1
|
Herlah B, Janežič M, Ogris I, Grdadolnik SG, Kološa K, Žabkar S, Žegura B, Perdih A. Nature-inspired substituted 3-(imidazol-2-yl) morpholines targeting human topoisomerase IIα: Dynophore-derived discovery. Biomed Pharmacother 2024; 175:116676. [PMID: 38772152 DOI: 10.1016/j.biopha.2024.116676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/22/2024] [Accepted: 04/29/2024] [Indexed: 05/23/2024] Open
Abstract
The molecular nanomachine, human DNA topoisomerase IIα, plays a crucial role in replication, transcription, and recombination by catalyzing topological changes in the DNA, rendering it an optimal target for cancer chemotherapy. Current clinical topoisomerase II poisons often cause secondary tumors as side effects due to the accumulation of double-strand breaks in the DNA, spurring the development of catalytic inhibitors. Here, we used a dynamic pharmacophore approach to develop catalytic inhibitors targeting the ATP binding site of human DNA topoisomerase IIα. Our screening of a library of nature-inspired compounds led to the discovery of a class of 3-(imidazol-2-yl) morpholines as potent catalytic inhibitors that bind to the ATPase domain. Further experimental and computational studies identified hit compound 17, which exhibited selectivity against the human DNA topoisomerase IIα versus human protein kinases, cytotoxicity against several human cancer cells, and did not induce DNA double-strand breaks, making it distinct from clinical topoisomerase II poisons. This study integrates an innovative natural product-inspired chemistry and successful implementation of a molecular design strategy that incorporates a dynamic component of ligand-target molecular recognition, with comprehensive experimental characterization leading to hit compounds with potential impact on the development of more efficient chemotherapies.
Collapse
Affiliation(s)
- Barbara Herlah
- National Institute of Chemistry, Hajdrihova 19, Ljubljana SI 1000, Slovenia; University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, Ljubljana SI 1000, Slovenia
| | - Matej Janežič
- National Institute of Chemistry, Hajdrihova 19, Ljubljana SI 1000, Slovenia
| | - Iza Ogris
- National Institute of Chemistry, Hajdrihova 19, Ljubljana SI 1000, Slovenia; University of Ljubljana, Faculty of Medicine, Vrazov trg 2, Ljubljana SI 1000, Slovenia
| | | | - Katja Kološa
- National institute of Biology, Department of Genetic Toxicology and Cancer Biology, Večna pot 121, Ljubljana SI 1000, Slovenia
| | - Sonja Žabkar
- National institute of Biology, Department of Genetic Toxicology and Cancer Biology, Večna pot 121, Ljubljana SI 1000, Slovenia
| | - Bojana Žegura
- National institute of Biology, Department of Genetic Toxicology and Cancer Biology, Večna pot 121, Ljubljana SI 1000, Slovenia
| | - Andrej Perdih
- National Institute of Chemistry, Hajdrihova 19, Ljubljana SI 1000, Slovenia; University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, Ljubljana SI 1000, Slovenia.
| |
Collapse
|
2
|
Herlah B, Pavlin M, Perdih A. Molecular choreography: Unveiling the dynamic landscape of type IIA DNA topoisomerases before T-segment passage through all-atom simulations. Int J Biol Macromol 2024; 269:131991. [PMID: 38714283 DOI: 10.1016/j.ijbiomac.2024.131991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/09/2024] [Accepted: 04/28/2024] [Indexed: 05/09/2024]
Abstract
Type IIA DNA topoisomerases are molecular nanomachines responsible for controlling topological states of DNA molecules. Here, we explore the dynamic landscape of yeast topoisomerase IIA during key stages of its catalytic cycle, focusing in particular on the events preceding the passage of the T-segment. To this end, we generated six configurations of fully catalytic yeast topo IIA, strategically inserted a T-segment into the N-gate in relevant configurations, and performed all-atom simulations. The essential motion of topo IIA protein dimer was characterized by rotational gyrating-like movement together with sliding motion within the DNA-gate. Both appear to be inherent properties of the enzyme and an inbuilt feature that allows passage of the T-segment through the cleaved G-segment. Coupled dynamics of the N-gate and DNA-gate residues may be particularly important for controlled and smooth passage of the T-segment and consequently the prevention of DNA double-strand breaks. QTK loop residue Lys367, which interacts with ATP and ADP molecules, is involved in regulating the size and stability of the N-gate. The unveiled features of the simulated configurations provide insights into the catalytic cycle of type IIA topoisomerases and elucidate the molecular choreography governing their ability to modulate the topological states of DNA topology.
