riboflavin photocatalysis. Org Chem Front 2022. [DOI: 10.1039/d1qo01910d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
An efficient visible light promoted riboflavin-catalyzed direct benzylation of substituted quinoxalin-2(1H)-ones for the synthesis of various C3-benzylated quinoxalin-2(1H)-one derivatives has been developed under mild conditions.
Collapse
Affiliation(s)
- Qiuli Yan
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Wenwen Cui
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Junxin Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Guiyun Xu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Xiuyan Song
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Jian Lv
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Daoshan Yang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
31
|
Ma C, Wu Y, Chu X, Yang D, Xie C. Cross-Dehydrogenative Coupling Reaction and Arylation of Quinoxalin-2(1H)-ones under Iodide/Peroxide Conditions. SYNOPEN 2021. [DOI: 10.1055/a-1489-8711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
AbstractA simple method has been developed for the synthesis of 3-(2-oxo-2-phenylethylidene)-3,4-dihydroquinoxalin-2(1H)-one and 3-aryl-quinoxalin-2(1H)-one derivatives through C–H activation of quinoxalin-2(1H)-ones by peroxides and iodide. In this protocol, the peroxide (TBPB) serves as both the radical initiator and aryl source, realizing arylation of quinoxalin-2(1H)-one in a one-step reaction. The methodology has the advantages of being a metal-free strategy and having broad functional group tolerance.
Collapse
Affiliation(s)
- Chen Ma
- Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University
| | - Yujuan Wu
- Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University
| | - Xianglong Chu
- Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University
| | - Di Yang
- Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University
| | - Caixia Xie
- School of Chemistry and Chemical Engineering, Shandong University of Technology
| |
Collapse
|
32
|
Zhan Y, Li Y, Tong J, Liu P, Sun P. Electrochemical Oxidative C−H Cyanation of Quinoxalin‐2(1
H
)‐ones with TMSCN. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100348] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yanling Zhan
- College of Chemistry and Materials Science Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control Jiangsu Collaborative Innovation Center of Biomedical Functional Materials Nanjing Normal University Nanjing 210023 People's Republic of China
| | - Yifan Li
- College of Chemistry and Materials Science Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control Jiangsu Collaborative Innovation Center of Biomedical Functional Materials Nanjing Normal University Nanjing 210023 People's Republic of China
| | - Jinwen Tong
- College of Chemistry and Materials Science Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control Jiangsu Collaborative Innovation Center of Biomedical Functional Materials Nanjing Normal University Nanjing 210023 People's Republic of China
| | - Ping Liu
- College of Chemistry and Materials Science Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control Jiangsu Collaborative Innovation Center of Biomedical Functional Materials Nanjing Normal University Nanjing 210023 People's Republic of China
| | - Peipei Sun
- College of Chemistry and Materials Science Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control Jiangsu Collaborative Innovation Center of Biomedical Functional Materials Nanjing Normal University Nanjing 210023 People's Republic of China
| |
Collapse
|
33
|
Wen J, Yang X, Yan K, Qin H, Ma J, Sun X, Yang J, Wang H. Electroreductive C3 Pyridylation of Quinoxalin-2(1 H)-ones: An Effective Way to Access Bidentate Nitrogen Ligands. Org Lett 2021; 23:1081-1085. [PMID: 33439657 DOI: 10.1021/acs.orglett.0c04296] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The construction of functional N-containing active biomolecules and bidentate nitrogen ligands by electroreductive pyridylation of N-heteroaromatics is an eye-catching task and challenge. A simple and practical electroreductive-induced C3 pyridylation of quinoxalin-2(1H)-ones with readily available cyanopyridines is reported. More than 36 examples are supplied, and the reaction performed in >95% yield. The present protocol provides a convenient, efficient, and gram-scale synthesis strategy for a series of new types of potential bidentate nitrogen ligands.
