1
|
Day JEH, Berdini V, Castro J, Chessari G, Davies TG, Day PJ, St Denis JD, Fujiwara H, Fukaya S, Hamlett CCF, Hearn K, Hiscock SD, Holvey RS, Ito S, Kandola N, Kodama Y, Liebeschuetz JW, Martins V, Matsuo K, Mortenson PN, Muench S, Nakatsuru Y, Ochiiwa H, Palmer N, Peakman T, Price A, Reader M, Rees DC, Rich SJ, Shah A, Shibata Y, Smyth T, Twigg DG, Wallis NG, Williams G, Wilsher NE, Woodhead A, Shimamura T, Johnson CN. Fragment-Based Discovery of Allosteric Inhibitors of SH2 Domain-Containing Protein Tyrosine Phosphatase-2 (SHP2). J Med Chem 2024; 67:4655-4675. [PMID: 38462716 DOI: 10.1021/acs.jmedchem.3c02118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The ubiquitously expressed protein tyrosine phosphatase SHP2 is required for signaling downstream of receptor tyrosine kinases (RTKs) and plays a role in regulating many cellular processes. Genetic knockdown and pharmacological inhibition of SHP2 suppresses RAS/MAPK signaling and inhibit the proliferation of RTK-driven cancer cell lines. Here, we describe the first reported fragment-to-lead campaign against SHP2, where X-ray crystallography and biophysical techniques were used to identify fragments binding to multiple sites on SHP2. Structure-guided optimization, including several computational methods, led to the discovery of two structurally distinct series of SHP2 inhibitors binding to the previously reported allosteric tunnel binding site (Tunnel Site). One of these series was advanced to a low-nanomolar lead that inhibited tumor growth when dosed orally to mice bearing HCC827 xenografts. Furthermore, a third series of SHP2 inhibitors was discovered binding to a previously unreported site, lying at the interface of the C-terminal SH2 and catalytic domains.
Collapse
Affiliation(s)
- James E H Day
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Valerio Berdini
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Joan Castro
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Gianni Chessari
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Thomas G Davies
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Philip J Day
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Jeffrey D St Denis
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Hideto Fujiwara
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Satoshi Fukaya
- Taiho Pharmaceutical Co., Ltd., 3 Okubo, Tsukuba, Ibaraki 300-2611, Japan
| | | | - Keisha Hearn
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Steven D Hiscock
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Rhian S Holvey
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Satoru Ito
- Taiho Pharmaceutical Co., Ltd., 3 Okubo, Tsukuba, Ibaraki 300-2611, Japan
| | - Navrohit Kandola
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Yasuo Kodama
- Taiho Pharmaceutical Co., Ltd., 3 Okubo, Tsukuba, Ibaraki 300-2611, Japan
| | - John W Liebeschuetz
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Vanessa Martins
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Kenichi Matsuo
- Taiho Pharmaceutical Co., Ltd., 3 Okubo, Tsukuba, Ibaraki 300-2611, Japan
| | - Paul N Mortenson
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Sandra Muench
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Yoko Nakatsuru
- Taiho Pharmaceutical Co., Ltd., 3 Okubo, Tsukuba, Ibaraki 300-2611, Japan
| | - Hiroaki Ochiiwa
- Taiho Pharmaceutical Co., Ltd., 3 Okubo, Tsukuba, Ibaraki 300-2611, Japan
| | - Nicholas Palmer
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Torren Peakman
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Amanda Price
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Michael Reader
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - David C Rees
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Sharna J Rich
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Alpesh Shah
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Yoshihiro Shibata
- Taiho Pharmaceutical Co., Ltd., 3 Okubo, Tsukuba, Ibaraki 300-2611, Japan
| | - Tomoko Smyth
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - David G Twigg
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Nicola G Wallis
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Glyn Williams
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Nicola E Wilsher
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Andrew Woodhead
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Tadashi Shimamura
- Taiho Pharmaceutical Co., Ltd., 3 Okubo, Tsukuba, Ibaraki 300-2611, Japan
| | - Christopher N Johnson
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| |
Collapse
|
2
|
Zurita A, Vega Hissi E, Cianci Romero A, Luján AM, Salido S, Yaneff A, Davio C, Cobo J, Carpinella MC, Enriz RD. Rosmarinic Acid Present in Lepechinia floribunda and Lepechinia meyenii as a Potent Inhibitor of the Adenylyl Cyclase gNC1 from Giardia lamblia. PLANTS (BASEL, SWITZERLAND) 2024; 13:646. [PMID: 38475493 DOI: 10.3390/plants13050646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024]
Abstract
Giardiasis is a parasitosis caused by Giardia lamblia with significant epidemiological and clinical importance due to its high prevalence and pathogenicity. The lack of optimal therapies for treating this parasite makes the development of new effective chemical entities an urgent need. In the search for new inhibitors of the adenylyl cyclase gNC1 obtained from G. lamblia, 14 extracts from Argentinian native plants were screened. Lepechinia floribunda and L. meyenii extracts exhibited the highest gNC1 inhibitory activity, with IC50 values of 9 and 31 µg/mL, respectively. In silico studies showed rosmarinic acid, a hydroxycinnamic acid present in both mentioned species, to be a promising anti-gNC1 compound. This result was confirmed experimentally, with rosmarinic acid showing an IC50 value of 10.1 µM. Theoretical and experimental findings elucidate the molecular-level mechanism of rosmarinic acid, pinpointing the key interactions stabilizing the compound-enzyme complex and the binding site. These results strongly support that rosmarinic acid is a promising scaffold for developing novel compounds with inhibitory activity against gNC1, which could serve as potential therapeutic agents to treat giardiasis.
Collapse
Affiliation(s)
- Adolfo Zurita
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL), Ejército de los Andes 950, San Luis 5700, Argentina
| | - Esteban Vega Hissi
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL), Ejército de los Andes 950, San Luis 5700, Argentina
| | - Agostina Cianci Romero
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL), Ejército de los Andes 950, San Luis 5700, Argentina
| | - Adela María Luján
- Laboratorio de Química Fina y Productos Naturales, Centro de Investigación y Desarrollo en Inmunología y Enfermedades Infecciosas (CIDIE) CONICET-UCC, Universidad Católica de Córdoba, Avda. Armada Argentina 3555, Córdoba X5016DHK, Argentina
| | - Sofía Salido
- Departamento de Química Inorgánica y Orgánica, Universidad de Jaén, Campus Las Lagunillas s/n, 23071 Jaén, Spain
| | - Agustín Yaneff
- Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, Buenos Aires C1113AAD, Argentina
| | - Carlos Davio
- Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, Buenos Aires C1113AAD, Argentina
| | - Justo Cobo
- Departamento de Química Inorgánica y Orgánica, Universidad de Jaén, Campus Las Lagunillas s/n, 23071 Jaén, Spain
| | - María Cecilia Carpinella
- Laboratorio de Química Fina y Productos Naturales, Centro de Investigación y Desarrollo en Inmunología y Enfermedades Infecciosas (CIDIE) CONICET-UCC, Universidad Católica de Córdoba, Avda. Armada Argentina 3555, Córdoba X5016DHK, Argentina
| | - Ricardo Daniel Enriz
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL), Ejército de los Andes 950, San Luis 5700, Argentina
| |
Collapse
|
3
|
Gruber FS, Richardson A, Johnston ZC, Myles R, Norcross NR, Day DP, Georgiou I, Sesma-Sanz L, Wilson C, Read KD, Martins da Silva S, Barratt CLR, Gilbert IH, Swedlow JR. Sperm Toolbox-A selection of small molecules to study human spermatozoa. PLoS One 2024; 19:e0297666. [PMID: 38377053 PMCID: PMC10878532 DOI: 10.1371/journal.pone.0297666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/11/2024] [Indexed: 02/22/2024] Open
Abstract
Male contraceptive options and infertility treatments are limited, and almost all innovation has been limited to updates to medically assisted reproduction protocols and methods. To accelerate the development of drugs that can either improve or inhibit fertility, we established a small molecule library as a toolbox for assay development and screening campaigns using human spermatozoa. We have profiled all compounds in the Sperm Toolbox in several automated high-throughput assays that measure stimulation or inhibition of sperm motility or the acrosome reaction. We have assayed motility under non-capacitating and capacitating conditions to distinguish between pathways operating under these different physiological states. We also assayed cell viability to ensure any effects on sperm function are specific. A key advantage of our studies is that all compounds are assayed together in the same experimental conditions, which allows quantitative comparisons of their effects in complementary functional assays. We have combined the resulting datasets to generate fingerprints of the Sperm Toolbox compounds on sperm function. The data are included in an on-line R-based app for convenient querying.