Collapse
Affiliation(s)
- Barbara Herlah
- Theory Department, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia; University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Matic Pavlin
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Andrej Perdih
- Theory Department, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia; University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000 Ljubljana, Slovenia.
| |
Collapse
|
3
|
Zamisa SJ, Adeleke AA, Devnarain N, Rhman MA, Owira PMO, Omondi B. The link between relative stability constant of DNA- and BSA-chromenopyrimidine complexes and cytotoxicity towards human breast cancer cells (MCF-7). RSC Adv 2023; 13:21820-21837. [PMID: 37475760 PMCID: PMC10354499 DOI: 10.1039/d3ra01741a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 07/11/2023] [Indexed: 07/22/2023] Open
Abstract
In this study, we synthesized and characterized ten chromenopyrimidine derivatives using analytical and spectroscopic methods. Studies on DNA and albumin binding affinity, as well as cytotoxicity tests on human breast cancer (MCF-7) cells, of the chromenopyrimidines, were conducted. The natural logarithm of the relative stability constant of DNA- and BSA-chromenopyrimidine complexes [ln(KDNA/KBSA)] was used as a criterion for selecting compounds for cytotoxicity studies. We found that ln(KDNA/KBSA) was inversely related to IC50 values of the compounds in MCF-7 cells. The antiproliferative effects of the compounds were found to induce apoptosis in MCF-7 cells, which is a desired mechanism of cell death. Correlations between the DNA and albumin binding affinities of chromenopyrimidines were established. We propose that this relationship approach can, for a given set of compounds, assist in predicting the cytotoxicity of potential drug candidates towards MCF-7 cells based on their experimentally determined CT-DNA and BSA binding affinities.
Collapse
Affiliation(s)
- Sizwe J Zamisa
- School of Chemistry and Physics, University of KwaZulu-Natal Private Bag X54001 Durban 4000 South Africa
| | - Adesola A Adeleke
- School of Chemistry and Physics, University of KwaZulu-Natal Private Bag X54001 Durban 4000 South Africa
| | - Nikita Devnarain
- Molecular and Clinical Pharmacology Research Laboratory, Department of Pharmacology, Discipline of Pharmaceutical Science, University of KwaZulu-Natal Private Bag X54001 Durban 4000 South Africa
| | - Mahasin Abdel Rhman
- Molecular and Clinical Pharmacology Research Laboratory, Department of Pharmacology, Discipline of Pharmaceutical Science, University of KwaZulu-Natal Private Bag X54001 Durban 4000 South Africa
| | - Peter M O Owira
- Molecular and Clinical Pharmacology Research Laboratory, Department of Pharmacology, Discipline of Pharmaceutical Science, University of KwaZulu-Natal Private Bag X54001 Durban 4000 South Africa
| | - Bernard Omondi
- School of Chemistry and Physics, University of KwaZulu-Natal Private Bag X54001 Durban 4000 South Africa
| |
Collapse
|
4
|
Lenin B, Ramasubramanyan S, Vetrivel U, Chitipothu S. Virtual screening and multilevel precision-based prioritisation of natural inhibitors targeting the ATPase domain of human DNA topoisomerase II alpha. J Biomol Struct Dyn 2023; 41:15177-15195. [PMID: 36898858 DOI: 10.1080/07391102.2023.2187234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/25/2023] [Indexed: 03/12/2023]
Abstract
Human DNA topoisomerase II alpha (hTopIIα) is a classic chemotherapeutic drug target. The existing hTopIIα poisons cause numerous side effects such as the development of cardiotoxicity, secondary malignancies, and multidrug resistance. The use of catalytic inhibitors targeting the ATP-binding cavity of the enzyme is considered a safer alternative due to the less deleterious mechanism of action. Hence, in this study, we carried out high throughput structure-based virtual screening of the NPASS natural product database against the ATPase domain of hTopIIα and identified the five best ligand hits. This was followed by comprehensive validation through molecular dynamics simulations, binding free energy calculation and ADMET analysis. On stringent multilevel prioritization, we identified promising natural product catalytic inhibitors that showed high binding affinity and stability within the ligand-binding cavity and may serve as ideal hits for anticancer drug development.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Barathi Lenin
- Centre for Bioinformatics, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Vision Research Foundation, Chennai, Tamil Nadu, India