Collapse
Affiliation(s)
- Jiangwei Wen
- Institute of Medicine and Materials Applied Technologies, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| | - Xiaoting Yang
- Institute of Medicine and Materials Applied Technologies, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| | - Kelu Yan
- Institute of Medicine and Materials Applied Technologies, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| | - Hongyun Qin
- Institute of Medicine and Materials Applied Technologies, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| | - Jing Ma
- Institute of Medicine and Materials Applied Technologies, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| | - Xuejun Sun
- Institute of Medicine and Materials Applied Technologies, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| | - Jianjing Yang
- Institute of Medicine and Materials Applied Technologies, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| | - Hua Wang
- Institute of Medicine and Materials Applied Technologies, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| |
Collapse
|
34
|
Kousaxidis A, Petrou A, Lavrentaki V, Fesatidou M, Nicolaou I, Geronikaki A. Aldose reductase and protein tyrosine phosphatase 1B inhibitors as a promising therapeutic approach for diabetes mellitus. Eur J Med Chem 2020; 207:112742. [PMID: 32871344 DOI: 10.1016/j.ejmech.2020.112742] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 08/06/2020] [Indexed: 02/07/2023]
Abstract
Diabetes mellitus is a metabolic disease characterized by high blood glucose levels and usually associated with several chronic pathologies. Aldose reductase and protein tyrosine phosphatase 1B enzymes have identified as two novel molecular targets associated with the onset and progression of type II diabetes and related comorbidities. Although many inhibitors against these enzymes have already found in the field of diabetic mellitus, the research for discovering more effective and selective agents with optimal pharmacokinetic properties continues. In addition, dual inhibition of these target proteins has proved as a promising therapeutic approach. A variety of diverse scaffolds are presented in this review for the future design of potent and selective inhibitors of aldose reductase and protein tyrosine phosphatase 1B based on the most important structural features of both enzymes. The discovery of novel dual aldose reductase and protein tyrosine phosphatase 1B inhibitors could be effective therapeutic molecules for the treatment of insulin-resistant type II diabetes mellitus. The methods used comprise a literature survey and X-ray crystal structures derived from Protein Databank (PDB). Despite the available therapeutic options for type II diabetes mellitus, the inhibitors of aldose reductase and protein tyrosine phosphatase 1B could be two promising approaches for the effective treatment of hyperglycemia and diabetes-associated pathologies. Due to the poor pharmacokinetic profile and low in vivo efficacy of existing inhibitors of both targets, the research turned to more selective and cell-permeable agents as well as multi-target molecules.
Collapse
Affiliation(s)
- Antonios Kousaxidis
- School of Health, Department of Pharmacy, Aristotle University of Thessaloniki, 54124, Greece
| | - Anthi Petrou
- School of Health, Department of Pharmacy, Aristotle University of Thessaloniki, 54124, Greece
| | - Vasiliki Lavrentaki
- School of Health, Department of Pharmacy, Aristotle University of Thessaloniki, 54124, Greece
| | - Maria Fesatidou
- School of Health, Department of Pharmacy, Aristotle University of Thessaloniki, 54124, Greece
| | - Ioannis Nicolaou
- School of Health, Department of Pharmacy, Aristotle University of Thessaloniki, 54124, Greece
| | - Athina Geronikaki
- School of Health, Department of Pharmacy, Aristotle University of Thessaloniki, 54124, Greece.
| |
Collapse
|
35
|
Rostoll‐Berenguer J, Blay G, Pedro JR, Vila C. Recent Advances in Photocatalytic Functionalization of Quinoxalin‐2‐ones. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000746] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Jaume Rostoll‐Berenguer
- Departament de Química Orgànica Facultat de Química Universitat de València Dr. Moliner 50 46100 Burjassot, València Spain
| | - Gonzalo Blay
- Departament de Química Orgànica Facultat de Química Universitat de València Dr. Moliner 50 46100 Burjassot, València Spain
| | - José R. Pedro
- Departament de Química Orgànica Facultat de Química Universitat de València Dr. Moliner 50 46100 Burjassot, València Spain
| | - Carlos Vila
- Departament de Química Orgànica Facultat de Química Universitat de València Dr. Moliner 50 46100 Burjassot, València Spain
| |
Collapse
|
36
|
Addressing selectivity issues of aldose reductase 2 inhibitors for the management of diabetic complications. Future Med Chem 2020; 12:1327-1358. [PMID: 32602375 DOI: 10.4155/fmc-2020-0032] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Aldose Reductase 2 (ALR2), the rate-limiting enzyme of the polyol pathway, plays an important role in detoxification of some toxic aldehydes. Under hyperglycemia, this enzyme overactivates and causes diabetic complications (DC). Therefore, ALR2 inhibition has been established as a potential approach to manage these complications. Several ALR2 inhibitors have been reported, but none of them could reach US FDA approval. One of the main reasons is their poor selectivity over ALR1, which leads to the toxicity. The current review underlines the molecular connectivity of ALR2 with DC and comparative analysis of the catalytic domains of ALR2 and ALR1, to better understand the selectivity issues. This report also discusses the key features required for ALR2 inhibition and to limit toxicity due to off-target activity.
