1
|
Mou Y, Wen S, Wang Y, Zhao Y, Li YP, Sha HK, Gui LJ, Jiang ZY, Xu XM. Discovery of Novel Tofacitinib-ADTOH Molecular Hybridization Derivatives for the Treatment of Ulcerative Colitis. Antioxidants (Basel) 2025; 14:325. [PMID: 40227328 PMCID: PMC11939234 DOI: 10.3390/antiox14030325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 02/28/2025] [Accepted: 03/03/2025] [Indexed: 04/15/2025] Open
Abstract
The treatment of ulcerative colitis (UC) has been a major medical challenge due to the lack of safe and effective drugs. Molecular hybridization is a promising strategy for the development of drugs with pleiotropic activity, which has been demonstrated in a wide range of diseases. Tofacitinib has exhibited significant effects on the remission of UC, but a series of adverse effects have occurred during its clinical application. Herein, we propose to utilize a molecular hybridization strategy to link tofacitinib with a cytoprotective H2S donor (ADTOH) to obtain a series of hybridized molecules ZX-4C~ZX-6C. Among them, ZX-4C exhibited the best performance in the H2S release rate and the cytoprotective effects against dextran sulfate sodium (DSS)-induced injury. The in vivo studies showed that ZX-4C could effectively alleviate DSS-induced colitis by enhancing oxidative stress defense and reducing the inflammatory response, demonstrating that it is more potent than the parent drugs. The data from the present study support that this molecular hybridization strategy provides a promising avenue for the treatment of UC.
Collapse
Affiliation(s)
- Yi Mou
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou 225300, China; (Y.M.); (S.W.); (Y.W.); (Y.Z.); (Y.-P.L.); (H.-K.S.); (L.-J.G.)
| | - Shuai Wen
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou 225300, China; (Y.M.); (S.W.); (Y.W.); (Y.Z.); (Y.-P.L.); (H.-K.S.); (L.-J.G.)
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| | - Yan Wang
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou 225300, China; (Y.M.); (S.W.); (Y.W.); (Y.Z.); (Y.-P.L.); (H.-K.S.); (L.-J.G.)
| | - Yao Zhao
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou 225300, China; (Y.M.); (S.W.); (Y.W.); (Y.Z.); (Y.-P.L.); (H.-K.S.); (L.-J.G.)
| | - Ying-Ping Li
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou 225300, China; (Y.M.); (S.W.); (Y.W.); (Y.Z.); (Y.-P.L.); (H.-K.S.); (L.-J.G.)
| | - Hong-Kai Sha
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou 225300, China; (Y.M.); (S.W.); (Y.W.); (Y.Z.); (Y.-P.L.); (H.-K.S.); (L.-J.G.)
| | - Li-Juan Gui
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou 225300, China; (Y.M.); (S.W.); (Y.W.); (Y.Z.); (Y.-P.L.); (H.-K.S.); (L.-J.G.)
| | - Zheng-Yu Jiang
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| | - Xiang-Ming Xu
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou 225300, China; (Y.M.); (S.W.); (Y.W.); (Y.Z.); (Y.-P.L.); (H.-K.S.); (L.-J.G.)
| |
Collapse
|
2
|
Kosar M, Mach L, Carreira EM, Nazaré M, Pacher P, Grether U. Patent review of cannabinoid receptor type 2 (CB 2R) modulators (2016-present). Expert Opin Ther Pat 2024; 34:665-700. [PMID: 38886185 DOI: 10.1080/13543776.2024.2368745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024]
Abstract
INTRODUCTION Cannabinoid receptor type 2 (CB2R), predominantly expressed in immune tissues, is believed to play a crucial role within the body's protective mechanisms. Its modulation holds immense therapeutic promise for addressing a wide spectrum of dysbiotic conditions, including cardiovascular, gastrointestinal, liver, kidney, neurodegenerative, psychiatric, bone, skin, and autoimmune diseases, as well as lung disorders, cancer, and pain management. AREAS COVERED This review is an account of patents from 2016 up to 2023 which describes novel CB2R ligands, therapeutic applications, synthesis, as well as formulations of CB2R modulators. EXPERT OPINION The patents cover a vast, structurally diverse chemical space. The focus of CB2R ligand development has shifted from unselective dual-cannabinoid receptor type 1 (CB1R) and 2 agonists toward agonists with high selectivity over CB1R, particularly for indications associated with inflammation and tissue injury. Currently, there are at least eight CB2R agonists and one antagonist in active clinical development. A better understanding of the endocannabinoid system (ECS) and in particular of CB2R pharmacology is required to unlock the receptor's full therapeutic potential.