| | - Sharada Ramasubramanyan
- RS Mehta Jain Department of Biochemistry and Cell Biology, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Vision Research Foundation, Chennai, Tamil Nadu, India
| | - Umashankar Vetrivel
- Centre for Bioinformatics, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Vision Research Foundation, Chennai, Tamil Nadu, India
- National Institute of Traditional Medicine, Indian Council of Medical Research, Belagavi, Karnataka, India
| | - Srujana Chitipothu
- Centre for Bioinformatics, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Vision Research Foundation, Chennai, Tamil Nadu, India
- Central Research Instrumentation Facility, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Vision Research Foundation, Chennai, Tamil Nadu, India
| |
Collapse
|
5
|
An insight into the rational design of recent purine-based scaffolds in targeting various cancer pathways. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Dong J, Zhu X, Yu W, Hu X, Zhang Y, Yang K, You Z, Liu Z, Qiao X, Song Y. Pyrazolo [3,4-d]pyrimidine-based dual HDAC/Topo II inhibitors: Design, synthesis, and biological evaluation as potential antitumor agents. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Ogrizek M, Janežič M, Valjavec K, Perdih A. Catalytic Mechanism of ATP Hydrolysis in the ATPase Domain of Human DNA Topoisomerase IIα. J Chem Inf Model 2022; 62:3896-3909. [PMID: 35948041 PMCID: PMC9400105 DOI: 10.1021/acs.jcim.2c00303] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Human DNA topoisomerase IIα is a biological nanomachine
that
regulates the topological changes of the DNA molecule and is considered
a prime target for anticancer drugs. Despite intensive research, many
atomic details about its mechanism of action remain unknown. We investigated
the ATPase domain, a segment of the human DNA topoisomerase IIα,
using all-atom molecular simulations, multiscale quantum mechanics/molecular
mechanics (QM/MM) calculations, and a point mutation study. The results
suggested that the binding of ATP affects the overall dynamics of
the ATPase dimer. Reaction modeling revealed that ATP hydrolysis favors
the dissociative substrate-assisted reaction mechanism with the catalytic
Glu87 serving to properly position and polarize the lytic water molecule.
The point mutation study complemented our computational results, demonstrating
that Lys378, part of the important QTK loop, acts as a stabilizing
residue. The work aims to pave the way to a deeper understanding of
these important molecular motors and to advance the development of
new therapeutics.
Collapse
Affiliation(s)
- Mitja Ogrizek
- National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia
| | - Matej Janežič
- National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia
| | - Katja Valjavec
- National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia
| | - Andrej Perdih
- National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia.,Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, SI 1000 Ljubljana, Slovenia
| |
Collapse
|
8
|
Elrufaie HA, Mohamed LM, Hamd AY, Bala NA, Elbadawi FA, Ghaboosh H, Alzain AA. Discovery of novel natural products as rhodesain inhibitors for human African trypanosomiasis using in silico techniques. J Biomol Struct Dyn 2022:1-13. [PMID: 35751127 DOI: 10.1080/07391102.2022.2092550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Human African Trypanosomiasis (HAT) or sleeping sickness is caused by the Trypanosoma brucei rhodesiense, a subspecies of the Trypanosomatide family. The parasite is associated with high morbidity and mortality rate in both animals and humans, claimed to be more fatal than other vector-transmitted diseases such as malaria. The majority of existing medications are highly toxic, not effective in the late chronic phase of the disease, and require maximum dosages to fully eradicate the parasite. In this study, we used computational methods to find out natural products that inhibit the Rhodesain, a parasitic enzyme that plays an important role in the parasite's pathogenicity, multiplication, and ability to pass through the host's blood-brain barrier. A library of 270540 natural products from ZINC databases was processed by using e-pharmacophore hypnosis and screening procedures, molecular docking, ADMET processes, and MM-GBSA calculations. This led to the identification of 3 compounds (ZINC000096269390, ZINC000035485292, and ZINC000035485242) which were then subjected to molecular dynamics. The findings of this study showed excellent binding affinity and stability toward the Rhodesain and suggest they may be a hopeful treatment for HAT in the future if further clinical trials were performed.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Hisham A Elrufaie
