1
|
Fan PH, Sato S, Yeh YC, Liu HW. Biosynthetic Origin of the Octose Core and Its Mechanism of Assembly during Apramycin Biosynthesis. J Am Chem Soc 2023; 145:21361-21369. [PMID: 37733880 PMCID: PMC10591738 DOI: 10.1021/jacs.3c06354] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Apramycin is an aminoglycoside antibiotic isolated from Streptoalloteichus tenebrarius and S. hindustanus that has found clinical use in veterinary medicine. The apramycin structure is notable for its atypical eight-carbon bicyclic dialdose (octose) moiety. While the apramycin biosynthetic gene cluster (apr) has been identified and several of the encoded genes functionally characterized, how the octose core itself is assembled has remained elusive. Nevertheless, recent gene deletion studies have hinted at an N-acetyl aminosugar being a key precursor to the octose, and this hypothesis is consistent with the additional feeding experiments described in the present report. Moreover, bioinformatic analysis indicates that AprG may be structurally similar to GlcNAc-2-epimerase and hence recognize GlcNAc or a structurally similar substrate suggesting a potential role in octose formation. AprG with an extended N-terminal sequence was therefore expressed, purified, and assayed in vitro demonstrating that it does indeed catalyze a transaldolation reaction between GlcNAc or GalNAc and 6'-oxo-lividamine to afford 7'-N-acetyldemethylaprosamine with the same 6'-R and 7'-S stereochemistry as those observed in the apramycin product. Biosynthesis of the octose core in apramycin thus proceeds in the [6 + 2] manner with GlcNAc or GalNAc as the two-carbon donor, which has not been previously reported for biological octose formation, as well as novel inverting stereochemistry of the transferred fragment. Consequently, AprG appears to be a new transaldolase that lacks any apparent sequence similarity to the currently known aldolases and catalyzes a transaldolation for which there is no established biological precedent.
Collapse
Affiliation(s)
- Po-Hsun Fan
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Shusuke Sato
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yu-Cheng Yeh
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Hung-Wen Liu
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
2
|
Otsuka Y, Umemura E, Takamiya Y, Ishibashi T, Hayashi C, Yamada K, Igarashi M, Shibasaki M, Takahashi Y. Aprosamine Derivatives Active against Multidrug-Resistant Gram-Negative Bacteria. ACS Infect Dis 2023; 9:886-898. [PMID: 36893496 DOI: 10.1021/acsinfecdis.2c00557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Novel aprosamine derivatives were synthesized for the development of aminoglycoside antibiotics active against multidrug-resistant Gram-negative bacteria. The synthesis of aprosamine derivatives involved glycosylation at the C-8' position and subsequent modification (epimerization and deoxygenation at the C-5 position and 1-N-acylation) of the 2-deoxystreptamine moiety. All 8'-β-glycosylated aprosamine derivatives (3a-h) showed excellent antibacterial activity against carbapenem-resistant Enterobacteriaceae and 16S ribosomal RNA methyltransferase-producing multidrug-resistant Gram-negative bacteria compared to the clinical drug, arbekacin. The antibacterial activity of 5-epi (6a-d) and 5-deoxy derivatives (8a,b and 8h) of β-glycosylated aprosamine was further enhanced. On the other hand, the derivatives (10a,b and 10h) in which the amino group at the C-1 position was acylated with (S)-4-amino-2-hydroxybutyric acid showed excellent activity (MICs 0.25-0.5 μg/mL) against resistant bacteria that produce the aminoglycoside-modifying enzyme, aminoglycoside 3-N-acetyltransferase IV, which induces high resistance against parent apramycin (MIC > 64 μg/mL). In particular, 8b and 8h showed approximately 2- to 8-fold antibacterial activity against carbapenem-resistant Enterobacteriaceae and 8- to 16-fold antibacterial activity against resistant Gram-positive bacteria, such as methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci, compared to apramycin. Our results showed that aprosamine derivatives have immense potential in the development of therapeutic agents for multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Yasunari Otsuka
- Institute of Microbial Chemistry (BIKAKEN), Tokyo 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Eijiro Umemura
- Institute of Microbial Chemistry (BIKAKEN), Tokyo 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Yukimi Takamiya
- Institute of Microbial Chemistry (BIKAKEN), Tokyo 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Teruhisa Ishibashi
- Institute of Microbial Chemistry (BIKAKEN), Tokyo 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Chigusa Hayashi
- Institute of Microbial Chemistry (BIKAKEN), Tokyo 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Keiko Yamada
- Pharmaceutical Analysis Laboratories, Pharmaceutical Research Center, Meiji Seika Pharma Co., Ltd., 788 Kayama, Odawara-shi 250-0852, Kanagawa, Japan
| | - Masayuki Igarashi
- Institute of Microbial Chemistry (BIKAKEN), Tokyo 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Masakatsu Shibasaki
- Institute of Microbial Chemistry (BIKAKEN), Tokyo 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Yoshiaki Takahashi
- Institute of Microbial Chemistry (BIKAKEN), Tokyo 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
| |
Collapse
|
3
|
Pirrone MG, Ande C, Haldimann K, Hobbie SN, Vasella A, Böttger EC, Crich D. Importance of Co-operative Hydrogen Bonding in the Apramycin-Ribosomal Decoding A-Site Interaction. ChemMedChem 2023; 18:e202200486. [PMID: 36198651 PMCID: PMC10092258 DOI: 10.1002/cmdc.202200486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/05/2022] [Indexed: 01/24/2023]
Abstract
An intramolecular hydrogen bond between the protonated equatorial 7'-methylamino group of apramycin and the vicinal axial 6'-hydroxy group acidifies the 6'-hydroxy group leading to a strong hydrogen bond to A1408 in the ribosomal drug binding pocket in the decoding A site of the small ribosomal subunit. In 6'-epiapramycin, the trans-nature of the 6'-hydroxy group and the 7'-methylamino group results in a much weaker intramolecular hydrogen bond, and a consequently weaker cooperative hydrogen bonding network with A1408, resulting overall in reduced inhibition of protein synthesis and antibacterial activity.