Collapse
Affiliation(s)
- Franz S. Gruber
- Divisions of Computational Biology and Molecular, Cell and Developmental Biology, and National Phenotypic Screening Centre, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Anthony Richardson
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Zoe C. Johnston
- Division of Systems Medicine, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| | - Rachel Myles
- Division of Systems Medicine, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| | - Neil R. Norcross
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - David P. Day
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Irene Georgiou
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Laura Sesma-Sanz
- Divisions of Computational Biology and Molecular, Cell and Developmental Biology, and National Phenotypic Screening Centre, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Caroline Wilson
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Kevin D. Read
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Sarah Martins da Silva
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Christopher L. R. Barratt
- Division of Systems Medicine, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| | - Ian H. Gilbert
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Jason R. Swedlow
- Divisions of Computational Biology and Molecular, Cell and Developmental Biology, and National Phenotypic Screening Centre, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
4
|
Sun S, Fushimi M, Rossetti T, Kaur N, Ferreira J, Miller M, Quast J, van den Heuvel J, Steegborn C, Levin LR, Buck J, Myers RW, Kargman S, Liverton N, Meinke PT, Huggins DJ. Scaffold Hopping and Optimization of Small Molecule Soluble Adenyl Cyclase Inhibitors Led by Free Energy Perturbation. J Chem Inf Model 2023; 63:2828-2841. [PMID: 37060320 DOI: 10.1021/acs.jcim.2c01577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
Free energy perturbation is a computational technique that can be used to predict how small changes to an inhibitor structure will affect the binding free energy to its target. In this paper, we describe the utility of free energy perturbation with FEP+ in the hit-to-lead stage of a drug discovery project targeting soluble adenyl cyclase. The project was structurally enabled by X-ray crystallography throughout. We employed free energy perturbation to first scaffold hop to a preferable chemotype and then optimize the binding affinity to sub-nanomolar levels while retaining druglike properties. The results illustrate that effective use of free energy perturbation can enable a drug discovery campaign to progress rapidly from hit to lead, facilitating proof-of-concept studies that enable target validation.
Collapse
Affiliation(s)
- Shan Sun
- Tri-Institutional Therapeutics Discovery Institute, New York, New York 10021, United States
| | - Makoto Fushimi
- Tri-Institutional Therapeutics Discovery Institute, New York, New York 10021, United States
| | - Thomas Rossetti
- Department of Pharmacology, Weill Cornell Medicine, New York City, New York 10056, United States
| | - Navpreet Kaur
- Department of Pharmacology, Weill Cornell Medicine, New York City, New York 10056, United States
| | - Jacob Ferreira
- Department of Pharmacology, Weill Cornell Medicine, New York City, New York 10056, United States
| | - Michael Miller
- Tri-Institutional Therapeutics Discovery Institute, New York, New York 10021, United States
| | - Jonathan Quast
- Department of Biochemistry, University of Bayreuth, Bayreuth 95440, Germany
| | | | - Clemens Steegborn
- Department of Biochemistry, University of Bayreuth, Bayreuth 95440, Germany
| | - Lonny R Levin
- Department of Pharmacology, Weill Cornell Medicine, New York City, New York 10056, United States
| | - Jochen Buck
- Department of Pharmacology, Weill Cornell Medicine, New York City, New York 10056, United States
| | - Robert W Myers
- Tri-Institutional Therapeutics Discovery Institute, New York, New York 10021, United States
| | - Stacia Kargman
- Tri-Institutional Therapeutics Discovery Institute, New York, New York 10021, United States
| | - Nigel Liverton
- Tri-Institutional Therapeutics Discovery Institute, New York, New York 10021, United States
| | - Peter T Meinke
- Tri-Institutional Therapeutics Discovery Institute, New York, New York 10021, United States
- Department of Pharmacology, Weill Cornell Medicine, New York City, New York 10056, United States
| | - David J Huggins
- Tri-Institutional Therapeutics Discovery Institute, New York, New York 10021, United States
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, New York 10065, United States
| |
Collapse
|
5
|
Cordero-Martínez J, Jimenez-Gutierrez GE, Aguirre-Alvarado C, Alacántara-Farfán V, Chamorro-Cevallos G, Roa-Espitia AL, Hernández-González EO, Rodríguez-Páez L. Participation of signaling proteins in sperm hyperactivation. Syst Biol Reprod Med 2022; 68:315-330. [DOI: 10.1080/19396368.2022.2122761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Affiliation(s)
- Joaquín Cordero-Martínez
- Laboratorio de Bioquímica Farmacológica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | | | - Charmina Aguirre-Alvarado
- Laboratorio de Bioquímica Farmacológica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
- Unidad de Investigación Médica en Inmunología e Infectología Centro Médico Nacional La Raza, IMSS, Ciudad de México, Mexico
| | - Verónica Alacántara-Farfán
- Laboratorio de Bioquímica Farmacológica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Germán Chamorro-Cevallos
- Laboratorio de Toxicología Preclínica Departamento de Farmacia Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Ana L. Roa-Espitia
- Departamento de Biología Celular Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Instituto Politécnico Nacional, México City, Mexico
| | - Enrique O. Hernández-González
- Departamento de Biología Celular Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Instituto Politécnico Nacional, México City, Mexico
| | - Lorena Rodríguez-Páez
- Laboratorio de Bioquímica Farmacológica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| |
Collapse
|
6
|
Gonzaga de França Lopes L, Gouveia Júnior FS, Karine Medeiros Holanda A, Maria Moreira de Carvalho I, Longhinotti E, Paulo TF, Abreu DS, Bernhardt PV, Gilles-Gonzalez MA, Cirino Nogueira Diógenes I, Henrique Silva Sousa E. Bioinorganic systems responsive to the diatomic gases O2, NO, and CO: From biological sensors to therapy. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Balbach M, Fushimi M, Huggins DJ, Steegborn C, Meinke PT, Levin LR, Buck J. Optimization of lead compounds into on-demand, nonhormonal contraceptives: leveraging a public-private drug discovery institute collaboration†. Biol Reprod 2021; 103:176-182. [PMID: 32307523 PMCID: PMC7401349 DOI: 10.1093/biolre/ioaa052] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/08/2020] [Accepted: 04/15/2020] [Indexed: 12/20/2022] Open
Abstract
Efforts to develop new male or female nonhormonal, orally available contraceptives assume that to be effective and safe, targets must be (1) essential for fertility; (2) amenable to targeting by small-molecule inhibitors; and (3) restricted to the germline. In this perspective, we question the third assumption and propose that despite its wide expression, soluble adenylyl cyclase (sAC: ADCY10), which is essential for male fertility, is a valid target. We hypothesize that an acute-acting sAC inhibitor may provide orally available, on-demand, nonhormonal contraception for men without adverse, mechanism-based effects. To test this concept, we describe a collaboration between academia and the unique capabilities of a public-private drug discovery institute.
Collapse
Affiliation(s)
- Melanie Balbach
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Makoto Fushimi
- Tri-Institutional Therapeutics Discovery Institute, New York, NY, USA
| | - David J Huggins
- Tri-Institutional Therapeutics Discovery Institute, New York, NY, USA.,Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Clemens Steegborn
- Department of Biochemistry, University of Bayreuth, Bayreuth, Germany
| | - Peter T Meinke
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA.,Tri-Institutional Therapeutics Discovery Institute, New York, NY, USA
| | - Lonny R Levin
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Jochen Buck
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
8
|
Johnston DS, Goldberg E. Preclinical contraceptive development for men and women. Biol Reprod 2021; 103:147-156. [PMID: 32561907 DOI: 10.1093/biolre/ioaa076] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/07/2020] [Accepted: 05/09/2020] [Indexed: 12/16/2022] Open
Abstract
This manuscript endeavors to present research considerations for the preclinical development of non-hormonal contraceptives. Topics include (1) how advances in genomics and bioinformatics impact the identification of novel targets for non-hormonal contraception, (2) the importance of target validation prior to investment in a contraceptive development campaign, (3) considerations on targeting gametogenesis vs gamete maturation/function, (4) how targets from the male reproductive system are expanding women's options for 'on demand' contraception, and (5) some emerging non-hormonal methods that are not based on a specific molecular target. Also presented are ideas for developing a pipeline of non-hypothalamic-pituitary-gonadal-acting contraceptives for men and women while balancing risk and innovation, and our perspective on the pros and cons of industry and academic environments on contraceptive development. Three product development programs are highlighted that are biologically interesting, innovative, and likely to influence the field of contraceptive development in years to come.