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Gezira, Sudan
| | - Linda M Mohamed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Gezira, Sudan
| | - Aya Y Hamd
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Gezira, Sudan
| | - Noor A Bala
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Gezira, Sudan
| | | | - Hiba Ghaboosh
- Department of Pharmaceutics, University of Gezira, Wad Madani, Sudan
| | - Abdulrahim A Alzain
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Gezira, Sudan
| |
Collapse
|
9
|
Ravikumar C, Selvan ST, Saminathan M, Safin DA. Crystal structure, quantum computational, molecular docking and in vitro anti-proliferative investigations of 1H‐imidazole‐2‐thione analogues derivative. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Janežič M, Valjavec K, Loboda KB, Herlah B, Ogris I, Kozorog M, Podobnik M, Grdadolnik SG, Wolber G, Perdih A. Dynophore-Based Approach in Virtual Screening: A Case of Human DNA Topoisomerase IIα. Int J Mol Sci 2021; 22:ijms222413474. [PMID: 34948269 PMCID: PMC8703789 DOI: 10.3390/ijms222413474] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/23/2021] [Accepted: 12/10/2021] [Indexed: 12/04/2022] Open
Abstract
In this study, we utilized human DNA topoisomerase IIα as a model target to outline a dynophore-based approach to catalytic inhibitor design. Based on MD simulations of a known catalytic inhibitor and the native ATP ligand analog, AMP-PNP, we derived a joint dynophore model that supplements the static structure-based-pharmacophore information with a dynamic component. Subsequently, derived pharmacophore models were employed in a virtual screening campaign of a library of natural compounds. Experimental evaluation identified flavonoid compounds with promising topoisomerase IIα catalytic inhibition and binding studies confirmed interaction with the ATPase domain. We constructed a binding model through docking and extensively investigated it with molecular dynamics MD simulations, essential dynamics, and MM-GBSA free energy calculations, thus reconnecting the new results to the initial dynophore-based screening model. We not only demonstrate a new design strategy that incorporates a dynamic component of molecular recognition, but also highlight new derivates in the established flavonoid class of topoisomerase II inhibitors.
Collapse
Affiliation(s)
- Matej Janežič
- National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia; (M.J.); (K.V.); (K.B.L.); (B.H.); (I.O.); (M.K.); (M.P.); (S.G.G.)
- Laboratory for Structural Bioinformatics, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Katja Valjavec
- National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia; (M.J.); (K.V.); (K.B.L.); (B.H.); (I.O.); (M.K.); (M.P.); (S.G.G.)
| | - Kaja Bergant Loboda
- National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia; (M.J.); (K.V.); (K.B.L.); (B.H.); (I.O.); (M.K.); (M.P.); (S.G.G.)
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, SI-1000 Ljubljana, Slovenia
| | - Barbara Herlah
- National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia; (M.J.); (K.V.); (K.B.L.); (B.H.); (I.O.); (M.K.); (M.P.); (S.G.G.)
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, SI-1000 Ljubljana, Slovenia
| | - Iza Ogris
- National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia; (M.J.); (K.V.); (K.B.L.); (B.H.); (I.O.); (M.K.); (M.P.); (S.G.G.)
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000 Ljubljana, Slovenia
| | - Mirijam Kozorog
- National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia; (M.J.); (K.V.); (K.B.L.); (B.H.); (I.O.); (M.K.); (M.P.); (S.G.G.)
| | - Marjetka Podobnik
- National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia; (M.J.); (K.V.); (K.B.L.); (B.H.); (I.O.); (M.K.); (M.P.); (S.G.G.)
| | - Simona Golič Grdadolnik
- National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia; (M.J.); (K.V.); (K.B.L.); (B.H.); (I.O.); (M.K.); (M.P.); (S.G.G.)
| | - Gerhard Wolber
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2-4, 14195 Berlin, Germany;
| | - Andrej Perdih
- National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia; (M.J.); (K.V.); (K.B.L.); (B.H.); (I.O.); (M.K.); (M.P.); (S.G.G.)