Collapse
Affiliation(s)
- Michael G. Pirrone
- Department of Pharmaceutical and Biomedical SciencesUniversity of Georgia250 West Green Street30602Athens, GAUSA
| | - Chennaiah Ande
- Department of Pharmaceutical and Biomedical SciencesUniversity of Georgia250 West Green Street30602Athens, GAUSA
| | - Klara Haldimann
- Institute of Medical MicrobiologyUniversity of ZurichGloriastrasse 288006ZürichSwitzerland
| | - Sven N. Hobbie
- Institute of Medical MicrobiologyUniversity of ZurichGloriastrasse 288006ZürichSwitzerland
| | - Andrea Vasella
- Organic Chemistry InstituteETH ZürichVladimir-Prelog-Weg 1–5/108093ZürichSwitzerland
| | - Erik C. Böttger
- Institute of Medical MicrobiologyUniversity of ZurichGloriastrasse 288006ZürichSwitzerland
| | - David Crich
- Department of Pharmaceutical and Biomedical SciencesDepartment of ChemistryComplex Carbohydrate Research CenterUniversity of Georgia250 West Green Street30602Athens, GAUSA
| |
Collapse
|
4
|
Lubriks D, Haldimann K, Hobbie SN, Vasella A, Suna E, Crich D. Synthesis, Antibacterial and Antiribosomal Activity of the 3 C-Aminoalkyl Modification in the Ribofuranosyl Ring of Apralogs (5- O-Ribofuranosyl Apramycins). Antibiotics (Basel) 2022; 12:antibiotics12010025. [PMID: 36671225 PMCID: PMC9854789 DOI: 10.3390/antibiotics12010025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
The synthesis and antiribosomal and antibacterial activity of both anomers of a novel apralog, 5-O-(5-amino-3-C-dimethylaminopropyl-D-ribofuranosyl)apramycin, are reported. Both anomers show excellent activity for the inhibition of bacterial ribosomes and that of MRSA and various wild-type Gram negative pathogens. The new compounds retain activity in the presence of the aminoglycoside phosphoryltransferase aminoglycoside modifying enzymes that act on the primary hydroxy group of typical 4,5-(2-deoxystreptamine)-type aminoglycoside and related apramycin derivatives. Unexpectedly, the two anomers have comparable activity both for the inhibition of bacterial ribosomes and of the various bacterial strains tested.
Collapse
Affiliation(s)
- Dmitrijs Lubriks
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia
| | - Klara Haldimann
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 30, 8006 Zürich, Switzerland
| | - Sven N. Hobbie
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 30, 8006 Zürich, Switzerland
| | - Andrea Vasella
- Organic Chemistry Laboratory, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland
| | - Edgars Suna
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia
- Correspondence: (E.S.); (D.C.); Tel.: +37-16-701-4895 (E.S.); Tel.: +1-706-542-5605 (D.C.)
| | - David Crich
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, GA 30602, USA
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
- Department of Chemistry, University of Georgia, 302 East Campus Road, Athens, GA 30602, USA
- Correspondence: (E.S.); (D.C.); Tel.: +37-16-701-4895 (E.S.); Tel.: +1-706-542-5605 (D.C.)
| |
Collapse
|
5
|
Quirke JCK, Sati GC, Sonousi A, Gysin M, Haldimann K, Bottger EC, Vasella A, Hobbie SN, Crich D. Structure-Activity Relationships for 5''-Modifications of 4,5-Aminoglycoside Antibiotics. ChemMedChem 2022; 17:e202200120. [PMID: 35385605 DOI: 10.1002/cmdc.202200120] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/06/2022] [Indexed: 11/08/2022]
Abstract
Modification at the 5''-position of 4,5-disubstituted aminoglycoside antibiotics (AGAs) to circumvent inactivation by the APH(3',5'') class of aminoglycoside modifying enzymes (AMEs) has been widely reported. Such modifications, however, impact activity against wild type bacteria and affect target selectivity in unpredictable ways thereby hindering drug development. We present a systematic survey of modifications to the 5''-position of the 4,5-AGAs and of the related 5- O -furanosyl apramycin derivatives. In the neomycin and the apralog series, all modifications were well-tolerated, but other 4,5-AGAs require the presence of a hydrogen bonding group at the 5''-position for maintenance of high antibacterial activity. Though the 5''-amino modification resulted in comparable activity to the parent compounds, reduced selectivity against the human cytosolic decoding A site renders this modification generally unfavorable in paromomycin, propylamycin, and ribostamycin. Installation of a 5''-formamido group and, to a lesser degree, a 5''-ureido group resulted in comparable activity to the parents without the selectivity cost of the 5''-amino modification. The lessons learned from this work will aid in the design of next-generation AGAs capable of circumventing susceptibility to AMEs while maintaining high antibacterial activity and target selectivity.