Collapse
Affiliation(s)
- Daniel S Johnston
- Contraception Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Erwin Goldberg
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| |
Collapse
|
9
|
Fushimi M, Buck H, Balbach M, Gorovyy A, Ferreira J, Rossetti T, Kaur N, Levin LR, Buck J, Quast J, van den Heuvel J, Steegborn C, Finkin-Groner E, Kargman S, Michino M, Foley MA, Miller M, Liverton NJ, Huggins DJ, Meinke PT. Discovery of TDI-10229: A Potent and Orally Bioavailable Inhibitor of Soluble Adenylyl Cyclase (sAC, ADCY10). ACS Med Chem Lett 2021; 12:1283-1287. [PMID: 34413957 PMCID: PMC8366019 DOI: 10.1021/acsmedchemlett.1c00273] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/08/2021] [Indexed: 02/06/2023] Open
Abstract
Soluble adenylyl cyclase (sAC) has gained attention as a potential therapeutic target given the role of this enzyme in intracellular signaling. We describe successful efforts to design improved sAC inhibitors amenable for in vivo interrogation of sAC inhibition to assess its potential therapeutic applications. This work culminated in the identification of TDI-10229 (12), which displays nanomolar inhibition of sAC in both biochemical and cellular assays and exhibits mouse pharmacokinetic properties sufficient to warrant its use as an in vivo tool compound.
Collapse
Affiliation(s)
- Makoto Fushimi
- Tri-Institutional
Therapeutics Discovery Institute, New York, New York 10021, United States
| | - Hannes Buck
- Department
of Pharmacology, Weill Cornell Medicine, New York, New York 10021, United States
| | - Melanie Balbach
- Department
of Pharmacology, Weill Cornell Medicine, New York, New York 10021, United States
| | - Anna Gorovyy
- Department
of Pharmacology, Weill Cornell Medicine, New York, New York 10021, United States
| | - Jacob Ferreira
- Department
of Pharmacology, Weill Cornell Medicine, New York, New York 10021, United States
| | - Thomas Rossetti
- Department
of Pharmacology, Weill Cornell Medicine, New York, New York 10021, United States
| | - Navpreet Kaur
- Department
of Pharmacology, Weill Cornell Medicine, New York, New York 10021, United States
| | - Lonny R. Levin
- Department
of Pharmacology, Weill Cornell Medicine, New York, New York 10021, United States
| | - Jochen Buck
- Department
of Pharmacology, Weill Cornell Medicine, New York, New York 10021, United States
| | - Jonathan Quast
- Department
of Biochemistry, University of Bayreuth, 95440 Bayreuth, Germany
| | | | - Clemens Steegborn
- Department
of Biochemistry, University of Bayreuth, 95440 Bayreuth, Germany
| | - Efrat Finkin-Groner
- Tri-Institutional
Therapeutics Discovery Institute, New York, New York 10021, United States
| | - Stacia Kargman
- Tri-Institutional
Therapeutics Discovery Institute, New York, New York 10021, United States
| | - Mayako Michino
- Tri-Institutional
Therapeutics Discovery Institute, New York, New York 10021, United States
| | - Michael A. Foley
- Tri-Institutional
Therapeutics Discovery Institute, New York, New York 10021, United States
| | - Michael Miller
- Tri-Institutional
Therapeutics Discovery Institute, New York, New York 10021, United States
| | - Nigel J. Liverton
- Tri-Institutional
Therapeutics Discovery Institute, New York, New York 10021, United States
| | - David J. Huggins
- Tri-Institutional
Therapeutics Discovery Institute, New York, New York 10021, United States
- Department
of Physiology and Biophysics, Weill Cornell
Medicine, New York, New York 10021, United
States
| | - Peter T. Meinke
- Tri-Institutional
Therapeutics Discovery Institute, New York, New York 10021, United States
- Department
of Pharmacology, Weill Cornell Medicine, New York, New York 10021, United States
| |
Collapse
|
10
|
Vega Hissi EG, De Costa Guardamagna AB, Garro AD, Falcon CR, Anderluh M, Tomašič T, Kikelj D, Yaneff A, Davio CA, Enriz RD, Zurita AR. A Potent N-(piperidin-4-yl)-1H-pyrrole-2-carboxamide Inhibitor of Adenylyl Cyclase of G. lamblia: Biological Evaluation and Molecular Modelling Studies. ChemMedChem 2021; 16:2094-2105. [PMID: 33783977 DOI: 10.1002/cmdc.202100037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/26/2021] [Indexed: 11/06/2022]
Abstract
In this work, we report a derivative of N-(piperidin-4-yl)-1H-pyrrole-2-carboxamide as a new inhibitor for adenylyl cyclase of Giardia lamblia which was obtained from a study using structural data of the nucleotidyl cyclase 1 (gNC1) of this parasite. For such a study, we developed a model for this specific enzyme by using homology techniques, which is the first model reported for gNC1 of G. lamblia. Our studies show that the new inhibitor has a competitive mechanism of action against this enzyme. 2-Hydroxyestradiol was used as the reference compound for comparative studies. Results in this work are important from two points of view. on the one hand, an experimentally corroborated model for gNC1 of G. lamblia obtained by molecular modelling is presented; on the other hand, the new inhibitor obtained is an undoubtedly excellent starting structure for the development of new metabolic inhibitors for G. lamblia.
Collapse
Affiliation(s)
- Esteban G Vega Hissi
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL), Ejército de los Andes 950, 5700, San Luis, Argentina
| | - Antonella B De Costa Guardamagna
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL), Ejército de los Andes 950, 5700, San Luis, Argentina
| | - Adriana D Garro
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL), Ejército de los Andes 950, 5700, San Luis, Argentina
| | - Cristian R Falcon
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL), Ejército de los Andes 950, 5700, San Luis, Argentina
| | - Marko Anderluh
- Department of Medicinal Chemistry, University of Ljubljana, Faculty of Pharmacy Askerceva, cesta 7, 1000, Ljubljana, Slovenia
| | - Tihomir Tomašič
- Department of Medicinal Chemistry, University of Ljubljana, Faculty of Pharmacy Askerceva, cesta 7, 1000, Ljubljana, Slovenia
| | - Danijel Kikelj
- Department of Medicinal Chemistry, University of Ljubljana, Faculty of Pharmacy Askerceva, cesta 7, 1000, Ljubljana, Slovenia
| | - Agustín Yaneff
- Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, C1113, AAD, Buenos Aires, Argentina
| | - Carlos A Davio
- Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, C1113, AAD, Buenos Aires, Argentina
| | - Ricardo D Enriz
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL), Ejército de los Andes 950, 5700, San Luis, Argentina
| | - Adolfo R Zurita
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL), Ejército de los Andes 950, 5700, San Luis, Argentina
| |
Collapse
|
11
|
Akbari A, Pipitone GB, Anvar Z, Jaafarinia M, Ferrari M, Carrera P, Totonchi M. ADCY10 frameshift variant leading to severe recessive asthenozoospermia and segregating with absorptive hypercalciuria. Hum Reprod 2020; 34:1155-1164. [PMID: 31119281 DOI: 10.1093/humrep/dez048] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 02/18/2019] [Accepted: 03/13/2019] [Indexed: 01/27/2023] Open
Abstract
STUDY QUESTION Can whole exome sequencing (WES) reveal a novel pathogenic variant in asthenozoospermia in a multiplex family including multiple patients? SUMMARY ANSWER Patients were discovered to be homozygous for a rare 2-bp deletion in the ADCY10 coding region (c.1205_1206del, rs779944215). WHAT IS KNOWN ALREADY ADCY10 encodes for soluble adenylyl cyclase (sAC), which is the predominant adenylate cyclase in sperm. It is already established that proper sAC activity and a constant supply of cAMP are crucial to sperm motility regulation, and knockout mouse models have been reported as severely asthenozoospermic. ADCY10 is a susceptibility gene for dominant absorptive hypercalciuria (OMIM#143870); however, no ADCY10 variations have been confirmed to cause human asthenozoospermia to date. STUDY DESIGN, SIZE, DURATION This was a retrospective genetics study of a highly consanguineous pedigree of asthenozoospermia. The subject family was recruited in Iran in 2016. PARTICIPANTS/MATERIALS, SETTING, METHODS The two patients were diagnosed as asthenozoospermic through careful clinical investigations. Both patients, respective parents, and an unaffected brother were subjected to WES. The discovered variant was validated by Sanger sequencing and segregated with the phenotype. To confirm the pathogenicity of the variant, sperm samples from both patients, 10 normozoospermic men and 10 asthenozoospermic patients not representing the variation, were treated with a cAMP analogue dissolved in human tubal fluid medium, followed by computer-assisted sperm analysis and statistical analyses. MAIN RESULTS AND THE ROLE OF CHANCE The discovered homozygous variant occurs at 10 amino acids upstream of the ADCY10 nucleotide binding site leading to a premature termination (p.His402Argfs*41). Treatment of the patients' sperm samples with a cell-permeable cAMP analogue resulted in a significant increase in sperm motility, indicating the pathogenic role of the variant. Moreover, absorptive hypercalciuria, segregating within the family, was also associated with the same variant following a dominant inheritance. LIMITATIONS, REASONS FOR CAUTION Though nonsense-mediated decay is highly likely to occur in the mutated transcripts, we were not able to confirm this due to low RNA levels in mature sperm. WIDER IMPLICATIONS OF THE FINDINGS Our finding enlarges the phenotypic spectrum associated with the ADCY10 gene, previously described as a susceptibility gene for dominant absorptive hypercalciuria. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by grants from the Royan Institute, Tehran, Iran, and San Raffaele Hospital, Milan, Italy. The authors have no conflict of interest. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Arvand Akbari