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, SI-1000 Ljubljana, Slovenia
- Correspondence: ; Tel.: +386-1-4760-376
| |
Collapse
|
11
|
Ali A, Khalid M, Tahir MN, Imran M, Ashfaq M, Hussain R, Assiri MA, Khan I. Synthesis of Diaminopyrimidine Sulfonate Derivatives and Exploration of Their Structural and Quantum Chemical Insights via SC-XRD and the DFT Approach. ACS OMEGA 2021; 6:7047-7057. [PMID: 33748618 PMCID: PMC7970555 DOI: 10.1021/acsomega.0c06323] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/23/2021] [Indexed: 05/19/2023]
Abstract
Two heterocyclic compounds named 2,6-diaminopyrimidin-4-ylnaphthalene-2-sulfonate (A) and 2,6-diaminopyrimidin-4-yl4-methylbenzene sulfonate (B) were synthesized. The structures of heterocyclic molecules were established by the X-ray crystallographic technique, which showed several noncovalent interactions as N···H···N, N···H···O, and C-H···O bonding and parallel offset stacking interaction. Hydrogen-bonding interactions were further explored by the Hirshfeld surface (HS) analysis. Nonlinear optical (NLO) and natural bond orbital (NBO) properties were calculated utilizing the B3LYP/6-311G(d,p) level. Frontier molecular orbitals (FMOs) and molecular electrostatic potential (MEP) were calculated utilizing the time-dependent density functional theory (TD-DFT) at the same level. The NBO analysis showed that the molecular stabilities of compounds A and B were attributed to their large stabilization energy values. The second hyperpolarizability (γtot) values for A and B were obtained as 3.7 × 104 and 2.7 × 104 au, respectively. The experimental X-ray crystallographic and theoretical structural parameters of A and B were found to be in close correspondence. Both the molecules reveal substantial NLO responses that can be significant for their utilization in advanced applications.
Collapse
Affiliation(s)
- Akbar Ali
- Institute
of Chemistry, University of Sargodha, Sargodha 40100, Pakistan
| | - Muhammad Khalid
- Department
of Chemistry, Khwaja Fareed University of
Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
- ,
| | | | - Muhammad Imran
- Department
of Chemistry, Faculty of Science, King Khalid
University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Muhammad Ashfaq
- Department
of Physics, University of Sargodha, Sargodha 40100, Pakistan
| | - Riaz Hussain
- Division
of Science and Technology University of Education Lahore, Lahore 54770, Pakistan
| | - Mohammed A. Assiri
- Department
of Chemistry, Faculty of Science, King Khalid
University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Research
Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Imran Khan
- Department
of Physics, University of Sargodha, Sargodha 40100, Pakistan
| |
Collapse
|
12
|
Buzun K, Bielawska A, Bielawski K, Gornowicz A. DNA topoisomerases as molecular targets for anticancer drugs. J Enzyme Inhib Med Chem 2020; 35:1781-1799. [PMID: 32975138 PMCID: PMC7534307 DOI: 10.1080/14756366.2020.1821676] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 02/07/2023] Open
Abstract
The significant role of topoisomerases in the control of DNA chain topology has been confirmed in numerous research conducted worldwide. The prevalence of these enzymes, as well as the key importance of topoisomerase in the proper functioning of cells, have made them the target of many scientific studies conducted all over the world. This article is a comprehensive review of knowledge about topoisomerases and their inhibitors collected over the years. Studies on the structure-activity relationship and molecular docking are one of the key elements driving drug development. In addition to information on molecular targets, this article contains details on the structure-activity relationship of described classes of compounds. Moreover, the work also includes details about the structure of the compounds that drive the mode of action of topoisomerase inhibitors. Finally, selected topoisomerases inhibitors at the stage of clinical trials and their potential application in the chemotherapy of various cancers are described.