Collapse
|
37
|
Gao Y, Zhao L, Xiang T, Li P, Wang L. Photoinitiated decarboxylative C3-difluoroarylmethylation of quinoxalin-2(1 H)-ones with potassium 2,2-difluoro-2-arylacetates in water. RSC Adv 2020; 10:10559-10568. [PMID: 35492892 PMCID: PMC9050393 DOI: 10.1039/d0ra02059a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/05/2020] [Indexed: 12/19/2022] Open
Abstract
An efficient and green strategy for the preparation of C3-difluoroarylmethylated quinoxalin-2(1H)-one via a visible-light-induced decarboxylative C3-difluoroarylmethylation of quinoxalin-2(1H)-one with potassium 2,2-difluoro-2-arylacetate in water at room temperature was developed. This photoinduced reaction generated the desired products in good yields under simple and mild conditions.
Collapse
Affiliation(s)
- Yanhui Gao
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Department of Chemistry, Huaibei Normal University Huaibei Anhui 235000 P. R. China
| | - Lulu Zhao
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Department of Chemistry, Huaibei Normal University Huaibei Anhui 235000 P. R. China
| | - Tianyi Xiang
- College of Pharmacy, Shenyang Pharmaceutical University Shenyang 110016 P. R. China
| | - Pinhua Li
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Department of Chemistry, Huaibei Normal University Huaibei Anhui 235000 P. R. China
| | - Lei Wang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Department of Chemistry, Huaibei Normal University Huaibei Anhui 235000 P. R. China
- Department of Chemistry, Advanced Research Institute, Taizhou University Taizhou Zhejiang 318000 P. R. China
| |
Collapse
|
38
|
Wang J, Sun B, Zhang L, Xu T, Xie Y, Jin C. Transition-metal-free direct C-3 cyanation of quinoxalin-2(1H)-ones with ammonium thiocyanate as the “CN” source. Org Chem Front 2020. [DOI: 10.1039/c9qo01055f] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A practical protocol for TBHP-mediated oxidative C–H cyanation of quinoxalin-2(1H)-ones utilizing ammonium thiocyanate as the cyanide source has been developed under metal free conditions.
Collapse
Affiliation(s)
- Jiayang Wang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Bin Sun
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Liang Zhang
- College of Pharmaceutical Sciences
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Tengwei Xu
- College of Pharmaceutical Sciences
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Yuanyuan Xie
- College of Pharmaceutical Sciences
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Can Jin
- College of Pharmaceutical Sciences
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| |
Collapse
|
39
|
Sekhar Dutta H, Ahmad A, Khan AA, Kumar M, Raziullah, Koley D. Metal Free Benzylation and Alkylation of Quinoxalin‐2(1
H
)‐ones with Alkenes Triggered by Sulfonyl Radical Generated from Sulfinic Acids. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201901212] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Ashfaq Ahmad
- Medicinal and Process Chemistry DivisionCSIR-Central Drug Research Institute Lucknow 226031 India
| | - Afsar Ali Khan
- Academy of Scientific and Innovative Research New Delhi 110001 India
| | - Mohit Kumar
- Academy of Scientific and Innovative Research New Delhi 110001 India
| | - Raziullah
- Medicinal and Process Chemistry DivisionCSIR-Central Drug Research Institute Lucknow 226031 India
| | - Dipankar Koley
- Medicinal and Process Chemistry DivisionCSIR-Central Drug Research Institute Lucknow 226031 India
- Academy of Scientific and Innovative Research New Delhi 110001 India
| |
Collapse
|
40
|
Wang L, Zhao J, Sun Y, Zhang HY, Zhang Y. A Catalyst-Free Minisci-Type Reaction: the C-H Alkylation of Quinoxalinones with Sodium Alkylsulfinates and Phenyliodine(III) Dicarboxylates. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901266] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Liping Wang