- Department of Biology, Faculty of Science, Fars Science and Research Branch, Islamic Azad University, Marvdasht, Iran.,Department of Biology, Faculty of Science, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| | | | - Zahra Anvar
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Obstetrics & Gynecology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mojtaba Jaafarinia
- Department of Biology, Faculty of Science, Fars Science and Research Branch, Islamic Azad University, Marvdasht, Iran.,Department of Biology, Faculty of Science, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| | - Maurizio Ferrari
- Laboratory of Clinical Molecular Biology and Cytogenetics, IRCCS San Raffaele Hospital, Milan, Italy.,Genomic Unit for the Diagnosis of Human Disorders, Division of Genetics and Cell Biology, IRCCS San Raffaele Hospital, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Paola Carrera
- Laboratory of Clinical Molecular Biology and Cytogenetics, IRCCS San Raffaele Hospital, Milan, Italy.,Genomic Unit for the Diagnosis of Human Disorders, Division of Genetics and Cell Biology, IRCCS San Raffaele Hospital, Milan, Italy
| | - Mehdi Totonchi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.,Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
12
|
Milanesi R, Coccetti P, Tripodi F. The Regulatory Role of Key Metabolites in the Control of Cell Signaling. Biomolecules 2020; 10:biom10060862. [PMID: 32516886 PMCID: PMC7356591 DOI: 10.3390/biom10060862] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/29/2020] [Accepted: 06/03/2020] [Indexed: 12/12/2022] Open
Abstract
Robust biological systems are able to adapt to internal and environmental perturbations. This is ensured by a thick crosstalk between metabolism and signal transduction pathways, through which cell cycle progression, cell metabolism and growth are coordinated. Although several reports describe the control of cell signaling on metabolism (mainly through transcriptional regulation and post-translational modifications), much fewer information is available on the role of metabolism in the regulation of signal transduction. Protein-metabolite interactions (PMIs) result in the modification of the protein activity due to a conformational change associated with the binding of a small molecule. An increasing amount of evidences highlight the role of metabolites of the central metabolism in the control of the activity of key signaling proteins in different eukaryotic systems. Here we review the known PMIs between primary metabolites and proteins, through which metabolism affects signal transduction pathways controlled by the conserved kinases Snf1/AMPK, Ras/PKA and TORC1. Interestingly, PMIs influence also the mitochondrial retrograde response (RTG) and calcium signaling, clearly demonstrating that the range of this phenomenon is not limited to signaling pathways related to metabolism.
Collapse
|
13
|
Guo X, Xu G, Zhou L, Yan H, Hao XQ, Wang Q. Synthesis and application of α-carbonyl nitrile oxides. Org Chem Front 2020. [DOI: 10.1039/d0qo00780c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A strategy has been developed to synthesize α-carbonylfuran and isoxazole using tert-butyl nitrite (TBN) as a nitrogen source.
Collapse
Affiliation(s)
- Xuanhua Guo
- Key Laboratory of Biobased Materials
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao
- China
| | - Guangqiang Xu
- Key Laboratory of Biobased Materials
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao
- China
| | - Li Zhou
- Key Laboratory of Biobased Materials
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao
- China
| | - Huating Yan
- College of Chemistry
- Zhengzhou University
- Zhengzhou
- China
| | - Xin-Qi Hao
- College of Chemistry
- Zhengzhou University
- Zhengzhou
- China
| | - Qinggang Wang
- Key Laboratory of Biobased Materials
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao
- China
| |
Collapse
|
14
|
Butryn A, Raza H, Rada H, Moraes I, Owens RJ, Orville AM. Molecular basis for GTP recognition by light-activated guanylate cyclase RhGC. FEBS J 2019; 287:2797-2807. [PMID: 31808997 PMCID: PMC7384201 DOI: 10.1111/febs.15167] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/23/2019] [Accepted: 12/05/2019] [Indexed: 11/27/2022]
Abstract
Cyclic guanosine 3',5'-monophosphate (cGMP) is an intracellular signalling molecule involved in many sensory and developmental processes. Synthesis of cGMP from GTP is catalysed by guanylate cyclase (GC) in a reaction analogous to cAMP formation by adenylate cyclase (AC). Although detailed structural information is available on the catalytic region of nucleotidyl cyclases (NCs) in various states, these atomic models do not provide a sufficient explanation for the substrate selectivity between GC and AC family members. Detailed structural information on the GC domain in its active conformation is largely missing, and no crystal structure of a GTP-bound wild-type GC domain has been published to date. Here, we describe the crystal structure of the catalytic domain of rhodopsin-GC (RhGC) from Catenaria anguillulae in complex with GTP at 1.7 Å resolution. Our study reveals the organization of a eukaryotic GC domain in its active conformation. We observe that the binding mode of the substrate GTP is similar to that of AC-ATP interaction, although surprisingly not all of the interactions predicted to be responsible for base recognition are present. The structure provides insights into potential mechanisms of substrate discrimination and activity regulation that may be common to all class III purine NCs. DATABASE: Structural data are available in Protein Data Bank database under the accession number 6SIR. ENZYMES: EC4.6.1.2.
Collapse
Affiliation(s)
- Agata Butryn
- Diamond Light Source Limited, Didcot, UK.,Research Complex at Harwell, Didcot, UK
| | - Hadeeqa Raza
- Diamond Light Source Limited, Didcot, UK.,Research Complex at Harwell, Didcot, UK
| | - Heather Rada
- Protein Production UK, Research Complex at Harwell, Didcot, UK
| | - Isabel Moraes
- Research Complex at Harwell, Didcot, UK.,Membrane Protein Laboratory, Diamond Light Source Limited, Didcot, UK
| | - Raymond J Owens
- Protein Production UK, Research Complex at Harwell, Didcot, UK
| | - Allen M Orville
- Diamond Light Source Limited, Didcot, UK.,Research Complex at Harwell, Didcot, UK
| |
Collapse
|
15
|
Childers KC, Yao XQ, Giannakoulias S, Amason J, Hamelberg D, Garcin ED. Synergistic mutations in soluble guanylyl cyclase (sGC) reveal a key role for interfacial regions in the sGC activation mechanism. J Biol Chem 2019; 294:18451-18464. [PMID: 31645439 PMCID: PMC6885636 DOI: 10.1074/jbc.ra119.011010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/17/2019] [Indexed: 01/20/2023] Open
Abstract
Soluble guanylyl cyclase (sGC) is the main receptor for nitric oxide (NO) and a central component of the NO-cGMP pathway, critical to cardiovascular function. NO binding to the N-terminal sensor domain in sGC enhances the cyclase activity of the C-terminal catalytic domain. Our understanding of the structural elements regulating this signaling cascade is limited, hindering structure-based drug design efforts that target sGC to improve the management of cardiovascular diseases. Conformational changes are thought to propagate the NO-binding signal throughout the entire sGC heterodimer, via its coiled-coil domain, to reorient the catalytic domain into an active conformation. To identify the structural elements involved in this signal transduction cascade, here we optimized a cGMP-based luciferase assay that reports on heterologous sGC activity in Escherichia coli and identified several mutations that activate sGC. These mutations resided in the dorsal flaps, dimer interface, and GTP-binding regions of the catalytic domain. Combinations of mutations from these different elements synergized, resulting in even greater activity and indicating a complex cross-talk among these regions. Molecular dynamics simulations further revealed conformational changes underlying the functional impact of these mutations. We propose that the interfacial residues play a central role in the sGC activation mechanism by coupling the coiled-coil domain to the active site via a series of hot spots. Our results provide new mechanistic insights not only into the molecular pathway for sGC activation but also for other members of the larger nucleotidyl cyclase family.