Collapse
Affiliation(s)
- Kamila Buzun
- Department of Biotechnology, Medical University of Bialystok, Bialystok, Poland
| | - Anna Bielawska
- Department of Biotechnology, Medical University of Bialystok, Bialystok, Poland
| | - Krzysztof Bielawski
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Bialystok, Poland
| | - Agnieszka Gornowicz
- Department of Biotechnology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
13
|
Bergant Loboda K, Janežič M, Štampar M, Žegura B, Filipič M, Perdih A. Substituted 4,5'-Bithiazoles as Catalytic Inhibitors of Human DNA Topoisomerase IIα. J Chem Inf Model 2020; 60:3662-3678. [PMID: 32484690 PMCID: PMC7469689 DOI: 10.1021/acs.jcim.0c00202] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human type II topoisomerases, molecular motors that alter the DNA topology, are a major target of modern chemotherapy. Groups of catalytic inhibitors represent a new approach to overcome the known limitations of topoisomerase II poisons such as cardiotoxicity and induction of secondary tumors. Here, we present a class of substituted 4,5'-bithiazoles as catalytic inhibitors targeting the human DNA topoisomerase IIα. Based on a structural comparison of the ATPase domains of human and bacterial type II topoisomerase, a focused chemical library of 4,5'-bithiazoles was assembled and screened to identify compounds that better fit the topology of the human topo IIα adenosine 5'-triphosphate (ATP) binding site. Selected compounds showed inhibition of human topo IIα comparable to that of the etoposide topo II drug, revealing a new class of inhibitors targeting this molecular motor. Further investigations showed that compounds act as catalytic inhibitors via competitive ATP inhibition. We also confirmed binding to the truncated ATPase domain of topo IIα and modeled the inhibitor molecular recognition with molecular simulations and dynophore models. The compounds also displayed promising cytotoxicity against HepG2 and MCF-7 cell lines comparable to that of etoposide. In a more detailed study with the HepG2 cell line, there was no induction of DNA double-strand breaks (DSBs), and the compounds were able to reduce cell proliferation and stop the cell cycle mainly in the G1 phase. This confirms the mechanism of action of these compounds, which differs from topo II poisons also at the cellular level. Substituted 4,5'-bithiazoles appear to be a promising class for further development toward efficient and potentially safer cancer therapies exploiting the alternative topo II inhibition paradigm.
Collapse
Affiliation(s)
- Kaja Bergant Loboda
- National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia.,Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, SI-1000 Ljubljana, Slovenia
| | - Matej Janežič
- Laboratory for Structural Bioinformatics, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Martina Štampar
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, SI-1000 Ljubljana, Slovenia
| | - Bojana Žegura
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, SI-1000 Ljubljana, Slovenia
| | - Metka Filipič
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, SI-1000 Ljubljana, Slovenia
| | - Andrej Perdih
- National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia
| |
Collapse
|
14
|
Design and synthesis of 3,5-substituted 1,2,4-oxadiazoles as catalytic inhibitors of human DNA topoisomerase IIα. Bioorg Chem 2020; 99:103828. [DOI: 10.1016/j.bioorg.2020.103828] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/20/2020] [Accepted: 04/05/2020] [Indexed: 01/05/2023]
|
15
|
Zidar N, Secci D, Tomašič T, Mašič LP, Kikelj D, Passarella D, Argaez ANG, Hyeraci M, Dalla Via L. Synthesis, Antiproliferative Effect, and Topoisomerase II Inhibitory Activity of 3-Methyl-2-phenyl-1 H-indoles. ACS Med Chem Lett 2020; 11:691-697. [PMID: 32435372 DOI: 10.1021/acsmedchemlett.9b00557] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 01/24/2020] [Indexed: 12/24/2022] Open
Abstract
A series of 3-methyl-2-phenyl-1H-indoles was prepared and investigated for antiproliferative activity on three human tumor cell lines, HeLa, A2780, and MSTO-211H, and some structure-activity relationships were drawn up. The GI50 values of the most potent compounds (32 and 33) were lower than 5 μM in all tested cell lines. For the most biologically relevant derivatives, the effect on human DNA topoisomerase II relaxation activity was investigated, which highlighted the good correlation between the antiproliferative effect and topoisomerase II inhibition. The most potent derivative, 32, was shown to induce the apoptosis pathway. The obtained results highlight 3-methyl-2-phenyl-1H-indole as a promising scaffold for further optimization of compounds with potent antiproliferative and antitopoisomerase II activities.