Collapse
Affiliation(s)
- Miroslav Kosar
- Laboratorium für Organische Chemie, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
| | - Leonard Mach
- Medicinal Chemistry, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Berlin, Berlin, Germany
| | - Erick M Carreira
- Laboratorium für Organische Chemie, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
| | - Marc Nazaré
- Medicinal Chemistry, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Berlin, Berlin, Germany
| | - Pal Pacher
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, USA
| | - Uwe Grether
- Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| |
Collapse
|
3
|
Subbaiah MAM, Rautio J, Meanwell NA. Prodrugs as empowering tools in drug discovery and development: recent strategic applications of drug delivery solutions to mitigate challenges associated with lead compounds and drug candidates. Chem Soc Rev 2024; 53:2099-2210. [PMID: 38226865 DOI: 10.1039/d2cs00957a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
The delivery of a drug to a specific organ or tissue at an efficacious concentration is the pharmacokinetic (PK) hallmark of promoting effective pharmacological action at a target site with an acceptable safety profile. Sub-optimal pharmaceutical or ADME profiles of drug candidates, which can often be a function of inherently poor physicochemical properties, pose significant challenges to drug discovery and development teams and may contribute to high compound attrition rates. Medicinal chemists have exploited prodrugs as an informed strategy to productively enhance the profiles of new chemical entities by optimizing the physicochemical, biopharmaceutical, and pharmacokinetic properties as well as selectively delivering a molecule to the site of action as a means of addressing a range of limitations. While discovery scientists have traditionally employed prodrugs to improve solubility and membrane permeability, the growing sophistication of prodrug technologies has enabled a significant expansion of their scope and applications as an empowering tool to mitigate a broad range of drug delivery challenges. Prodrugs have emerged as successful solutions to resolve non-linear exposure, inadequate exposure to support toxicological studies, pH-dependent absorption, high pill burden, formulation challenges, lack of feasibility of developing solid and liquid dosage forms, first-pass metabolism, high dosing frequency translating to reduced patient compliance and poor site-specific drug delivery. During the period 2012-2022, the US Food and Drug Administration (FDA) approved 50 prodrugs, which amounts to 13% of approved small molecule drugs, reflecting both the importance and success of implementing prodrug approaches in the pursuit of developing safe and effective drugs to address unmet medical needs.
Collapse
Affiliation(s)
- Murugaiah A M Subbaiah
- Department of Medicinal Chemistry, Biocon Bristol Myers Squibb R&D Centre, Biocon Park, Bommasandra Phase IV, Bangalore, PIN 560099, India.
| | - Jarkko Rautio
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Nicholas A Meanwell
- The Baruch S. Blumberg Institute, Doylestown, PA 18902, USA
- Department of Medicinal Chemistry, The College of Pharmacy, The University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
4
|
Jain P, Thota A, Saini PK, Raghuvanshi RS. Comprehensive Review on Different Analytical Techniques for HIV 1- Integrase Inhibitors: Raltegravir, Dolutegravir, Elvitegravir and Bictegravir. Crit Rev Anal Chem 2022; 54:401-415. [PMID: 35617468 DOI: 10.1080/10408347.2022.2080493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The advent of HIV-Integrase inhibitors (IN) has marked a significant impact on the lives of HIV patients. Since the launch of the first anti retro-viral drug "Azidothymidine" to the recent advances of IN inhibitors, about 27.4 million people benefit by antiretroviral therapy (ART). The path had been challenging due to many crossroads, leading to the discovery of newer targets. One such recent ART target is Integrase. Use of Integrase inhibitors has surpassed the usage of all other ART owing to a strong barrier to resistance and have been reported to be the first-line therapy. Raltegravir, Elvitegravir, Dolutegravir and Bictegravir are US FDA approved IN inhibitors. The high usage of ART created an opportunity to study various analytical techniques for IN inhibitors. Hitherto, no review encompassing all IN inhibitors is presented. Herein, this review describes the analytical techniques employed for IN inhibitors estimation and quantification reported in the literature and official compendia. Literature suggests that most studies focus on LC-MS/MS and HPLC methods for drug estimation, and few reports suggest spectrophotometric, spectrofluorimetric and electrochemical methods. Furthermore, the review presents the techniques that describe the quantification of integrase drugs in various matrices. Although, antiretroviral drugs are extensively used but data suggests that limited studies have been conducted for determination of impurity profile and stability. This therefore, presents a scope to detect and validate impurities in order to meet ICH guidelines for their limits and further to improve the quality and safety of antiretroviral drugs.