Collapse
Affiliation(s)
| | | | - Amr Sonousi
- Cairo University, Pharmaceutical Organic Chemistry, EGYPT
| | - Marina Gysin
- University of Zurich: Universitat Zurich, Medical Microbiology, SWITZERLAND
| | | | - Erik C Bottger
- University of Zurich: Universitat Zurich, Medical Microbiology, SWITZERLAND
| | - Andrea Vasella
- ETH-Zürich LOC: Eidgenossische Technische Hochschule Zurich Laboratorium fur Organische Chemie, Chemistry, SWITZERLAND
| | - Sven N Hobbie
- University of Zurich: Universitat Zurich, Medical Microbiology, SWITZERLAND
| | - David Crich
- University of Georgia, Pharmaceutical and Biomedical Sciences, 240 West Green Street, 30602, Athens, UNITED STATES
| |
Collapse
|
6
|
Sun J, Gao H, Yan D, Liu Y, Ni X, Xia H. OUP accepted manuscript. J Ind Microbiol Biotechnol 2022; 49:6583285. [PMID: 35536571 PMCID: PMC9338882 DOI: 10.1093/jimb/kuac011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/29/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Junyang Sun
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Hongjing Gao
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Danyang Yan
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Yu Liu
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Xianpu Ni
- Correspondence should be addressed to: Xianpu Ni at
| | - Huanzhang Xia
- Correspondence should be addressed to: Huanzhang Xia at
| |
Collapse
|
7
|
Sonousi A, Quirke JCK, Waduge P, Janusic T, Gysin M, Haldimann K, Xu S, Hobbie SN, Sha SH, Schacht J, Chow CS, Vasella A, Böttger EC, Crich D. An Advanced Apralog with Increased in vitro and in vivo Activity toward Gram-negative Pathogens and Reduced ex vivo Cochleotoxicity. ChemMedChem 2021; 16:335-339. [PMID: 33007139 PMCID: PMC7855274 DOI: 10.1002/cmdc.202000726] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Indexed: 12/13/2022]
Abstract
We describe the convergent synthesis of a 5-O-β-D-ribofuranosyl-based apramycin derivative (apralog) that displays significantly improved antibacterial activity over the parent apramycin against wild-type ESKAPE pathogens. In addition, the new apralog retains excellent antibacterial activity in the presence of the only aminoglycoside modifying enzyme (AAC(3)-IV) acting on the parent, without incurring susceptibility to the APH(3') mechanism that disables other 5-O-β-D-ribofuranosyl 2-deoxystreptamine type aminoglycosides by phosphorylation at the ribose 5-position. Consistent with this antibacterial activity, the new apralog has excellent 30 nM activity (IC50 ) for the inhibition of protein synthesis by the bacterial ribosome in a cell-free translation assay, while retaining the excellent across-the-board selectivity of the parent for inhibition of bacterial over eukaryotic ribosomes. Overall, these characteristics translate into excellent in vivo efficacy against E. coli in a mouse thigh infection model and reduced ototoxicity vis à vis the parent in mouse cochlear explants.
Collapse
Affiliation(s)
- Amr Sonousi
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA
| | - Jonathan C K Quirke
- Department of Pharmacy and Biomedical Sciences and Department of Chemistry and Complex Carbohydrate Research Center, University of Georgia, 250 West Green Street, Athens, GA, 30602, USA
| | - Prabuddha Waduge
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA
| | - Tanja Janusic
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 28, 8006, Zürich, Switzerland
| | - Marina Gysin
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 28, 8006, Zürich, Switzerland
| | - Klara Haldimann
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 28, 8006, Zürich, Switzerland
| | - Shan Xu
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Walton Research Building, Room 403-E, 39 Sabin Street, Charleston, SC, 29425, USA
| | - Sven N Hobbie
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 28, 8006, Zürich, Switzerland
| | - Su-Hua Sha
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Walton Research Building, Room 403-E, 39 Sabin Street, Charleston, SC, 29425, USA
| | - Jochen Schacht
- Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan, 1150 West Medical Center Drive, Ann Arbor, MI, 48109, USA
| | - Christine S Chow
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA
| | - Andrea Vasella
- Organic Chemistry Laboratory, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093, Zürich, Switzerland
| | - Erik C Böttger
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 28, 8006, Zürich, Switzerland
| | - David Crich
- Department of Pharmacy and Biomedical Sciences and Department of Chemistry and Complex Carbohydrate Research Center, University of Georgia, 250 West Green Street, Athens, GA, 30602, USA
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA
| |
Collapse
|
8
|
Zada SL, Baruch BB, Simhaev L, Engel H, Fridman M. Chemical Modifications Reduce Auditory Cell Damage Induced by Aminoglycoside Antibiotics. J Am Chem Soc 2020; 142:3077-3087. [PMID: 31958945 DOI: 10.1021/jacs.9b12420] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Although aminoglycoside antibiotics are effective against Gram-negative infections, these drugs often cause irreversible hearing damage. Binding to the decoding site of the eukaryotic ribosomes appears to result in ototoxicity, but there is evidence that other effects are involved. Here, we show how chemical modifications of apramycin and geneticin, considered among the least and most toxic aminoglycosides, respectively, reduce auditory cell damage. Using molecular dynamics simulations, we studied how modified aminoglycosides influence the essential freedom of movement of the decoding site of the ribosome, the region targeted by aminoglycosides. By determining the ratio of a protein translated in mitochondria to that of a protein translated in the cytoplasm, we showed that aminoglycosides can paradoxically elevate rather than reduce protein levels. We showed that certain aminoglycosides induce rapid plasma membrane permeabilization and that this nonribosomal effect can also be reduced through chemical modifications. The results presented suggest a new paradigm for the development of safer aminoglycoside antibiotics.
Collapse
Affiliation(s)
- Sivan Louzoun Zada
- School of Chemistry, Raymond and Beverley Sackler Faculty of Exact Sciences , Tel Aviv University , Tel Aviv , Israel , 6997801
| | - Bar Ben Baruch
- School of Chemistry, Raymond and Beverley Sackler Faculty of Exact Sciences , Tel Aviv University , Tel Aviv , Israel , 6997801
| | - Luba Simhaev
- Blavatnik Center for Drug Discovery , Tel Aviv University , Tel Aviv , 6997801 , Israel
| | - Hamutal Engel
- Blavatnik Center for Drug Discovery , Tel Aviv University , Tel Aviv , 6997801 , Israel
| | - Micha Fridman
- School of Chemistry, Raymond and Beverley Sackler Faculty of Exact Sciences , Tel Aviv University , Tel Aviv , Israel , 6997801
| |
Collapse
|
9
|
Quirke JCK, Rajasekaran P, Sarpe VA, Sonousi A, Osinnii I, Gysin M, Haldimann K, Fang QJ, Shcherbakov D, Hobbie SN, Sha SH, Schacht J, Vasella A, Böttger EC, Crich D. Apralogs: Apramycin 5- O-Glycosides and Ethers with Improved Antibacterial Activity and Ribosomal Selectivity and Reduced Susceptibility to the Aminoacyltranserferase (3)-IV Resistance Determinant. J Am Chem Soc 2019; 142:530-544. [PMID: 31790244 DOI: 10.1021/jacs.9b11601] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Apramycin is a structurally unique member of the 2-deoxystreptamine class of aminoglycoside antibiotics characterized by a monosubstituted 2-deoxystreptamine ring that carries an unusual bicyclic eight-carbon dialdose moiety. Because of its unusual structure, apramycin is not susceptible to the most prevalent mechanisms of aminoglycoside resistance including the aminoglycoside-modifying enzymes and the ribosomal methyltransferases whose widespread presence severely compromises all aminoglycosides in current clinical practice. These attributes coupled with minimal ototoxocity in animal models combine to make apramycin an excellent starting point for the development of next-generation aminoglycoside antibiotics for the treatment of multidrug-resistant bacterial infections, particularly the ESKAPE pathogens. With this in mind, we describe the design, synthesis, and evaluation of three series of apramycin derivatives, all functionalized at the 5-position, with the goals of increasing the antibacterial potency without sacrificing selectivity between bacterial and eukaryotic ribosomes and of overcoming the rare aminoglycoside acetyltransferase (3)-IV class of aminoglycoside-modifying enzymes that constitutes the only documented mechanism of antimicrobial resistance to apramycin. We show that several apramycin-5-O-β-d-ribofuranosides, 5-O-β-d-eryrthofuranosides, and even simple 5-O-aminoalkyl ethers are effective in this respect through the use of cell-free translation assays with wild-type bacterial and humanized bacterial ribosomes and of extensive antibacterial assays with wild-type and resistant Gram negative bacteria carrying either single or multiple resistance determinants. Ex vivo studies with mouse cochlear explants confirm the low levels of ototoxicity predicted on the basis of selectivity at the target level, while the mouse thigh infection model was used to demonstrate the superiority of an apramycin-5-O-glycoside in reducing the bacterial burden in vivo.