Collapse
Affiliation(s)
- Kenneth C Childers
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, Maryland 21250
| | - Xin-Qiu Yao
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302-3965
| | - Sam Giannakoulias
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, Maryland 21250
| | - Joshua Amason
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, Maryland 21250.
| | - Donald Hamelberg
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302-3965
| | - Elsa D Garcin
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, Maryland 21250.
| |
Collapse
|
16
|
Tang Z, Zhou Y, Song Q. Synthesis of Furoxans and Isoxazoles via Divergent [2 + 1 + 1 + 1] Annulations of Sulfoxonium Ylides and tBuONO. Org Lett 2019; 21:5273-5276. [DOI: 10.1021/acs.orglett.9b01876] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Zhonghe Tang
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, China
| | - Yao Zhou
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, China
| | - Qiuling Song
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, China
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian 350108, China
- State Key Laboratroy of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
17
|
Increased Levels of cAMP by the Calcium-Dependent Activation of Soluble Adenylyl Cyclase in Parkin-Mutant Fibroblasts. Cells 2019; 8:cells8030250. [PMID: 30875974 PMCID: PMC6468892 DOI: 10.3390/cells8030250] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/06/2019] [Accepted: 03/11/2019] [Indexed: 02/06/2023] Open
Abstract
Almost half of autosomal recessive early-onset parkinsonism has been associated with mutations in PARK2, coding for parkin, which plays an important role in mitochondria function and calcium homeostasis. Cyclic adenosine monophosphate (cAMP) is a major second messenger regulating mitochondrial metabolism, and it is strictly interlocked with calcium homeostasis. Parkin-mutant (Pt) fibroblasts, exhibiting defective mitochondrial respiratory/OxPhos activity, showed a significant higher value of basal intracellular level of cAMP, as compared with normal fibroblasts (CTRL). Specific pharmacological inhibition/activation of members of the adenylyl cyclase- and of the phosphodiesterase-families, respectively, as well as quantitative reverse transcription polymerase chain reaction (RT-qPCR) analysis, indicate that the higher level of cAMP observed in Pt fibroblasts can contribute to a higher level of activity/expression by soluble adenylyl cyclase (sAC) and to low activity/expression of the phosphodiesterase isoform 4 (PDE4). As Ca2+ regulates sAC, we performed quantitative calcium-fluorimetric analysis, showing a higher level of Ca2+ in the both cytosol and mitochondria of Pt fibroblasts as compared with CTRL. Most notably, inhibition of the mitochondrial Ca2+ uniporter decreased, specifically the cAMP level in PD fibroblasts. All together, these findings support the occurrence of an altered mitochondrial Ca2+-mediated cAMP homeostasis in fibroblasts with the parkin mutation.
Collapse
|
18
|
Roosterman D, Meyerhof W, Cottrell GS. Proton Transport Chains in Glucose Metabolism: Mind the Proton. Front Neurosci 2018; 12:404. [PMID: 29962930 PMCID: PMC6014028 DOI: 10.3389/fnins.2018.00404] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 05/25/2018] [Indexed: 01/11/2023] Open
Abstract
The Embden-Meyerhof-Parnas (EMP) pathway comprises eleven cytosolic enzymes interacting to metabolize glucose to lactic acid [CH3CH(OH)COOH]. Glycolysis is largely considered as the conversion of glucose to pyruvate (CH3COCOO-). We consider glycolysis to be a cellular process and as such, transporters mediating glucose uptake and lactic acid release and enable the flow of metabolites through the cell, must be considered as part of the EMP pathway. In this review, we consider the flow of metabolites to be coupled to a flow of energy that is irreversible and sufficient to form ordered structures. This latter principle is highlighted by discussing that lactate dehydrogenase (LDH) complexes irreversibly reduce pyruvate/H+ to lactate [CH3CH(OH)COO-], or irreversibly catalyze the opposite reaction, oxidation of lactate to pyruvate/H+. However, both LDH complexes are considered to be driven by postulated proton transport chains. Metabolism of glucose to two lactic acids is introduced as a unidirectional, continuously flowing pathway. In an organism, cell membrane-located proton-linked monocarboxylate transporters catalyze the final step of glycolysis, the release of lactic acid. Consequently, both pyruvate and lactate are discussed as intermediate products of glycolysis and substrates of regulated crosscuts of the glycolytic flow.
Collapse
Affiliation(s)
| | - Wolfgang Meyerhof
- Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | | |
Collapse
|
19
|
Wiggins SV, Steegborn C, Levin LR, Buck J. Pharmacological modulation of the CO 2/HCO 3-/pH-, calcium-, and ATP-sensing soluble adenylyl cyclase. Pharmacol Ther 2018; 190:173-186. [PMID: 29807057 DOI: 10.1016/j.pharmthera.2018.05.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cyclic AMP (cAMP), the prototypical second messenger, has been implicated in a wide variety of (often opposing) physiological processes. It simultaneously mediates multiple, diverse processes, often within a single cell, by acting locally within independently-regulated and spatially-restricted microdomains. Within each microdomain, the level of cAMP will be dependent upon the balance between its synthesis by adenylyl cyclases and its degradation by phosphodiesterases (PDEs). In mammalian cells, there are many PDE isoforms and two types of adenylyl cyclases; the G protein regulated transmembrane adenylyl cyclases (tmACs) and the CO2/HCO3-/pH-, calcium-, and ATP-sensing soluble adenylyl cyclase (sAC). Discriminating the roles of individual cyclic nucleotide microdomains requires pharmacological modulators selective for the various PDEs and/or adenylyl cyclases. Such tools present an opportunity to develop therapeutics specifically targeted to individual cAMP dependent pathways. The pharmacological modulators of tmACs have recently been reviewed, and in this review, we describe the current status of pharmacological tools available for studying sAC.
Collapse
Affiliation(s)
- Shakarr V Wiggins
- Graduate Program in Neuroscience, Weill Cornell Medicine, New York, NY 10065, United States
| | - Clemens Steegborn
- Department of Biochemistry, University of Bayreuth, 95440 Bayreuth, Germany
| | - Lonny R Levin
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10065, United States.
| | - Jochen Buck
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10065, United States
| |
Collapse
|
20
|
Etzl S, Lindner R, Nelson MD, Winkler A. Structure-guided design and functional characterization of an artificial red light-regulated guanylate/adenylate cyclase for optogenetic applications. J Biol Chem 2018; 293:9078-9089. [PMID: 29695503 PMCID: PMC5995499 DOI: 10.1074/jbc.ra118.003069] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/21/2018] [Indexed: 12/02/2022] Open
Abstract
Genetically targeting biological systems to control cellular processes with light is the concept of optogenetics. Despite impressive developments in this field, underlying molecular mechanisms of signal transduction of the employed photoreceptor modules are frequently not sufficiently understood to rationally design new optogenetic tools. Here, we investigate the requirements for functional coupling of red light–sensing phytochromes with non-natural enzymatic effectors by creating a series of constructs featuring the Deinococcus radiodurans bacteriophytochrome linked to a Synechocystis guanylate/adenylate cyclase. Incorporating characteristic structural elements important for cyclase regulation in our designs, we identified several red light–regulated fusions with promising properties. We provide details of one light-activated construct with low dark-state activity and high dynamic range that outperforms previous optogenetic tools in vitro and expands our in vivo toolkit, as demonstrated by manipulation of Caenorhabditis elegans locomotor activity. The full-length crystal structure of this phytochrome-linked cyclase revealed molecular details of photoreceptor–effector coupling, highlighting the importance of the regulatory cyclase element. Analysis of conformational dynamics by hydrogen–deuterium exchange in different functional states enriched our understanding of phytochrome signaling and signal integration by effectors. We found that light-induced conformational changes in the phytochrome destabilize the coiled-coil sensor–effector linker, which releases the cyclase regulatory element from an inhibited conformation, increasing cyclase activity of this artificial system. Future designs of optogenetic functionalities may benefit from our work, indicating that rational considerations for the effector improve the rate of success of initial designs to obtain optogenetic tools with superior properties.