Collapse
Affiliation(s)
- Priti Jain
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Anusha Thota
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Pawan K Saini
- Indian Pharmacopoeia Commission, Ministry of Health and Family Welfare, Ghaziabad, UP, India
| | | |
Collapse
|
5
|
Ferhati X, Jiménez-Moreno E, Hoyt EA, Salluce G, Cabeza-Cabrerizo M, Navo CD, Compañón I, Akkapeddi P, Matos MJ, Salaverri N, Garrido P, Martínez A, Laserna V, Murray TV, Jiménez-Osés G, Ravn P, Bernardes GJL, Corzana F. Single Mutation on Trastuzumab Modulates the Stability of Antibody-Drug Conjugates Built Using Acetal-Based Linkers and Thiol-Maleimide Chemistry. J Am Chem Soc 2022; 144:5284-5294. [PMID: 35293206 PMCID: PMC8972253 DOI: 10.1021/jacs.1c07675] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Antibody-drug conjugates (ADCs) are a class of targeted therapeutics used to selectively kill cancer cells. It is important that they remain intact in the bloodstream and release their payload in the target cancer cell for maximum efficacy and minimum toxicity. The development of effective ADCs requires the study of factors that can alter the stability of these therapeutics at the atomic level. Here, we present a general strategy that combines synthesis, bioconjugation, linker technology, site-directed mutagenesis, and modeling to investigate the influence of the site and microenvironment of the trastuzumab antibody on the stability of the conjugation and linkers. Trastuzumab is widely used to produce targeted ADCs because it can target with high specificity a receptor that is overexpressed in certain breast cancer cells (HER2). We show that the chemical environment of the conjugation site of trastuzumab plays a key role in the stability of linkers featuring acid-sensitive groups such as acetals. More specifically, Lys-207, located near the reactive Cys-205 of a thiomab variant of the antibody, may act as an acid catalyst and promote the hydrolysis of acetals. Mutation of Lys-207 into an alanine or using a longer linker that separates this residue from the acetal group stabilizes the conjugates. Analogously, Lys-207 promotes the beneficial hydrolysis of the succinimide ring when maleimide reagents are used for conjugation, thus stabilizing the subsequent ADCs by impairing the undesired retro-Michael reactions. This work provides new insights for the design of novel ADCs with improved stability properties.
Collapse
Affiliation(s)
- Xhenti Ferhati
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, Spain
| | - Ester Jiménez-Moreno
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, Spain
| | - Emily A Hoyt
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, U.K
| | - Giulia Salluce
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, U.K
| | - Mar Cabeza-Cabrerizo
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, U.K
| | - Claudio D Navo
- Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160 Derio, Spain
| | - Ismael Compañón
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, Spain
| | - Padma Akkapeddi
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Maria J Matos
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, U.K
| | - Noelia Salaverri
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, Spain
| | - Pablo Garrido
- Angiogenesis Group, Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain
| | - Alfredo Martínez
- Angiogenesis Group, Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain
| | - Víctor Laserna
- Biologics Engineering, R&D, Astra Zeneca, CB21 6GH Cambridge, U.K
| | - Thomas V Murray
- Biologics Engineering, R&D, Astra Zeneca, CB21 6GH Cambridge, U.K
| | - Gonzalo Jiménez-Osés
- Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160 Derio, Spain.,Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Peter Ravn
- Biologics Engineering, R&D, Astra Zeneca, CB21 6GH Cambridge, U.K
| | - Gonçalo J L Bernardes
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, U.K.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Francisco Corzana
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, Spain
| |
Collapse
|
6
|
Xue Y, Bai H, Peng B, Fang B, Baell J, Li L, Huang W, Voelcker NH. Stimulus-cleavable chemistry in the field of controlled drug delivery. Chem Soc Rev 2021; 50:4872-4931. [PMID: 33734247 DOI: 10.1039/d0cs01061h] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Stimulus-cleavable nanoscale drug delivery systems are receiving significant attention owing to their capability of achieving exquisite control over drug release via the exposure to specific stimuli. Central to the construction of such systems is the integration of cleavable linkers showing susceptibility to one stimulus or several stimuli with drugs, prodrugs or fluorogenic probes on the one hand, and nanocarriers on the other hand. This review summarises recent advances in stimulus-cleavable linkers from various research areas and the corresponding mechanisms of linker cleavage and biological applications. The feasibility of extending their applications to the majority of nanoscale drug carriers including nanomaterials, polymers and antibodies are further highlighted and discussed. This review also provides general design guidelines to incorporate stimulus-cleavable linkers into nanocarrier-based drug delivery systems, which will hopefully spark new ideas and applications.