Collapse
Affiliation(s)
- Jonathan C K Quirke
- Department of Pharmaceutical and Biomedical Sciences , University of Georgia , 250 West Green Street , Athens , Georgia 30602 , United States.,Department of Chemistry , University of Georgia , 140 Cedar Street , Athens , Georgia 30602 , United States.,Complex Carbohydrate Research Center , University of Georgia , 315 Riverbend Road , Athens , Georgia 30602 , United States.,Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , Michigan 48202 , United States
| | - Parasuraman Rajasekaran
- Department of Pharmaceutical and Biomedical Sciences , University of Georgia , 250 West Green Street , Athens , Georgia 30602 , United States.,Complex Carbohydrate Research Center , University of Georgia , 315 Riverbend Road , Athens , Georgia 30602 , United States.,Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , Michigan 48202 , United States
| | - Vikram A Sarpe
- Department of Pharmaceutical and Biomedical Sciences , University of Georgia , 250 West Green Street , Athens , Georgia 30602 , United States.,Complex Carbohydrate Research Center , University of Georgia , 315 Riverbend Road , Athens , Georgia 30602 , United States.,Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , Michigan 48202 , United States
| | - Amr Sonousi
- Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , Michigan 48202 , United States
| | - Ivan Osinnii
- Institute of Medical Microbiology , University of Zurich , Gloriastrasse 28 , 8006 Zürich , Switzerland
| | - Marina Gysin
- Institute of Medical Microbiology , University of Zurich , Gloriastrasse 28 , 8006 Zürich , Switzerland
| | - Klara Haldimann
- Institute of Medical Microbiology , University of Zurich , Gloriastrasse 28 , 8006 Zürich , Switzerland
| | - Qiao-Jun Fang
- Department of Pathology and Laboratory Medicine , Medical University of South Carolina , Walton Research Building, Room 403-E, 39 Sabin Street , Charleston , South Carolina 29425 , United States
| | - Dimitri Shcherbakov
- Institute of Medical Microbiology , University of Zurich , Gloriastrasse 28 , 8006 Zürich , Switzerland
| | - Sven N Hobbie
- Institute of Medical Microbiology , University of Zurich , Gloriastrasse 28 , 8006 Zürich , Switzerland
| | - Su-Hua Sha
- Department of Pathology and Laboratory Medicine , Medical University of South Carolina , Walton Research Building, Room 403-E, 39 Sabin Street , Charleston , South Carolina 29425 , United States
| | - Jochen Schacht
- Kresge Hearing Research Institute, Department of Otolaryngology , University of Michigan , 1150 West Medical Center Drive , Ann Arbor , Michigan 48109 , United States
| | - Andrea Vasella
- Organic Chemistry Laboratory , ETH Zürich , Vladimir-Prelog-Weg 1-5/10 , 8093 Zürich , Switzerland
| | - Erik C Böttger
- Institute of Medical Microbiology , University of Zurich , Gloriastrasse 28 , 8006 Zürich , Switzerland
| | - David Crich
- Department of Pharmaceutical and Biomedical Sciences , University of Georgia , 250 West Green Street , Athens , Georgia 30602 , United States.,Department of Chemistry , University of Georgia , 140 Cedar Street , Athens , Georgia 30602 , United States.,Complex Carbohydrate Research Center , University of Georgia , 315 Riverbend Road , Athens , Georgia 30602 , United States.,Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , Michigan 48202 , United States
| |
Collapse
|
10
|
Sarpe VA, Pirrone MG, Haldimann K, Hobbie SN, Vasella A, Crich D. Synthesis of saccharocin from apramycin and evaluation of its ribosomal selectivity. MEDCHEMCOMM 2019; 10:554-558. [PMID: 31057735 PMCID: PMC6482888 DOI: 10.1039/c9md00093c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 03/08/2019] [Indexed: 12/25/2022]
Abstract
We describe a straightforward synthesis of the apramycin biosynthetic precursor saccharocin from apramycin by regioselective partial azidation followed by stereoretentive oxidative deamination. Saccharocin was found to exhibit excellent selectivity for inhibition of the bacterial ribosome over the eukaryotic ribosomes indicating that its presence as a minor impurity in apramycin itself should not be problematic in the development of the latter as a clinical candidate.