- School of Chemical Engineering and Technology; Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety; Hebei University of Technology; Guangrong Road No. 8 300130 Tianjin P. R. China
| | - Jiquan Zhao
- School of Chemical Engineering and Technology; Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety; Hebei University of Technology; Guangrong Road No. 8 300130 Tianjin P. R. China
| | - Yuting Sun
- School of Chemical Engineering and Technology; Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety; Hebei University of Technology; Guangrong Road No. 8 300130 Tianjin P. R. China
| | - Hong-Yu Zhang
- School of Chemical Engineering and Technology; Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety; Hebei University of Technology; Guangrong Road No. 8 300130 Tianjin P. R. China
| | - Yuecheng Zhang
- School of Chemical Engineering and Technology; Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety; Hebei University of Technology; Guangrong Road No. 8 300130 Tianjin P. R. China
| |
Collapse
|
41
|
Yan Z, Sun B, Zhang X, Zhuang X, Yang J, Su W, Jin C. Construction of C(sp 2 )-C(sp 3 ) Bond between Quinoxalin-2(1H)-ones and N-Hydroxyphthalimide Esters via Photocatalytic Decarboxylative Coupling. Chem Asian J 2019; 14:3344-3349. [PMID: 31432590 DOI: 10.1002/asia.201900904] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/14/2019] [Indexed: 12/12/2022]
Abstract
A novel visible-light-driven decarboxylative coupling of alkyl N-hydroxyphthalimide esters (NHP esters) with quinoxalin-2(1H)-ones has been developed. This C(sp2 )-C(sp3 ) bond-forming transformation exhibits excellent substrate generality with respect to both the coupling partners. Of note, a series of 3-primary alkyl-substituted quinoxalin-2(1H)-ones that were difficult to synthesize by previous methods could be obtained in moderate to excellent yields. Additionally, the mild conditions, easy availability of substrates, wide functional group tolerance and operational simplicity make this protocol practical in the synthesis of 3-alkylated quinoxalin-2(1H)-ones.
Collapse
Affiliation(s)
- Zhiyang Yan
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Bin Sun
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Xun Zhang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Xiaohui Zhuang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Jin Yang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Weike Su
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.,College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Can Jin
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| |
Collapse
|
42
|
Masand VH, Elsayed NN, Thakur SD, Gawhale N, Rathore MM. Quinoxalinones Based Aldose Reductase Inhibitors: 2D and 3D-QSAR Analysis. Mol Inform 2019; 38:e1800149. [PMID: 31131980 DOI: 10.1002/minf.201800149] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 05/07/2019] [Indexed: 11/08/2022]
Abstract
In the present work, 2D- and 3D-quantitative structure-activity relationship (QSAR) analysis has been employed for a diverse set of eighty-nine quinoxalinones to identify the pharmacophoric features with significant correlation with the aldose reductase inhibitory activity. Using genetic algorithm (GA) as a variable selection method, multivariate linear regression (MLR) models were derived using a pool of molecular descriptors. All the six-descriptor based GA-MLR QSAR models are statistically robust with coefficient of determination (R2 )>0.80 and cross-validated R2 >0.77. The derived GA-MLR models were thoroughly validated using internal and external and Y-scrambling techniques. The CoMFA like model, which is based on a combination of steric and electrostatic effects and graphically inferred using contour plots, is highly robust with R2 >0.93 and cross-validated R2 >0.73. The established QSAR and CoMFA like models are proficient in identify key pharmacophoric features that govern the aldose reductase inhibitory activity of quinoxalinones.