Collapse
Affiliation(s)
- Yufei Xue
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China. and Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria 3168, Australia and Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.
| | - Hua Bai
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| | - Bo Peng
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China. and Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria 3168, Australia
| | - Bin Fang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| | - Jonathan Baell
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria 3168, Australia
| | - Lin Li
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China. and Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Nicolas Hans Voelcker
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China. and Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria 3168, Australia and Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia. and Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia and Department of Materials Science & Engineering, Monash University, Clayton, Victoria 3168, Australia
| |
Collapse
|
7
|
Komasaka T, Dressman J. Simulation of oral absorption from non-bioequivalent dosage forms of the salt of raltegravir, a poorly soluble acidic drug, using a physiologically based biopharmaceutical modeling (PBBM) approach. Eur J Pharm Sci 2020; 157:105630. [PMID: 33122010 DOI: 10.1016/j.ejps.2020.105630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/13/2020] [Accepted: 10/23/2020] [Indexed: 11/24/2022]
Abstract
Non-bioequivalent plasma concentration profiles among different dosage forms of the salt of raltegravir, a poorly soluble acidic drug, were investigated using biorelevant in vitro testing combined with the commercial in silico software, Simcyp®. A suspension and a tablet dosage forms of raltegravir potassium were selected as the test formulations. While dissolution from the suspension was rapid, dissolution from the tablets was slow and delayed by pre-exposure to an acidic environment. Although the tablet was expected to have complex in vivo performance, plasma concentration profiles were successfully simulated when gastric emptying was taken into account as a key physiological factor in in vitro and in silico trials. The effect of pre-exposure to acid in the stomach on dissolution behavior in the intestine was estimated by two-stage in vitro dissolution testing. Based on these results, theoretical in vivo dissolution profiles for different gastric emptying times were inputted into the in silico model and plasma concentration profiles were simulated taking the distribution of individual gastric emptying times into account. The in vitro and in silico method presented in this report would be a practical approach to simulate oral absorption from various formulations of poorly soluble weak acids and their salts.
Collapse
Affiliation(s)
- Takao Komasaka
- Pharmaceutical Research Department, Mitsubishi Tanabe Pharma Corporation, 3-16-89, Kashima, Yodogawa-ku, Osaka 532-8505, Japan.
| | - Jennifer Dressman
- Fraunhofer Institute of Molecular Biology and Applied Ecology (IME), Division of Translational Pharmacology and Medicine (TMP), and Goethe University, Max-von-Laue Straße 9, D-60438 Frankfurt am Main, Germany
| |
Collapse
|
8
|
Sen S, Perrin MW, Sedgwick AC, Dunsky EY, Lynch VM, He XP, Sessler JL, Arambula JF. Toward multifunctional anticancer therapeutics: post-synthetic carbonate functionalisation of asymmetric Au(i) bis-N-heterocyclic carbenes. Chem Commun (Camb) 2020; 56:7877-7880. [PMID: 32520019 PMCID: PMC7368814 DOI: 10.1039/d0cc03339a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A post-synthetic strategy is reported that allows for functionalisation of Au(i)-bis NHCs via carbonate formation. The scope of this methodology was explored using both aromatic and aliphatic alcohols. As a demonstration of potential utility, the fluorescent Au(i)-bis NHC conjugate 5 was prepared; it was found to have enhanced stability when formulated with bovine serum albumin, localise within the mitochondria of A549 cells and do so without compromising the high cytotoxicity seen for the parent Au(i)-bis NHC system.
Collapse
Affiliation(s)
- Sajal Sen
- Department of Chemistry, University of Texas at Austin, 105 E 24th street A5300, Austin, TX 78712-1224, USA.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Creighton RL, Suydam IT, Ebner ME, Afunugo WE, Bever AM, Cao S, Jiang Y, Woodrow KA. Sustained Intracellular Raltegravir Depots Generated with Prodrugs Designed for Nanoparticle Delivery. ACS Biomater Sci Eng 2019; 5:4013-4022. [PMID: 33117884 DOI: 10.1021/acsbiomaterials.9b00658] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Polymeric nanocarriers have been extensively used to improve the delivery of hydrophobic drugs, but often provide low encapsulation efficiency and percent loading for hydrophilic compounds. In particular, insufficient loading of hydrophilic antiretroviral drugs such as the integrase inhibitor raltegravir (RAL) has limited the development of sustained-release therapeutics or prevention strategies against HIV. To address this, we developed a generalizable prodrug strategy using RAL as a model where loading, release and subsequent hydrolysis can be tuned by promoiety selection. Prodrugs with large partition coefficients increased the encapsulation efficiency up to 25-fold relative to RAL, leading to significant dose reductions in antiviral activity assays. The differential hydrolysis rates of these prodrugs led to distinct patterns of RAL availability and observed antiviral activity. We also developed a method to monitor the temporal distribution of both prodrug and RAL in cells treated with free prodrug or prodrug-NPs. Results of these studies indicated that prodrug-NPs create an intracellular drug reservoir capable of sustained intracellular drug release. Overall, our results suggest that the design of prodrugs for specific polymeric nanocarrier systems could provide a more generalized strategy to formulate physicochemically diverse hydrophilic drugs with a number of biomedical applications.