Collapse
Affiliation(s)
- Vikram A Sarpe
- Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , MI 48202 , USA . ;
| | - Michael G Pirrone
- Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , MI 48202 , USA . ;
| | - Klara Haldimann
- Institut für Medizinische Mikrobiologie , Universität Zürich , Gloriastrasse 30 , 8006 Zürich , Switzerland
| | - Sven N Hobbie
- Institut für Medizinische Mikrobiologie , Universität Zürich , Gloriastrasse 30 , 8006 Zürich , Switzerland
| | - Andrea Vasella
- Laboratorium für Organische Chemie , ETH Zürich , Vladimir-Prelog-Weg 1-5/10 , 8093 Zürich , Switzerland
| | - David Crich
- Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , MI 48202 , USA . ;
| |
Collapse
|
11
|
Serio AW, Keepers T, Andrews L, Krause KM. Aminoglycoside Revival: Review of a Historically Important Class of Antimicrobials Undergoing Rejuvenation. EcoSal Plus 2018; 8. [PMID: 30447062 PMCID: PMC11575671 DOI: 10.1128/ecosalplus.esp-0002-2018] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Indexed: 01/04/2023]
Abstract
Aminoglycosides are cidal inhibitors of bacterial protein synthesis that have been utilized for the treatment of serious bacterial infections for almost 80 years. There have been approximately 15 members of this class approved worldwide for the treatment of a variety of infections, many serious and life threatening. While aminoglycoside use declined due to the introduction of other antibiotic classes such as cephalosporins, fluoroquinolones, and carbapenems, there has been a resurgence of interest in the class as multidrug-resistant pathogens have spread globally. Furthermore, aminoglycosides are recommended as part of combination therapy for empiric treatment of certain difficult-to-treat infections. The development of semisynthetic aminoglycosides designed to overcome common aminoglycoside resistance mechanisms, and the shift to once-daily dosing, has spurred renewed interest in the class. Plazomicin is the first new aminoglycoside to be approved by the FDA in nearly 40 years, marking the successful start of a new campaign to rejuvenate the class.
Collapse
|
12
|
Sonousi A, Sarpe VA, Brilkova M, Schacht J, Vasella A, Böttger EC, Crich D. Effects of the 1- N-(4-Amino-2 S-hydroxybutyryl) and 6'- N-(2-Hydroxyethyl) Substituents on Ribosomal Selectivity, Cochleotoxicity, and Antibacterial Activity in the Sisomicin Class of Aminoglycoside Antibiotics. ACS Infect Dis 2018; 4:1114-1120. [PMID: 29708331 DOI: 10.1021/acsinfecdis.8b00052] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Syntheses of the 6'- N-(2-hydroxyethyl) and 1- N-(4-amino-2 S-hydroxybutyryl) derivatives of the 4,6-aminoglycoside sisomicin and that of the doubly modified 1- N-(4-amino-2 S-hydroxybutyryl)-6'- N-(2-hydroxyethyl) derivative known as plazomicin are reported together with their antibacterial and antiribosomal activities and selectivities. The 6'- N-(2-hydroxyethyl) modification results in a moderate increase in prokaryotic/eukaryotic ribosomal selectivity, whereas the 1- N-(4-amino-2 S-hydroxybutyryl) modification has the opposite effect. When combined in plazomicin, the effects of the two groups on ribosomal selectivity cancel each other out, leading to the prediction that plazomicin will exhibit ototoxicity comparable to those of the parent and the current clinical aminoglycoside antibiotics gentamicin and tobramycin, as borne out by ex vivo studies with mouse cochlear explants. The 6'- N-(2-hydroxyethyl) modification restores antibacterial activity in the presence of the AAC(6') aminoglycoside-modifying enzymes, while the 1- N-(4-amino-2 S-hydroxybutyryl) modification overcomes resistance to the AAC(2') class but is still affected to some extent by the AAC(3) class. Neither modification is able to circumvent the ArmA ribosomal methyltransferase-induced aminoglycoside resistance. The use of phenyltriazenyl protection for the secondary amino group of sisomicin facilitates the synthesis of each derivative and their characterization through the provision of sharp NMR spectra for all intermediates.
Collapse
Affiliation(s)
- Amr Sonousi
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Vikram A. Sarpe
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Margarita Brilkova
- Institut für Medizinische Mikrobiologie, Universität Zürich, Gloriastrasse 28/30, 8006 Zürich, Switzerland
| | - Jochen Schacht
- Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan, 1150 West Medical Center Drive, Ann Arbor, Michigan 48109, United States
| | - Andrea Vasella
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland
| | - Erik C. Böttger
- Institut für Medizinische Mikrobiologie, Universität Zürich, Gloriastrasse 28/30, 8006 Zürich, Switzerland
| | - David Crich
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| |
Collapse
|
13
|
Chatgilialoglu C, Ferreri C, Landais Y, Timokhin VI. Thirty Years of (TMS)3SiH: A Milestone in Radical-Based Synthetic Chemistry. Chem Rev 2018; 118:6516-6572. [DOI: 10.1021/acs.chemrev.8b00109] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - Carla Ferreri
- ISOF, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy
| | - Yannick Landais
- University of Bordeaux, Institute of Molecular Sciences, UMR-CNRS 5255, 351 cours de la libération, 33405 Talence Cedex, France
| | - Vitaliy I. Timokhin
- Department of Biochemistry, University of Wisconsin-Madison, 1552 University Avenue, Madison, Wisconsin 53726, United States
| |
Collapse
|
14
|
Fernandes PZ, Petricevic M, Sobala L, Davies GJ, Williams SJ. Exploration of Strategies for Mechanism-Based Inhibitor Design for Family GH99 endo-α-1,2-Mannanases. Chemistry 2018; 24:7464-7473. [PMID: 29508463 PMCID: PMC6001782 DOI: 10.1002/chem.201800435] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Indexed: 11/06/2022]
Abstract
endo-α-1,2-Mannosidases and -mannanases, members of glycoside hydrolase family 99 (GH99), cleave α-Glc/Man-1,3-α-Man-OR structures within mammalian N-linked glycans and fungal α-mannan, respectively. They are proposed to act through a two-step mechanism involving a 1,2-anhydrosugar "epoxide" intermediate incorporating two conserved catalytic carboxylates. In the first step, one carboxylate acts as a general base to deprotonate the 2-hydroxy group adjacent to the fissile glycosidic bond, and the other provides general acid assistance to the departure of the aglycon. We report herein the synthesis of two inhibitors designed to interact with either the general base (α-mannosyl-1,3-(2-aminodeoxymannojirimycin), Man2NH2 DMJ) or the general acid (α-mannosyl-1,3-mannoimidazole, ManManIm). Modest affinities were observed for an endo-α-1,2-mannanase from Bacteroides thetaiotaomicron. Structural studies revealed that Man2NH2 DMJ binds like other iminosugar inhibitors, which suggests that the poor inhibition shown by this compound is not a result of a failure to achieve the expected interaction with the general base, but rather the reduction in basicity of the endocyclic nitrogen caused by introduction of a vicinal, protonated amine at C2. ManManIm binds with the imidazole headgroup distorted downwards, a result of an unfavourable interaction with a conserved active site tyrosine. This study has identified important limitations associated with mechanism-inspired inhibitor design for GH99 enzymes.