Collapse
Affiliation(s)
- Vijay H Masand
- Department of Chemistry, Vidya Bharati College, Camp, Amravati, Maharashtra, 444 602, India
| | - Nahed N Elsayed
- Department of Chemistry, College of Science, "Girls Section", King Saud University, PO Box 22452, Riyadh, 11495, Saudi Arabia.,National Organization for Drug Control and Research (NODCAR), 51 Wezaret El-Zerra St., Giza, 35521, Egypt
| | - Sumersingh D Thakur
- Department of Chemistry, RDIK and NKD College, Badnera-Amravati, Maharashtra, India
| | - Nandkishor Gawhale
- Department of Chemistry, G. S. Tompe College, Chandur Bazaar, Amravati, Maharashtra, India
| | - Mithilesh M Rathore
- Department of Chemistry, Vidya Bharati College, Camp, Amravati, Maharashtra, 444 602, India
| |
Collapse
|
43
|
Hu L, Yuan J, Fu J, Zhang T, Gao L, Xiao Y, Mao P, Qu L. Copper-Catalyzed Direct C-3 Benzylation of Quinoxalin-2(1H
)-ones with Methylarenes under Microwave Irradiation. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800697] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Leqian Hu
- School of Chemistry and Chemical Engineering; Academician Workstation for Natural Medicinal Chemistry of Henan Province; Henan University of Technology;; 450001 Zhengzhou P. R. China
| | - Jinwei Yuan
- School of Chemistry and Chemical Engineering; Academician Workstation for Natural Medicinal Chemistry of Henan Province; Henan University of Technology;; 450001 Zhengzhou P. R. China
| | - Junhao Fu
- School of Chemistry and Chemical Engineering; Academician Workstation for Natural Medicinal Chemistry of Henan Province; Henan University of Technology;; 450001 Zhengzhou P. R. China
| | - Taotao Zhang
- School of Chemistry and Chemical Engineering; Academician Workstation for Natural Medicinal Chemistry of Henan Province; Henan University of Technology;; 450001 Zhengzhou P. R. China
| | - Lele Gao
- School of Chemistry and Chemical Engineering; Academician Workstation for Natural Medicinal Chemistry of Henan Province; Henan University of Technology;; 450001 Zhengzhou P. R. China
| | - Yongmei Xiao
- School of Chemistry and Chemical Engineering; Academician Workstation for Natural Medicinal Chemistry of Henan Province; Henan University of Technology;; 450001 Zhengzhou P. R. China
| | - Pu Mao
- School of Chemistry and Chemical Engineering; Academician Workstation for Natural Medicinal Chemistry of Henan Province; Henan University of Technology;; 450001 Zhengzhou P. R. China
| | - Lingbo Qu
- School of Chemistry and Chemical Engineering; Academician Workstation for Natural Medicinal Chemistry of Henan Province; Henan University of Technology;; 450001 Zhengzhou P. R. China
- College of Chemistry and Molecular Engineering; Zhengzhou University; 450001 Zhengzhou PR China
| |
Collapse
|
44
|
Yuan J, Liu S, Qu L. Transition Metal-Free Direct C-3 Arylation of Quinoxalin-2(1H
)-ones with Arylamines under Mild Conditions. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201701058] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jinwei Yuan
- Academician Workstation for Natural Medicinal Chemistry of Henan Province; School of Chemical Engineering and Environment; Henan University of Technology; Zhengzhou People's Republic of China
| | - Shuainan Liu
- School of Biological Engineering; Henan University of Technology; Zhengzhou People's Republic of China
| | - Lingbo Qu
- Academician Workstation for Natural Medicinal Chemistry of Henan Province; School of Chemical Engineering and Environment; Henan University of Technology; Zhengzhou People's Republic of China
| |
Collapse
|
45
|
Demir Y, Işık M, Gülçin İ, Beydemir Ş. Phenolic compounds inhibit the aldose reductase enzyme from the sheep kidney. J Biochem Mol Toxicol 2017; 31. [DOI: 10.1002/jbt.21935] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 04/07/2017] [Accepted: 05/08/2017] [Indexed: 12/30/2022]
Affiliation(s)
- Yeliz Demir