Collapse
Affiliation(s)
- Stefan Etzl
- From the Institute of Biochemistry, Graz University of Technology, Petersgasse 12/II, 8010 Graz, Austria
| | - Robert Lindner
- the Max Planck Institute for Medical Research, Jahnstrasse 29, Heidelberg 69120, Germany, and
| | - Matthew D Nelson
- the Department of Biology, Saint Joseph's University, Philadelphia, Pennsylvania 19131
| | - Andreas Winkler
- From the Institute of Biochemistry, Graz University of Technology, Petersgasse 12/II, 8010 Graz, Austria,
| |
Collapse
|
21
|
Abstract
Mammalian membranous and soluble adenylyl cyclases (mAC, sAC) and soluble guanylyl cyclases (sGC) generate cAMP and cGMP from ATP and GTP, respectively, as substrates. mACs (nine human isoenzymes), sAC, and sGC differ in their overall structures owing to specific membrane-spanning and regulatory domains but consist of two similarly folded catalytic domains C1 and C2 with high structure-based homology between the cyclase species. Comparison of available crystal structures - VC1:IIC2 (a construct of domains C1a from dog mAC5 and C2a from rat mAC2), human sAC and sGC, mostly in complex with substrates, substrate analogs, inhibitors, metal ions, and/or modulators - reveals that especially the nucleotide binding sites are closely related. An evolutionarily well-conserved catalytic mechanism is based on common binding modes, interactions, and structural transformations, including the participation of two metal ions in catalysis. Nucleobase selectivity relies on only few mutations. Since in all cases the nucleoside moiety is embedded in a relatively spacious cavity, mACs, sAC, and sGC are rather promiscuous and bind nearly all purine and pyrimidine nucleotides, including CTP and UTP, and many of their derivatives as inhibitors with often high affinity. By contrast, substrate specificity of mammalian adenylyl and guanylyl cyclases is high due to selective dynamic rearrangements during turnover.
Collapse
|
22
|
Song K, Liu X, Huang W, Lu S, Shen Q, Zhang L, Zhang J. Improved Method for the Identification and Validation of Allosteric Sites. J Chem Inf Model 2017; 57:2358-2363. [DOI: 10.1021/acs.jcim.7b00014] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Kun Song
- Department of Pathophysiology, Key Laboratory
of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, China
| | - Xinyi Liu
- Department of Pathophysiology, Key Laboratory
of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, China
| | - Wenkang Huang
- Department of Pathophysiology, Key Laboratory
of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, China
| | - Shaoyong Lu
- Department of Pathophysiology, Key Laboratory
of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, China
| | - Qiancheng Shen
- Department of Pathophysiology, Key Laboratory
of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, China
| | - Lu Zhang
- Department of Pathophysiology, Key Laboratory
of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, China
| | - Jian Zhang
- Department of Pathophysiology, Key Laboratory
of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, China
| |
Collapse
|
23
|
Dessauer CW, Watts VJ, Ostrom RS, Conti M, Dove S, Seifert R. International Union of Basic and Clinical Pharmacology. CI. Structures and Small Molecule Modulators of Mammalian Adenylyl Cyclases. Pharmacol Rev 2017; 69:93-139. [PMID: 28255005 PMCID: PMC5394921 DOI: 10.1124/pr.116.013078] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Adenylyl cyclases (ACs) generate the second messenger cAMP from ATP. Mammalian cells express nine transmembrane AC (mAC) isoforms (AC1-9) and a soluble AC (sAC, also referred to as AC10). This review will largely focus on mACs. mACs are activated by the G-protein Gαs and regulated by multiple mechanisms. mACs are differentially expressed in tissues and regulate numerous and diverse cell functions. mACs localize in distinct membrane compartments and form signaling complexes. sAC is activated by bicarbonate with physiologic roles first described in testis. Crystal structures of the catalytic core of a hybrid mAC and sAC are available. These structures provide detailed insights into the catalytic mechanism and constitute the basis for the development of isoform-selective activators and inhibitors. Although potent competitive and noncompetitive mAC inhibitors are available, it is challenging to obtain compounds with high isoform selectivity due to the conservation of the catalytic core. Accordingly, caution must be exerted with the interpretation of intact-cell studies. The development of isoform-selective activators, the plant diterpene forskolin being the starting compound, has been equally challenging. There is no known endogenous ligand for the forskolin binding site. Recently, development of selective sAC inhibitors was reported. An emerging field is the association of AC gene polymorphisms with human diseases. For example, mutations in the AC5 gene (ADCY5) cause hyperkinetic extrapyramidal motor disorders. Overall, in contrast to the guanylyl cyclase field, our understanding of the (patho)physiology of AC isoforms and the development of clinically useful drugs targeting ACs is still in its infancy.
Collapse
Affiliation(s)
- Carmen W Dessauer
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas (C.W.D.); Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (V.J.W.); Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.); Center for Reproductive Sciences, University of California San Francisco, San Francisco, California (M.C.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (S.D.); and Institute of Pharmacology, Hannover Medical School, Hannover, Germany (R.S.)
| | - Val J Watts
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas (C.W.D.); Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (V.J.W.); Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.); Center for Reproductive Sciences, University of California San Francisco, San Francisco, California (M.C.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (S.D.); and Institute of Pharmacology, Hannover Medical School, Hannover, Germany (R.S.)
| | - Rennolds S Ostrom
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas (C.W.D.); Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (V.J.W.); Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.); Center for Reproductive Sciences, University of California San Francisco, San Francisco, California (M.C.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (S.D.); and Institute of Pharmacology, Hannover Medical School, Hannover, Germany (R.S.)
| | - Marco Conti
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas (C.W.D.); Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (V.J.W.); Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.); Center for Reproductive Sciences, University of California San Francisco, San Francisco, California (M.C.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (S.D.); and Institute of Pharmacology, Hannover Medical School, Hannover, Germany (R.S.)
| | - Stefan Dove
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas (C.W.D.); Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (V.J.W.); Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.); Center for Reproductive Sciences, University of California San Francisco, San Francisco, California (M.C.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (S.D.); and Institute of Pharmacology, Hannover Medical School, Hannover, Germany (R.S.)
| | - Roland Seifert
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas (C.W.D.); Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (V.J.W.); Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.); Center for Reproductive Sciences, University of California San Francisco, San Francisco, California (M.C.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (S.D.); and Institute of Pharmacology, Hannover Medical School, Hannover, Germany (R.S.)
| |
Collapse
|
24
|
Lindner R, Hartmann E, Tarnawski M, Winkler A, Frey D, Reinstein J, Meinhart A, Schlichting I. Photoactivation Mechanism of a Bacterial Light-Regulated Adenylyl Cyclase. J Mol Biol 2017; 429:1336-1351. [PMID: 28336405 DOI: 10.1016/j.jmb.2017.03.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/08/2017] [Accepted: 03/17/2017] [Indexed: 01/07/2023]
Abstract
Light-regulated enzymes enable organisms to quickly respond to changing light conditions. We characterize a photoactivatable adenylyl cyclase (AC) from Beggiatoa sp. (bPAC) that translates a blue light signal into the production of the second messenger cyclic AMP. bPAC contains a BLUF photoreceptor domain that senses blue light using a flavin chromophore, linked to an AC domain. We present a dark state crystal structure of bPAC that closely resembles the recently published structure of the homologous OaPAC from Oscillatoria acuminata. To elucidate the structural mechanism of light-dependent AC activation by the BLUF domain, we determined the crystal structures of illuminated bPAC and of a pseudo-lit state variant. We use hydrogen-deuterium exchange measurements of secondary structure dynamics and hypothesis-driven point mutations to trace the activation pathway from the chromophore in the BLUF domain to the active site of the cyclase. The structural changes are relayed from the residues interacting with the excited chromophore through a conserved kink of the BLUF β-sheet to a tongue-like extrusion of the AC domain that regulates active site opening and repositions catalytic residues. Our findings not only show the specific molecular pathway of photoactivation in BLUF-regulated ACs but also have implications for the general understanding of signaling in BLUF domains and of the activation of ACs.