Collapse
Affiliation(s)
- Rachel L Creighton
- Department of Bioengineering, University of Washington, 3720 15th Ave NE, Seattle, Washington 98195-5061, United States
| | - Ian T Suydam
- Department of Bioengineering, University of Washington, 3720 15th Ave NE, Seattle, Washington 98195-5061, United States.,Department of Chemistry, Seattle University, 901 12th Ave, Seattle, Washington 98122, United States
| | - Mikaela E Ebner
- Department of Chemistry, Seattle University, 901 12th Ave, Seattle, Washington 98122, United States
| | - Wilma E Afunugo
- Department of Chemistry, Seattle University, 901 12th Ave, Seattle, Washington 98122, United States
| | - Alaina M Bever
- Department of Chemistry, Seattle University, 901 12th Ave, Seattle, Washington 98122, United States
| | - Shijie Cao
- Department of Bioengineering, University of Washington, 3720 15th Ave NE, Seattle, Washington 98195-5061, United States
| | - Yonghou Jiang
- Department of Bioengineering, University of Washington, 3720 15th Ave NE, Seattle, Washington 98195-5061, United States
| | - Kim A Woodrow
- Department of Bioengineering, University of Washington, 3720 15th Ave NE, Seattle, Washington 98195-5061, United States
| |
Collapse
|
10
|
Verma G, Khan MF, Akhtar W, Alam MM, Akhter M, Shaquiquzzaman M. A Review Exploring Therapeutic Worth of 1,3,4-Oxadiazole Tailored Compounds. Mini Rev Med Chem 2019; 19:477-509. [PMID: 30324877 DOI: 10.2174/1389557518666181015152433] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 12/27/2017] [Accepted: 09/30/2018] [Indexed: 02/01/2023]
Abstract
1,3,4-Oxadiazole, a five-membered aromatic ring can be seen in a number of synthetic molecules. The peculiar structural feature of 1,3,4-oxadiazole ring with pyridine type of nitrogen atom is beneficial for 1,3,4-oxadiazole derivatives to have effective binding with different enzymes and receptors in biological systems through numerous weak interactions, thereby eliciting an array of bioactivities. Research in the area of development of 1,3,4-oxadiazole-based derivatives has become an interesting topic for the scientists. A number of 1,3,4-oxadiazole based compounds with high therapeutic potency are being extensively used for the treatment of different ailments, contributing to enormous development value. This work provides a systematic and comprehensive review highlighting current developments of 1,3,4-oxadiazole based compounds in the entire range of medicinal chemistry such as anticancer, antifungal, antibacterial, antitubercular, anti-inflammatory, antineuropathic, antihypertensive, antihistaminic, antiparasitic, antiobesity, antiviral, and other medicinal agents. It is believed that this review will be of great help for new thoughts in the pursuit for rational designs for the development of more active and less toxic 1,3,4-oxadiazole based medicinal agents.
Collapse
Affiliation(s)
- Garima Verma
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Mohemmed F Khan
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Wasim Akhtar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Mohammad Mumtaz Alam
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Mymoona Akhter
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Mohammad Shaquiquzzaman
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| |
Collapse
|
11
|
Huang B, Liu X, Tian Y, Kang D, Zhou Z, Daelemans D, De Clercq E, Pannecouque C, Zhan P, Liu X. First discovery of a potential carbonate prodrug of NNRTI drug candidate RDEA427 with submicromolar inhibitory activity against HIV-1 K103N/Y181C double mutant strain. Bioorg Med Chem Lett 2018. [DOI: 10.1016/j.bmcl.2018.03.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
12
|
Zuo X, Huo Z, Kang D, Wu G, Zhou Z, Liu X, Zhan P. Current insights into anti-HIV drug discovery and development: a review of recent patent literature (2014-2017). Expert Opin Ther Pat 2018; 28:299-316. [PMID: 29411697 DOI: 10.1080/13543776.2018.1438410] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION To deal with the rapid emergence of drug resistance challenges, together with the difficulty to eradicate the virus, off-target effects and significant cumulative drug toxicities, it is still imperative to develop next-generation anti-HIV agents with novel chemical classes or new mechanisms of action. AREAS COVERED We primarily focused on current strategies to discover novel anti-HIV agents. Moreover, examples of anti-HIV lead compounds were mainly selected from recently patented publications (reported between 2014 and 2017). In particular, 'privileged structure'-focused substituents decorating approach, scaffold hopping, natural-product diversification and prodrug are focused on. Furthermore, exploitation of new compounds with unexplored mechanisms of action and medicinal chemistry strategies to deplete the HIV reservoir were also described. Perspectives that could inspire future anti-HIV drug discovery are delineated. EXPERT OPINION Even if a large number of patents have been disclosed recently, additional HIV inhibitors are still required, especially novel chemical skeletons displaying a unexploited mechanism of action. Current medicinal chemistry strategies are inadequate, and appropriate and new methodologies and technologies should be exploited to identify novel anti-HIV drug candidates in a time- and cost- effective manner.