- Department of Chemistry; Faculty of Sciences, Atatürk University; Erzurum 25240 Turkey
| | - Mesut Işık
- Health Services Vocational School, Department of Pharmacy Services; Harran University; Şanlıurfa 63000 Turkey
| | - İlhami Gülçin
- Department of Chemistry; Faculty of Sciences, Atatürk University; Erzurum 25240 Turkey
| | - Şükrü Beydemir
- Department of Biochemistry; Faculty of Pharmacy, Anadolu University; Eskişehir 26470 Turkey
| |
Collapse
|
46
|
Hao X, Han Z, Li Y, Li C, Wang X, Zhang X, Yang Q, Ma B, Zhu C. Synthesis and structure–activity relationship studies of phenolic hydroxyl derivatives based on quinoxalinone as aldose reductase inhibitors with antioxidant activity. Bioorg Med Chem Lett 2017; 27:887-892. [DOI: 10.1016/j.bmcl.2017.01.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 12/28/2016] [Accepted: 01/05/2017] [Indexed: 12/17/2022]
|
47
|
A series of pyrido[2,3-b]pyrazin-3(4H)-one derivatives as aldose reductase inhibitors with antioxidant activity. Eur J Med Chem 2016; 121:308-317. [DOI: 10.1016/j.ejmech.2016.05.036] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 05/16/2016] [Accepted: 05/18/2016] [Indexed: 01/05/2023]
|
48
|
Han Z, Hao X, Gao Z, Ma B, Zhu C. Multifunctional aldose reductase inhibitors based on 2H-benzothiazine 1,1-dioxide. RSC Adv 2016. [DOI: 10.1039/c5ra25984c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A series of benzothiazine derivatives were designed and synthesized for the development of drug candidates for diabetic complications.
Collapse
Affiliation(s)
- Zhongfei Han
- Department of Applied Chemistry
- Beijing Institute of Technology
- 100081 Beijing
- China
| | - Xin Hao
- Department of Applied Chemistry
- Beijing Institute of Technology
- 100081 Beijing
- China
| | - Zehong Gao
- Department of Applied Chemistry
- Beijing Institute of Technology
- 100081 Beijing
- China
| | - Bing Ma
- Department of Applied Chemistry
- Beijing Institute of Technology
- 100081 Beijing
- China
| | - Changjin Zhu
- Department of Applied Chemistry
- Beijing Institute of Technology
- 100081 Beijing
- China
| |
Collapse
|
49
|
Qin X, Hao X, Han H, Zhu S, Yang Y, Wu B, Hussain S, Parveen S, Jing C, Ma B, Zhu C. Design and Synthesis of Potent and Multifunctional Aldose Reductase Inhibitors Based on Quinoxalinones. J Med Chem 2015; 58:1254-67. [DOI: 10.1021/jm501484b] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Xiangyu Qin
- Department of Applied Chemistry, Beijing Institute of Technology, Zhongguancun South Street, 100081 Beijing, China
| | - Xin Hao
- Department of Applied Chemistry, Beijing Institute of Technology, Zhongguancun South Street, 100081 Beijing, China
| | - Hui Han
- Department of Applied Chemistry, Beijing Institute of Technology, Zhongguancun South Street, 100081 Beijing, China
| | - Shaojuan Zhu
- Department of Applied Chemistry, Beijing Institute of Technology, Zhongguancun South Street, 100081 Beijing, China
| | - Yanchun Yang
- Department of Applied Chemistry, Beijing Institute of Technology, Zhongguancun South Street, 100081 Beijing, China
| | - Bobin Wu
- Department of Applied Chemistry, Beijing Institute of Technology, Zhongguancun South Street, 100081 Beijing, China
| | - Saghir Hussain
- Department of Applied Chemistry, Beijing Institute of Technology, Zhongguancun South Street, 100081 Beijing, China
| | - Shagufta Parveen
- Department of Applied Chemistry, Beijing Institute of Technology, Zhongguancun South Street, 100081 Beijing, China
| | - Chaojun Jing
- Department of Applied Chemistry, Beijing Institute of Technology, Zhongguancun South Street, 100081 Beijing, China
| | - Bing Ma
- Department of Applied Chemistry, Beijing Institute of Technology, Zhongguancun South Street, 100081 Beijing, China
| | - Changjin Zhu
- Department of Applied Chemistry, Beijing Institute of Technology, Zhongguancun South Street, 100081 Beijing, China
| |
Collapse
|