Collapse
Affiliation(s)
- Robert Lindner
- Max Planck Institute for Medical Research, Jahnstr, 29, 69120 Heidelberg, Germany
| | - Elisabeth Hartmann
- Max Planck Institute for Medical Research, Jahnstr, 29, 69120 Heidelberg, Germany
| | - Miroslaw Tarnawski
- Max Planck Institute for Medical Research, Jahnstr, 29, 69120 Heidelberg, Germany
| | - Andreas Winkler
- Max Planck Institute for Medical Research, Jahnstr, 29, 69120 Heidelberg, Germany
| | - Daniel Frey
- Max Planck Institute for Medical Research, Jahnstr, 29, 69120 Heidelberg, Germany
| | - Jochen Reinstein
- Max Planck Institute for Medical Research, Jahnstr, 29, 69120 Heidelberg, Germany
| | - Anton Meinhart
- Max Planck Institute for Medical Research, Jahnstr, 29, 69120 Heidelberg, Germany
| | - Ilme Schlichting
- Max Planck Institute for Medical Research, Jahnstr, 29, 69120 Heidelberg, Germany.
| |
Collapse
|
25
|
Wang X, Wang M, Jia Z, Wang H, Jiang S, Chen H, Wang L, Song L. Ocean acidification stimulates alkali signal pathway: A bicarbonate sensing soluble adenylyl cyclase from oyster Crassostrea gigas mediates physiological changes induced by CO 2 exposure. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 181:124-135. [PMID: 27837685 DOI: 10.1016/j.aquatox.2016.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 10/26/2016] [Accepted: 11/02/2016] [Indexed: 06/06/2023]
Abstract
Ocean acidification (OA) has been demonstrated to have severe effects on marine organisms, especially marine calcifiers. However, the impacts of OA on the physiology of marine calcifiers and the underlying mechanisms remain unclear. Soluble adenylyl cyclase (sAC) is an acid-base sensor in response to [HCO3-] and an intracellular source of cyclic AMP (cAMP). In the present study, an ortholog of sAC was identified from pacific oyster Crassostrea gigas (designated as CgsAC) and the catalytic region of CgsAC was cloned and expressed. Similar to the native CgsAC from gill tissues, the recombinant CgsAC protein (rCgsAC) exhibited [HCO3-] mediated cAMP-forming activity, which could be inhibited by a small molecule KH7. After 16days of CO2 exposure (pH=7.50), the mRNA transcripts of CgsAC increased in muscle, mantle, hepatopancreas, gill, male gonad and haemocytes, and two truncated CgsAC forms of 45kD and 20kD were produced. Cytosolic CgsAC could be translocated from the cytoplasm and nuclei to the membrane in response to CO2 exposure. Besides, CO2 exposure could increase the production of cAMP and intracellular pH of haemocytes, which was regulated by CgsAC (p<0.05), suggesting the existence of a [HCO3-]/CgsAC/cAMP signal pathway in oyster. The elevated CO2 could induce an increase of ROS level (p<0.05) and a decrease of phagocytic rate of haemocytes (p<0.05), which could be inhibited by KH7. The results collectively suggest that CgsAC is an important acid-base sensor in oyster and the [HCO3-]/CgsAC/cAMP signal pathway might be responsible for intracellular alkalization effects on oxidative phosphorylation and innate immunity under CO2 exposure. The changes of intracellular pH, ROS, and phagocytosis mediated by CgsAC might help us to further understand the effects of ocean acidification on marine calcifiers.
Collapse
Affiliation(s)
- Xiudan Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengqiang Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zhihao Jia
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Shuai Jiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Hao Chen
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingling Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, China
| | - Linsheng Song
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, China.
| |
Collapse
|
26
|
Ramos-Espiritu L, Kleinboelting S, Navarrete FA, Alvau A, Visconti PE, Valsecchi F, Starkov A, Manfredi G, Buck H, Adura C, Zippin JH, van den Heuvel J, Glickman JF, Steegborn C, Levin LR, Buck J. Discovery of LRE1 as a specific and allosteric inhibitor of soluble adenylyl cyclase. Nat Chem Biol 2016; 12:838-44. [PMID: 27547922 PMCID: PMC5030147 DOI: 10.1038/nchembio.2151] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 05/23/2016] [Indexed: 12/22/2022]
Abstract
The prototypical second messenger cAMP regulates a wide variety of physiological processes. It can simultaneously mediate diverse functions by acting locally in independently regulated microdomains. In mammalian cells, two types of adenylyl cyclase generate cAMP: G-protein-regulated transmembrane adenylyl cyclases and bicarbonate-, calcium- and ATP-regulated soluble adenylyl cyclase (sAC). Because each type of cyclase regulates distinct microdomains, methods to distinguish between them are needed to understand cAMP signaling. We developed a mass-spectrometry-based adenylyl cyclase assay, which we used to identify a new sAC-specific inhibitor, LRE1. LRE1 bound to the bicarbonate activator binding site and inhibited sAC via a unique allosteric mechanism. LRE1 prevented sAC-dependent processes in cellular and physiological systems, and it will facilitate exploration of the therapeutic potential of sAC inhibition.
Collapse
Affiliation(s)
- Lavoisier Ramos-Espiritu
- Department of Pharmacology, Weill Cornell Medical College, New York, New York, USA
- The High-Throughput Screening and Spectroscopy Resource Center, The Rockefeller University, New York, New York, USA
| | | | - Felipe A Navarrete
- Department of Veterinary and Animal Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Antonio Alvau
- Department of Veterinary and Animal Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Pablo E Visconti
- Department of Veterinary and Animal Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Federica Valsecchi
- Brain and Mind Research Institute, Weill Cornell Medical College, New York, New York, USA
| | - Anatoly Starkov
- Brain and Mind Research Institute, Weill Cornell Medical College, New York, New York, USA
| | - Giovanni Manfredi
- Brain and Mind Research Institute, Weill Cornell Medical College, New York, New York, USA
| | - Hannes Buck
- Department of Pharmacology, Weill Cornell Medical College, New York, New York, USA
| | - Carolina Adura
- The High-Throughput Screening and Spectroscopy Resource Center, The Rockefeller University, New York, New York, USA
| | - Jonathan H Zippin
- Department of Dermatology, Weill Cornell Medical College, New York, New York, USA
| | | | - J Fraser Glickman
- The High-Throughput Screening and Spectroscopy Resource Center, The Rockefeller University, New York, New York, USA
| | - Clemens Steegborn
- Department of Biochemistry, University of Bayreuth, Bayreuth, Germany
| | - Lonny R Levin
- Department of Pharmacology, Weill Cornell Medical College, New York, New York, USA
| | - Jochen Buck
- Department of Pharmacology, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
27
|
Kleinboelting S, Ramos-Espiritu L, Buck H, Colis L, van den Heuvel J, Glickman JF, Levin LR, Buck J, Steegborn C. Bithionol Potently Inhibits Human Soluble Adenylyl Cyclase through Binding to the Allosteric Activator Site. J Biol Chem 2016; 291:9776-84. [PMID: 26961873 DOI: 10.1074/jbc.m115.708255] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Indexed: 12/20/2022] Open
Abstract
The signaling molecule cAMP regulates functions ranging from bacterial transcription to mammalian memory. In mammals, cAMP is synthesized by nine transmembrane adenylyl cyclases (ACs) and one soluble AC (sAC). Despite similarities in their catalytic domains, these ACs differ in regulation. Transmembrane ACs respond to G proteins, whereas sAC is uniquely activated by bicarbonate. Via bicarbonate regulation, sAC acts as a physiological sensor for pH/bicarbonate/CO2, and it has been implicated as a therapeutic target, e.g. for diabetes, glaucoma, and a male contraceptive. Here we identify the bisphenols bithionol and hexachlorophene as potent, sAC-specific inhibitors. Inhibition appears mostly non-competitive with the substrate ATP, indicating that they act via an allosteric site. To analyze the interaction details, we solved a crystal structure of an sAC·bithionol complex. The structure reveals that the compounds are selective for sAC because they bind to the sAC-specific, allosteric binding site for the physiological activator bicarbonate. Structural comparison of the bithionol complex with apo-sAC and other sAC·ligand complexes along with mutagenesis experiments reveals an allosteric mechanism of inhibition; the compound induces rearrangements of substrate binding residues and of Arg(176), a trigger between the active site and allosteric site. Our results thus provide 1) novel insights into the communication between allosteric regulatory and active sites, 2) a novel mechanism for sAC inhibition, and 3) pharmacological compounds targeting this allosteric site and utilizing this mode of inhibition. These studies provide support for the future development of sAC-modulating drugs.