Collapse
Affiliation(s)
- Xiaofang Zuo
- a Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Ji'nan , PR China
| | - Zhipeng Huo
- a Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Ji'nan , PR China
| | - Dongwei Kang
- a Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Ji'nan , PR China
| | - Gaochan Wu
- a Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Ji'nan , PR China
| | - Zhongxia Zhou
- a Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Ji'nan , PR China
| | - Xinyong Liu
- a Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Ji'nan , PR China
| | - Peng Zhan
- a Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Ji'nan , PR China
| |
Collapse
|
13
|
Cheng X, Gao P, Sun L, Tian Y, Zhan P, Liu X. Identification of spirocyclic or phosphate substituted quinolizine derivatives as novel HIV-1 integrase inhibitors: a patent evaluation of WO2016094197A1, WO2016094198A1 and WO2016154527A1. Expert Opin Ther Pat 2017; 27:1277-1286. [PMID: 28749251 DOI: 10.1080/13543776.2017.1360283] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Highly active antiretroviral therapy (HAART) has been widely adopted to control the HIV-1 infection successfully. HIV-1 integrase (IN) inhibitors are primary drugs in HAART regimens targeting integration step in the HIV-1 life cycle. However, due to the emergence of viral resistance and cross-resistance amongst drugs, there is a pressing need for new and potent IN inhibitors. This review covers the three patents describing spirocyclic and phosphate substituted quinolizine derivatives as novel HIV-1 IN inhibitors for the discovery of new anti-HIV-1 drug candidates. Areas covered: This review is focused on spirocyclic and phosphate substituted quinolizine derivatives bearing the same metal chelation scaffold as novel HIV-1 IN inhibitors. Expert opinion: Generally, privileged structure-based optimizations have emerged as an effective approach to discover newly antiviral agents. More generally, due to the similar Mg2+ catalytic active centers of endoribonucleases, some divalent metal ion chelators were found to be versatile binders targeting multiple metalloenzymes. Therefore, privileged structure-based scaffold re-evolution is an important tactic to identify new chemotypes, to explore unknown biological activities, or to provide effective ligands for multiple targets by modifying the existing active compounds.
Collapse
Affiliation(s)
- Xiqiang Cheng
- a Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Jinan , Shandong , P. R. China
| | - Ping Gao
- a Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Jinan , Shandong , P. R. China
| | - Lin Sun
- a Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Jinan , Shandong , P. R. China
| | - Ye Tian
- a Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Jinan , Shandong , P. R. China
| | - Peng Zhan
- a Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Jinan , Shandong , P. R. China
| | - Xinyong Liu
- a Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Jinan , Shandong , P. R. China
| |
Collapse
|
14
|
Krishna R, Rizk ML, Larson P, Schulz V, Kesisoglou F, Pop R. Single- and Multiple-Dose Pharmacokinetics of Once-Daily Formulations of Raltegravir. Clin Pharmacol Drug Dev 2017; 7:196-206. [DOI: 10.1002/cpdd.358] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/07/2017] [Indexed: 01/04/2023]
Affiliation(s)
- Rajesh Krishna
- Merck Research Laboratories; Merck & Co., Inc.; Kenilworth NJ USA
| | - Matthew L. Rizk
- Merck Research Laboratories; Merck & Co., Inc.; Kenilworth NJ USA
| | - Patrick Larson
- Merck Research Laboratories; Merck & Co., Inc.; Kenilworth NJ USA
| | - Valerie Schulz
- Merck Research Laboratories; Merck & Co., Inc.; Kenilworth NJ USA