Collapse
Affiliation(s)
- Pearl Z. Fernandes
- School of ChemistryBio21 Molecular Science and Biotechnology InstituteUniversity of MelbourneParkvilleVic3010Australia
| | - Marija Petricevic
- School of ChemistryBio21 Molecular Science and Biotechnology InstituteUniversity of MelbourneParkvilleVic3010Australia
| | - Lukasz Sobala
- York Structural Biology LaboratoryDepartment of ChemistryUniversity of YorkHeslingtonYO10 5DDUK
| | - Gideon J. Davies
- York Structural Biology LaboratoryDepartment of ChemistryUniversity of YorkHeslingtonYO10 5DDUK
| | - Spencer J. Williams
- School of ChemistryBio21 Molecular Science and Biotechnology InstituteUniversity of MelbourneParkvilleVic3010Australia
| |
Collapse
|
15
|
Han HS, Oh EH, Jung YS, Han SB. Photoredox-Catalyzed Trifluoromethylative Intramolecular Cyclization: Synthesis of CF3-Containing Heterocyclic Compounds. Org Lett 2018; 20:1698-1702. [DOI: 10.1021/acs.orglett.8b00648] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Hong Sik Han
- Department of Medicinal and Pharmaceutical Chemistry, University of Science and Technology, 217 Gajeongro, Yuseong, Daejeon 34113, Republic of Korea
- Division of Bio and Drug Discovery, Korea Research Institute of Chemical Technology, 141 Gajeongro, Yuseong, Daejeon 34114, Republic of Korea
| | - Eun Hye Oh
- Division of Bio and Drug Discovery, Korea Research Institute of Chemical Technology, 141 Gajeongro, Yuseong, Daejeon 34114, Republic of Korea
- Department of Chemistry, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Young-Sik Jung
- Department of Medicinal and Pharmaceutical Chemistry, University of Science and Technology, 217 Gajeongro, Yuseong, Daejeon 34113, Republic of Korea
- Division of Bio and Drug Discovery, Korea Research Institute of Chemical Technology, 141 Gajeongro, Yuseong, Daejeon 34114, Republic of Korea
| | - Soo Bong Han
- Department of Medicinal and Pharmaceutical Chemistry, University of Science and Technology, 217 Gajeongro, Yuseong, Daejeon 34113, Republic of Korea
- Division of Bio and Drug Discovery, Korea Research Institute of Chemical Technology, 141 Gajeongro, Yuseong, Daejeon 34114, Republic of Korea
| |
Collapse
|
16
|
Mandhapati AR, Yang G, Kato T, Shcherbakov D, Hobbie SN, Vasella A, Böttger EC, Crich D. Structure-Based Design and Synthesis of Apramycin-Paromomycin Analogues: Importance of the Configuration at the 6'-Position and Differences between the 6'-Amino and Hydroxy Series. J Am Chem Soc 2017; 139:14611-14619. [PMID: 28892368 PMCID: PMC5647259 DOI: 10.1021/jacs.7b07754] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The preparation of a series of four analogues of the aminoglycoside antibiotics neomycin and paromomycin is described in which ring I, involved in critical binding interactions with the ribosomal target, is replaced by an apramycin-like dioxabicyclo[4.4.0]octane system. The effect of this modification is to lock the hydroxymethyl side chain of the neomycin or paromomycin ring I, as part of the dioxabicyclooctane ring, into either the gauche-gauche or the gauche-trans conformation (respectively, axial or equatorial to the bicyclic system). The antiribosomal activity of these compounds is investigated with cell-free translation assays using both bacterial ribosomes and recombinant hybrid ribosomes carrying eukaryotic decoding A site cassettes. Compounds substituted with an equatorial hydroxyl or amino group in the newly formed ring are considerably more active than their axial diastereomers, lending strong support to crystallographically derived models of aminoglycoside-ribosome interactions. One such bicyclic compound carrying an equatorial hydroxyl group has activity equal to that of the parent yet displays better ribosomal selectivity, predictive of an enhanced therapeutic index. A paromomycin analog lacking the hydroxymethyl ring I side chain is considerably less active than the parent. Antibacterial activity against model Gram negative and Gram positive bacteria is reported for selected compounds, as is activity against ESKAPE pathogens and recombinant bacteria carrying specific resistance determinants. Analogues with a bicyclic ring I carrying equatorial amino or hydroxyl groups mimicking the bound side chains of neomycin and paromomycin, respectively, show excellent activity and, by virtue of their novel structure, retain this activity in strains that are insensitive to the parent compounds.