Collapse
Affiliation(s)
- Silke Kleinboelting
- From the Department of Biochemistry, University of Bayreuth, 95440 Bayreuth, Germany
| | - Lavoisier Ramos-Espiritu
- Department of Pharmacology, Weill Cornell Medical College, New York, New York 10065, High Throughput Screening and Spectroscopy Resource Center, The Rockefeller University, New York, New York 10065, and
| | - Hannes Buck
- Department of Pharmacology, Weill Cornell Medical College, New York, New York 10065
| | - Laureen Colis
- Department of Pharmacology, Weill Cornell Medical College, New York, New York 10065
| | | | - J Fraser Glickman
- High Throughput Screening and Spectroscopy Resource Center, The Rockefeller University, New York, New York 10065, and
| | - Lonny R Levin
- Department of Pharmacology, Weill Cornell Medical College, New York, New York 10065
| | - Jochen Buck
- Department of Pharmacology, Weill Cornell Medical College, New York, New York 10065
| | - Clemens Steegborn
- From the Department of Biochemistry, University of Bayreuth, 95440 Bayreuth, Germany,
| |
Collapse
|
28
|
Davies TG, Jhoti H, Pathuri P, Williams G. Selecting the Right Targets for Fragment-Based Drug Discovery. FRAGMENT-BASED DRUG DISCOVERY LESSONS AND OUTLOOK 2016. [DOI: 10.1002/9783527683604.ch02] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
29
|
Detection of secondary binding sites in proteins using fragment screening. Proc Natl Acad Sci U S A 2015; 112:15910-5. [PMID: 26655740 DOI: 10.1073/pnas.1518946112] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Proteins need to be tightly regulated as they control biological processes in most normal cellular functions. The precise mechanisms of regulation are rarely completely understood but can involve binding of endogenous ligands and/or partner proteins at specific locations on a protein that can modulate function. Often, these additional secondary binding sites appear separate to the primary binding site, which, for example for an enzyme, may bind a substrate. In previous work, we have uncovered several examples in which secondary binding sites were discovered on proteins using fragment screening approaches. In each case, we were able to establish that the newly identified secondary binding site was biologically relevant as it was able to modulate function by the binding of a small molecule. In this study, we investigate how often secondary binding sites are located on proteins by analyzing 24 protein targets for which we have performed a fragment screen using X-ray crystallography. Our analysis shows that, surprisingly, the majority of proteins contain secondary binding sites based on their ability to bind fragments. Furthermore, sequence analysis of these previously unknown sites indicate high conservation, which suggests that they may have a biological function, perhaps via an allosteric mechanism. Comparing the physicochemical properties of the secondary sites with known primary ligand binding sites also shows broad similarities indicating that many of the secondary sites may be druggable in nature with small molecules that could provide new opportunities to modulate potential therapeutic targets.
Collapse
|
30
|
Steegborn C. Structure, mechanism, and regulation of soluble adenylyl cyclases — similarities and differences to transmembrane adenylyl cyclases. Biochim Biophys Acta Mol Basis Dis 2014; 1842:2535-47. [DOI: 10.1016/j.bbadis.2014.08.012] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 08/19/2014] [Accepted: 08/26/2014] [Indexed: 12/14/2022]
|
31
|
Vacquier VD, Loza-Huerta A, García-Rincón J, Darszon A, Beltrán C. Soluble adenylyl cyclase of sea urchin spermatozoa. Biochim Biophys Acta Mol Basis Dis 2014; 1842:2621-8. [PMID: 25064590 DOI: 10.1016/j.bbadis.2014.07.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 07/07/2014] [Accepted: 07/15/2014] [Indexed: 02/05/2023]
Abstract
Fertilization, a key step in sexual reproduction, requires orchestrated changes in cAMP concentrations. It is notable that spermatozoa (sperm) are among the cell types with extremely high adenylyl cyclase (AC) activity. As production and consumption of this second messenger need to be locally regulated, the discovery of soluble AC (sAC) has broadened our understanding of how such cells deal with these requirements. In addition, because sAC is directly regulated by HCO(3)(-) it is able to translate CO₂/HCO(3)(-)/pH changes into cAMP levels. Fundamental sperm functions such as maturation, motility regulation and the acrosome reaction are influenced by cAMP; this is especially true for sperm of the sea urchin (SU), an organism that has been a model in the study of fertilization for more than 130 years. Here we summarize the discovery and properties of SU sperm sAC, and discuss its involvement in sperm physiology. This article is part of a Special Issue entitled: The role of soluble adenylyl cyclase in health and disease.
Collapse
Affiliation(s)
- Victor D Vacquier
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0202, USA.
| | - Arlet Loza-Huerta
- Departamento de Neurociencia Cognitiva, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Distrito Federal 04510, Mexico.
| | - Juan García-Rincón
- Departamento de Genética del Desarrollo y Fisiología Molecular, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico.
| | - Alberto Darszon
- Departamento de Genética del Desarrollo y Fisiología Molecular, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico.
| | - Carmen Beltrán
- Departamento de Genética del Desarrollo y Fisiología Molecular, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico.
| |
Collapse
|
32
|
Soluble adenylyl cyclase in health and disease. Biochim Biophys Acta Mol Basis Dis 2014; 1842:2584-92. [PMID: 25064591 DOI: 10.1016/j.bbadis.2014.07.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 07/12/2014] [Accepted: 07/15/2014] [Indexed: 12/14/2022]
Abstract
The second messenger cAMP is integral for many physiological processes. Soluble adenylyl cyclase (sAC) was recently identified as a widely expressed intracellular source of cAMP in mammalian cells. sAC is evolutionary, structurally, and biochemically distinct from the G-protein-responsive transmembranous adenylyl cyclases (tmAC). The structure of the catalytic unit of sAC is similar to tmAC, but sAC does not contain transmembranous domains, allowing localizations independent of the membranous compartment. sAC activity is stimulated by HCO(3)(-), Ca²⁺ and is sensitive to physiologically relevant ATP fluctuations. sAC functions as a physiological sensor for carbon dioxide and bicarbonate, and therefore indirectly for pH. Here we review the physiological role of sAC in different human tissues with a major focus on the lung. This article is part of a Special Issue entitled: The role of soluble adenylyl cyclase in health and disease, guest edited by J. Buck and L.R. Levin.
Collapse
|
33
|
Valsecchi F, Konrad C, Manfredi G. Role of soluble adenylyl cyclase in mitochondria. Biochim Biophys Acta Mol Basis Dis 2014; 1842:2555-60. [PMID: 24907564 DOI: 10.1016/j.bbadis.2014.05.035] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 05/19/2014] [Accepted: 05/28/2014] [Indexed: 11/25/2022]
Abstract
The soluble adenylyl cyclase (sAC) catalyzes the conversion of ATP into cyclic AMP (cAMP). Recent studies have shed new light on the role of sAC localized in mitochondria and its product cAMP, which drives mitochondrial protein phosphorylation and regulation of the oxidative phosphorylation system and other metabolic enzymes, presumably through the activation of intra-mitochondrial PKA. In this review article, we summarize recent findings on mitochondrial sAC activation by bicarbonate (HCO(3)(-)) and calcium (Ca²⁺) and the effects on mitochondrial metabolism. We also discuss putative mechanisms whereby sAC-mediated mitochondrial protein phosphorylation regulates mitochondrial metabolism. This article is part of a Special Issue entitled: The role of soluble adenylyl cyclase in health and disease.
Collapse
Affiliation(s)
- Federica Valsecchi
- Brain and Mind Research Institute, Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Csaba Konrad
- Brain and Mind Research Institute, Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Giovanni Manfredi
- Brain and Mind Research Institute, Weill Medical College of Cornell University, New York, NY 10065, USA.
| |
Collapse
|