| | | | - Radu Pop
- Pharma Medica Research; Inc.; Toronto Ontario Canada
| |
Collapse
|
15
|
Krishna R, Rizk ML, Larson PJ, Schulz V, Friedman E, Gupta P, Kesisoglou F, Connor A, McDermott J, Smith R, Evans P. Novel Gastroretentive Controlled Release Formulations for Once-Daily Administration: Assessment of Clinical Feasibility and Formulation Concept for Raltegravir. Ther Innov Regul Sci 2016; 50:777-790. [DOI: 10.1177/2168479016657130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
16
|
Zhan P, Pannecouque C, De Clercq E, Liu X. Anti-HIV Drug Discovery and Development: Current Innovations and Future Trends. J Med Chem 2015; 59:2849-78. [PMID: 26509831 DOI: 10.1021/acs.jmedchem.5b00497] [Citation(s) in RCA: 240] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The early effectiveness of combinatorial antiretroviral therapy (cART) in the treatment of HIV infection has been compromised to some extent by rapid development of multidrug-resistant HIV strains, poor bioavailability, and cumulative toxicities, and so there is a need for alternative strategies of antiretroviral drug discovery and additional therapeutic agents with novel action modes or targets. From this perspective, we first review current strategies of antiretroviral drug discovery and optimization, with the aid of selected examples from the recent literature. We highlight the development of phosphate ester-based prodrugs as a means to improve the aqueous solubility of HIV inhibitors, and the introduction of the substrate envelope hypothesis as a new approach for overcoming HIV drug resistance. Finally, we discuss future directions for research, including opportunities for exploitation of novel antiretroviral targets, and the strategy of activation of latent HIV reservoirs as a means to eradicate the virus.
Collapse
Affiliation(s)
- Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44, West Culture Road, 250012, Jinan, Shandong, P. R. China
| | - Christophe Pannecouque
- Rega Institute for Medical Research, Katholieke Universiteit Leuven , Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Erik De Clercq
- Rega Institute for Medical Research, Katholieke Universiteit Leuven , Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44, West Culture Road, 250012, Jinan, Shandong, P. R. China
| |
Collapse
|
17
|
Raheem IT, Walji AM, Klein D, Sanders JM, Powell DA, Abeywickrema P, Barbe G, Bennet A, Childers K, Christensen M, Clas SD, Dubost D, Embrey M, Grobler J, Hafey MJ, Hartingh TJ, Hazuda DJ, Kuethe JT, McCabe Dunn J, Miller MD, Moore KP, Nolting A, Pajkovic N, Patel S, Peng Z, Rada V, Rearden P, Schreier JD, Sisko J, Steele TG, Truchon JF, Wai J, Xu M, Coleman PJ. Discovery of 2-Pyridinone Aminals: A Prodrug Strategy to Advance a Second Generation of HIV-1 Integrase Strand Transfer Inhibitors. J Med Chem 2015; 58:8154-65. [PMID: 26397965 DOI: 10.1021/acs.jmedchem.5b01037] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The search for new molecular constructs that resemble the critical two-metal binding pharmacophore required for HIV integrase strand transfer inhibition represents a vibrant area of research within drug discovery. Here we present the discovery of a new class of HIV integrase strand transfer inhibitors based on the 2-pyridinone core of MK-0536. These efforts led to the identification of two lead compounds with excellent antiviral activity and preclinical pharmacokinetic profiles to support a once-daily human dose prediction. Dose escalating PK studies in dog revealed significant issues with limited oral absorption and required an innovative prodrug strategy to enhance the high-dose plasma exposures of the parent molecules.