Collapse
Affiliation(s)
- Appi Reddy Mandhapati
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| | - Guanyu Yang
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| | - Takayuki Kato
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| | - Dimitri Shcherbakov
- Institute of Medical Microbiology, University of Zurich , 8006 Zurich, Switzerland
| | - Sven N Hobbie
- Institute of Medical Microbiology, University of Zurich , 8006 Zurich, Switzerland
| | - Andrea Vasella
- Organic Chemistry Laboratory, ETH Zurich , 8093 Zurich, Switzerland
| | - Erik C Böttger
- Institute of Medical Microbiology, University of Zurich , 8006 Zurich, Switzerland
| | - David Crich
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| |
Collapse
|
17
|
Lv M, Ji X, Zhao J, Li Y, Zhang C, Su L, Ding W, Deng Z, Yu Y, Zhang Q. Characterization of a C3 Deoxygenation Pathway Reveals a Key Branch Point in Aminoglycoside Biosynthesis. J Am Chem Soc 2016; 138:6427-35. [PMID: 27120352 DOI: 10.1021/jacs.6b02221] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Apramycin is a clinically interesting aminoglycoside antibiotic (AGA) containing a highly unique bicyclic octose moiety, and this octose is deoxygenated at the C3 position. Although the biosynthetic pathways for most 2-deoxystreptamine-containing AGAs have been well characterized, the pathway for apramycin biosynthesis, including the C3 deoxygenation process, has long remained unknown. Here we report detailed investigation of apramycin biosynthesis by a series of genetic, biochemical and bioinformatical studies. We show that AprD4 is a novel radical S-adenosyl-l-methionine (SAM) enzyme, which uses a noncanonical CX3CX3C motif for binding of a [4Fe-4S] cluster and catalyzes the dehydration of paromamine, a pseudodisaccharide intermediate in apramycin biosynthesis. We also show that AprD3 is an NADPH-dependent reductase that catalyzes the reduction of the dehydrated product from AprD4-catalyzed reaction to generate lividamine, a C3' deoxygenated product of paromamine. AprD4 and AprD3 do not form a tight catalytic complex, as shown by protein complex immunoprecipitation and other assays. The AprD4/AprD3 enzyme system acts on different pseudodisaccharide substrates but does not catalyze the deoxygenation of oxyapramycin, an apramycin analogue containing a C3 hydroxyl group on the octose moiety, suggesting that oxyapramycin and apramycin are partitioned into two parallel pathways at an early biosynthetic stage. Functional dissection of the C6 dehydrogenase AprQ shows the crosstalk between different AGA biosynthetic gene clusters from the apramycin producer Streptomyces tenebrarius, and reveals the remarkable catalytic versatility of AprQ. Our study highlights the intriguing chemistry in apramycin biosynthesis and nature's ingenuity in combinatorial biosynthesis of natural products.
Collapse
Affiliation(s)
- Meinan Lv
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University , Wuhan, 430071, China
| | - Xinjian Ji
- Department of Chemistry, Fudan University , Shanghai, 200433, China
| | - Junfeng Zhao
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University , Wuhan, 430071, China.,Department of Chemistry, Fudan University , Shanghai, 200433, China
| | - Yongzhen Li
- Department of Chemistry, Fudan University , Shanghai, 200433, China
| | - Chen Zhang
- Department of Chemistry, Fudan University , Shanghai, 200433, China
| | - Li Su
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University , Wuhan, 430071, China
| | - Wei Ding
- Department of Chemistry, Fudan University , Shanghai, 200433, China
| | - Zixin Deng
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University , Wuhan, 430071, China
| | - Yi Yu
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University , Wuhan, 430071, China
| | - Qi Zhang
- Department of Chemistry, Fudan University , Shanghai, 200433, China
| |
Collapse
|
18
|
Chandrika NT, Garneau-Tsodikova S. A review of patents (2011-2015) towards combating resistance to and toxicity of aminoglycosides. MEDCHEMCOMM 2015; 7:50-68. [PMID: 27019689 PMCID: PMC4806794 DOI: 10.1039/c5md00453e] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Since the discovery of the first aminoglycoside (AG), streptomycin, in 1943, these broad-spectrum antibiotics have been extensively used for the treatment of Gram-negative and Gram-positive bacterial infections. The inherent toxicity (ototoxicity and nephrotoxicity) associated with their long-term use as well as the emergence of resistant bacterial strains have limited their usage. Structural modifications of AGs by AG-modifying enzymes, reduced target affinity caused by ribosomal modification, and decrease in their cellular concentration by efflux pumps have resulted in resistance towards AGs. However, the last decade has seen a renewed interest among the scientific community for AGs as exemplified by the recent influx of scientific articles and patents on their therapeutic use. In this review, we use a non-conventional approach to put forth this renaissance on AG development/application by summarizing all patents filed on AGs from 2011-2015 and highlighting some related publications on the most recent work done on AGs to overcome resistance and improving their therapeutic use while reducing ototoxicity and nephrotoxicity. We also present work towards developing amphiphilic AGs for use as fungicides as well as that towards repurposing existing AGs for potential newer applications.
Collapse
Affiliation(s)
- Nishad Thamban Chandrika
- University of Kentucky, Department of Pharmaceutical Sciences, 789 South Limestone Street, Lexington, KY, USA. Fax: 859-257-7585; Tel: 859-218-1686
| | - Sylvie Garneau-Tsodikova
- University of Kentucky, Department of Pharmaceutical Sciences, 789 South Limestone Street, Lexington, KY, USA. Fax: 859-257-7585; Tel: 859-218-1686
| |
Collapse
|
19
|
Kato T, Yang G, Teo Y, Juskeviciene R, Perez-Fernandez D, Shinde HM, Salian S, Bernet B, Vasella A, Böttger EC, Crich D. Synthesis and Antiribosomal Activities of 4'-O-, 6'-O-, 4″-O-, 4',6'-O- and 4″,6″-O-Derivatives in the Kanamycin Series Indicate Differing Target Selectivity Patterns between the 4,5- and 4,6-Series of Disubstituted 2-Deoxystreptamine Aminoglycoside Antibiotics. ACS Infect Dis 2015; 1:479-86. [PMID: 27623314 DOI: 10.1021/acsinfecdis.5b00069] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Chemistry for the efficient modification of the kanamycin class of 4,6-aminoglycosides at the 4'-position is presented. In all kanamycins but kanamycin B, 4'-O-alkylation is strongly detrimental to antiribosomal and antibacterial activity. Ethylation of kanamycin B at the 4″-position entails little loss of antiribosomal and antibacterial activity, but no increase of ribosomal selectivity. These results are contrasted with those for the 4,5-aminoglycosides, where 4'-O-alkylation of paromomycin causes only a minimal loss of activity but results in a significant increase in selectivity with a concomitant loss of ototoxicity.
Collapse
Affiliation(s)
- Takayuki Kato
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Guanyu Yang
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Youjin Teo
- Institut für Medizinische Mikrobiologie, Universität Zürich, 8006 Zürich, Switzerland
| | - Reda Juskeviciene
- Institut für Medizinische Mikrobiologie, Universität Zürich, 8006 Zürich, Switzerland
| | | | - Harish M. Shinde
- Laboratorium für Organische Chemie, ETH Zürich, 8093 Zürich, Switzerland
| | - Sumanth Salian
- Laboratorium für Organische Chemie, ETH Zürich, 8093 Zürich, Switzerland
| | - Bruno Bernet
- Laboratorium für Organische Chemie, ETH Zürich, 8093 Zürich, Switzerland
| | - Andrea Vasella
- Laboratorium für Organische Chemie, ETH Zürich, 8093 Zürich, Switzerland
| | - Erik C. Böttger
- Institut für Medizinische Mikrobiologie, Universität Zürich, 8006 Zürich, Switzerland
| | - David Crich
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
20
|
Sonousi A, Crich D. Selective Protection of Secondary Amines as the N-Phenyltriazenes. Application to Aminoglycoside Antibiotics. Org Lett 2015; 17:4006-9. [PMID: 26294060 DOI: 10.1021/acs.orglett.5b01902] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Selective protection of secondary amines as triazenes in the presence of multiple primary amines is demonstrated, with subsequent protection of the primary amines as either azides or carbamates in the same pot. Aminoglycoside antibiotic examples reveal broad functional group compatibility. The triazene group is removed with trifluoroacetic acid and, because of the low barrier to rotation, affords sharp (1)H NMR spectra at room temperature.
Collapse
Affiliation(s)
- Amr Sonousi
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - David Crich
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| |
Collapse
|
21
|
Matsushita T, Chen W, Juskeviciene R, Teo Y, Shcherbakov D, Vasella A, Böttger EC, Crich D. Influence of 4'-O-Glycoside Constitution and Configuration on Ribosomal Selectivity of Paromomycin. J Am Chem Soc 2015; 137:7706-17. [PMID: 26024064 DOI: 10.1021/jacs.5b02248] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A series of 20 4'-O-glycosides of the aminoglycoside antibiotic paromomycin were synthesized and evaluated for their ability to inhibit protein synthesis by bacterial, mitochondrial and cytosolic ribosomes. Target selectivity, i.e., inhibition of the bacterial ribosome over eukaryotic mitochondrial and cytosolic ribosomes, which is predictive of antibacterial activity with reduced ototoxicity and systemic toxicity, was greater for the equatorial than for the axial pyranosides, and greater for the d-pentopyranosides than for the l-pentopyranosides and d-hexopyranosides. In particular, 4'-O-β-d-xylopyranosyl paromomycin shows antibacterioribosomal activity comparable to that of paromomycin, but is significantly more selective showing considerably reduced affinity for the cytosolic ribosome and for the A1555G mutant mitochondrial ribosome associated with hypersusceptibility to drug-induced ototoxicity. Compound antibacterioribosomal activity correlates with antibacterial activity, and the ribosomally more active compounds show activity against Escherichia coli, Klebsiella pneumonia, Enterobacter cloacae, Acinetobacter baumannii, and methicillin-resistant Staphylococcus aureus (MRSA). The paromomycin glycosides retain activity against clinical strains of MRSA that are resistant to paromomycin, which is demonstrated to be a consequence of 4'-O-glycosylation blocking the action of 4'-aminoglycoside nucleotidyl transferases by the use of recombinant E. coli carrying the specific resistance determinant.
Collapse
Affiliation(s)
- Takahiko Matsushita
- †Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Weiwei Chen
- †Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Reda Juskeviciene
- ‡Institut für Medizinische Mikrobiologie, Universität Zürich, 8006 Zürich, Switzerland
| | - Youjin Teo
- ‡Institut für Medizinische Mikrobiologie, Universität Zürich, 8006 Zürich, Switzerland
| | - Dimitri Shcherbakov
- ‡Institut für Medizinische Mikrobiologie, Universität Zürich, 8006 Zürich, Switzerland
| | - Andrea Vasella
- §Laboratorium für Organische Chemie, ETH Zürich, 8093 Zürich, Switzerland
| | - Erik C Böttger
- ‡Institut für Medizinische Mikrobiologie, Universität Zürich, 8006 Zürich, Switzerland
| | - David Crich
- †Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
22
|
Mandhapati AR, Kato T, Matsushita T, Ksebati B, Vasella A, Böttger EC, Crich D. Fluorine-decoupled carbon spectroscopy for the determination of configuration at fully substituted, trifluoromethyl- and perfluoroalkyl-bearing carbons: comparison with 19F-1H heteronuclear Overhauser effect spectroscopy. J Org Chem 2015; 80:1754-63. [PMID: 25561269 PMCID: PMC4320651 DOI: 10.1021/jo502677a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Indexed: 01/17/2023]
Abstract
The synthesis of a series of α-trifluoromethylcyclohexanols and analogous trimethylsilyl ethers by addition of the Ruppert-Prakash reagent to substituted cyclohexanones is presented. A method for the assignment of configuration of such compounds, of related α-trifluoromethylcyclohexylamines and of quaternary trifluoromethyl-substituted carbons is described based on the determination of the (3)J(CH) coupling constant between the fluorine-decoupled (13)CF3 resonance and the vicinal hydrogens. This method is dubbed fluorine-decoupled carbon spectroscopy and abbreviated FDCS. The method is also applied to the configurational assignment of substances bearing mono-, di-, and perfluoroalkyl rather than trifluoromethyl groups. The configuration of all substances was verified by either (19)F-(1)H heteronuclear Overhauser spectroscopy (HOESY) or X-ray crystallography. The relative merits of FDCS and HOESY are compared and contrasted. (2)J(CH), (3)J(CH), and (4)J(CH) coupling constants to (19)F decoupled CF3 groups in alkenes and arenes have also been determined and should prove to be useful in the structural assignment of trifluoromethylated alkenes and arenes.
Collapse
Affiliation(s)
- Appi Reddy Mandhapati
- Department
of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Takayuki Kato
- Department
of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Takahiko Matsushita
- Department
of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Bashar Ksebati
- Department
of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Andrea Vasella
- Laboratorium
für Organische Chemie, ETH Zürich, 8093 Zürich, Switzerland
| | - Erik C. Böttger
- Institut
für Medizinische Mikrobiologie, Universität
Zürich, 8006 Zürich, Switzerland
| | - David Crich
- Department
of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|