Collapse
Affiliation(s)
| | | | | | | | - David A Powell
- Merck Frosst Centre for Therapeutic Research , Kirkland, QC Canada
| | | | - Guillaume Barbe
- Merck Frosst Centre for Therapeutic Research , Kirkland, QC Canada
| | | | - Karla Childers
- Department of Process Chemistry, Merck & Co., Inc., Rahway, NJ 07065
| | | | | | | | | | | | | | | | | | - Jeffrey T Kuethe
- Department of Process Chemistry, Merck & Co., Inc., Rahway, NJ 07065
| | - Jamie McCabe Dunn
- Department of Process Chemistry, Merck & Co., Inc., Rahway, NJ 07065
| | | | | | - Andrew Nolting
- Department of Process Chemistry, Merck & Co., Inc., Rahway, NJ 07065
| | | | | | - Zuihui Peng
- Department of Process Chemistry, Merck & Co., Inc., Rahway, NJ 07065
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Nair V, Okello M. Integrase Inhibitor Prodrugs: Approaches to Enhancing the Anti-HIV Activity of β-Diketo Acids. Molecules 2015; 20:12623-51. [PMID: 26184144 PMCID: PMC6332332 DOI: 10.3390/molecules200712623] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 07/06/2015] [Accepted: 07/07/2015] [Indexed: 12/12/2022] Open
Abstract
HIV integrase, encoded at the 3'-end of the HIV pol gene, is essential for HIV replication. This enzyme catalyzes the incorporation of HIV DNA into human DNA, which represents the point of "no-return" in HIV infection. Integrase is a significant target in anti-HIV drug discovery. This review article focuses largely on the design of integrase inhibitors that are β-diketo acids constructed on pyridinone scaffolds. Methodologies for synthesis of these compounds are discussed. Integrase inhibition data for the strand transfer (ST) step are compared with in vitro anti-HIV data. The review also examines the issue of the lack of correlation between the ST enzymology data and anti-HIV assay results. Because this disconnect appeared to be a problem associated with permeability, prodrugs of these inhibitors were designed and synthesized. Prodrugs dramatically improved the anti-HIV activity data. For example, for compound, 96, the anti-HIV activity (EC50) improved from 500 nM for this diketo acid to 9 nM for its prodrug 116. In addition, there was excellent correlation between the IC50 and IC90 ST enzymology data for 96 (6 nM and 97 nM, respectively) and the EC50 and EC90 anti-HIV data for its prodrug 116 (9 nM and 94 nM, respectively). Finally, it was confirmed that the prodrug 116 was rapidly hydrolyzed in cells to the active compound 96.
Collapse
Affiliation(s)
- Vasu Nair
- Center for Drug Discovery and College of Pharmacy, University of Georgia, Athens, GA 30602, USA.
| | - Maurice Okello
- Center for Drug Discovery and College of Pharmacy, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
19
|
Tsou N, Shultz CS, Andreani T, Ball RG, Brunskill A, Balsells J, Cohen RD, DaSilva J, Li J, Reamer RA, de Lera Ruiz M, Variankaval N, Varsolona RJ, Yasuda N, York G. Careful Navigation of the Crystallographic Landscape of MK-8970: A Racemic Acetal Carbonate Prodrug of Raltegravir. Org Process Res Dev 2015. [DOI: 10.1021/acs.oprd.5b00129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nancy Tsou
- Department of Process & Analytical Chemistry, Merck Research Laboratories, 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - C. Scott Shultz
- Department of Process & Analytical Chemistry, Merck Research Laboratories, 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Teresa Andreani
- Department of Process & Analytical Chemistry, Merck Research Laboratories, 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Richard G. Ball
- Department of Process & Analytical Chemistry, Merck Research Laboratories, 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Andrew Brunskill
- Department of Process & Analytical Chemistry, Merck Research Laboratories, 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Jaume Balsells
- Department of Process & Analytical Chemistry, Merck Research Laboratories, 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| | - Ryan D. Cohen
- Department of Process & Analytical Chemistry, Merck Research Laboratories, 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Jimmy DaSilva
- Department of Process & Analytical Chemistry, Merck Research Laboratories, 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Jing Li
- Department of Process & Analytical Chemistry, Merck Research Laboratories, 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| | - Robert A. Reamer
- Department of Process & Analytical Chemistry, Merck Research Laboratories, 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Manuel de Lera Ruiz
- Department of Process & Analytical Chemistry, Merck Research Laboratories, 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| | - Narayan Variankaval
- Department of Process & Analytical Chemistry, Merck Research Laboratories, 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Richard J. Varsolona
- Department of Process & Analytical Chemistry, Merck Research Laboratories, 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Nobuyoshi Yasuda
- Department of Process & Analytical Chemistry, Merck Research Laboratories, 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Gregory York
- Department of Process & Analytical Chemistry, Merck Research Laboratories, 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| |
Collapse
|
20
|
Ryan JH, Jarvis KE, Mulder RJ, Francis CL, Savage GP, Dolezal O, Peat TS, Deadman JJ. Unexpected Isomerisation of a Fragment Analogue During Fragment-Based Screening of HIV Integrase Catalytic Core Domain. Aust J Chem 2015. [DOI: 10.1071/ch15587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Fragment-based screening of human immunodeficiency virus type 1 (HIV) integrase revealed several aromatic carboxylic acid fragment hits, some of which bound weakly at the site on the HIV-integrase catalytic core domain that binds the lens epithelium-derived growth factor (LEDGF). Virtual screening of an internal database identified an analogue that bound with higher affinity and in an isomerised form to the LEDGF binding site. The starting lactone was stable in CDCl3; however, an unexpected isomerisation process occurred in [D6]DMSO to give the same isomer found in the LEDGF binding site. This hit led directly to a series of low-micromolar LEDGF inhibitors and, via a scaffold hop, to a series of allosteric binding site inhibitors.
Collapse
|