Collapse
Affiliation(s)
- Nace Zidar
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Daniela Secci
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Tihomir Tomašič
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Lucija Peterlin Mašič
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Danijel Kikelj
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Daniele Passarella
- Department of Chemistry, University of Milan, Via Golgi 19, 20133 Milan, Italy
| | - Aida Nelly Garcia Argaez
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, I-35131 Padova, Italy
| | - Mariafrancesca Hyeraci
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, I-35131 Padova, Italy
| | - Lisa Dalla Via
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, I-35131 Padova, Italy
| |
Collapse
|
16
|
Abd El-Aleam RH, George RF, Hassan GS, Abdel-Rahman HM. Synthesis of 1,2,4-triazolo[1,5-a]pyrimidine derivatives: Antimicrobial activity, DNA Gyrase inhibition and molecular docking. Bioorg Chem 2020; 94:103411. [DOI: 10.1016/j.bioorg.2019.103411] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/26/2019] [Accepted: 10/28/2019] [Indexed: 10/25/2022]
|
17
|
Tolan HEM, El-Sayed WA, Tawfek N, Abdel-Megeid FME, Kutkat OM. Synthesis and anti-H5N1 virus activity of triazole- and oxadiazole-pyrimidine hybrids and their nucleoside analogs. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2019; 39:649-670. [PMID: 31599202 DOI: 10.1080/15257770.2019.1674331] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
New 1,2,3-triazole glycosides and 1,2,4-thioglycosides incorporating a substituted pyrimidinedione ring system were synthesized via click dipolar cycloaddition and heterocyclization of hydrazine-1-carbodithioate derivatives, respectively. The sugar hydrazine derivatives linked aminodimethyluracil were also prepared. In addition, the oxadiazoline substituted with acyclic sugar moieties linked to the pyrimidinedione as acyclic nucleoside analogs were synthesized. The antiviral activity of the synthesized compounds against avian influenza H5N1 virus was investigated and compounds 18, 13 and 19 showed good activities against the virus strains.
Collapse
Affiliation(s)
- Hala E M Tolan
- Photochemistry Department, National Research Centre, Dokki, Giza, Egypt
| | - Wael A El-Sayed
- Photochemistry Department, National Research Centre, Dokki, Giza, Egypt.,Chemistry Department, Faculty of Science, Qassim University, Kingdom of Saudi Arabia
| | - Nashwa Tawfek
- Photochemistry Department, National Research Centre, Dokki, Giza, Egypt
| | | | - Omnya M Kutkat
- Environmental Research Division, National Research Center, Dokki, Cairo, Egypt
| |
Collapse
|
18
|
Krasnov VP, Vigorov AY, Chulakov EN, Nizova IA, Levit GL, Kravchenko MA, Charushin VN. Synthesis of Purine and 2-Aminopurine Conjugates with N-(4-Aminobenzoyl)-(S)-glutamic Acid. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2019. [DOI: 10.1134/s1070428019060034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Bergant K, Janežič M, Valjavec K, Sosič I, Pajk S, Štampar M, Žegura B, Gobec S, Filipič M, Perdih A. Structure-guided optimization of 4,6-substituted-1,3,5-triazin-2(1H)-ones as catalytic inhibitors of human DNA topoisomerase IIα. Eur J Med Chem 2019; 175:330-348. [PMID: 31096154 DOI: 10.1016/j.ejmech.2019.04.055] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 04/19/2019] [Indexed: 01/03/2023]
Abstract
Human DNA topoisomerases represent one of the key targets of modern chemotherapy. An emerging group of catalytic inhibitors of human DNA topoisomerase IIα comprises a new paradigm directed to circumvent the known limitations of topoisomerase II poisons such as cardiotoxicity and induction of secondary tumors. In our previous studies, 4,6-substituted-1,3,5-triazin-2(1H)-ones were discovered as catalytic inhibitors of topo IIα. Here, we report the results of our efforts to optimize several properties of the initial chemical series that did not exhibit cytotoxicity on cancer cell lines. Using an optimized synthetic route, a focused chemical library was designed aimed at further functionalizing substituents at the position 4 of the 1,3,5-triazin-2(1H)-one scaffold to enable additional interactions with the topo IIα ATP binding site. After virtual screening, selected 36 analogues were synthesized and experimentally evaluated for human topo IIα inhibition. The optimized series displayed improved inhibition of topo IIα over the initial series and the catalytic mode of inhibition was confirmed for the selected active compounds. The optimized series also showed cytotoxicity against HepG2 and MCF-7 cell lines and did not induce double-strand breaks, thus displaying a mechanism of action that differs from the topo II poisons on the cellular level. The new series represents a new step in the development of the 4,6-substituted-1,3,5-triazin-2(1H)-one class towards novel efficient anticancer therapies utilizing the catalytic topo IIα inhibition paradigm.
Collapse
Affiliation(s)
- Kaja Bergant
- National Institute of Chemistry, Hajdrihova 19, SI 1001, Ljubljana, Slovenia; University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, SI 1000, Ljubljana, Slovenia
| | - Matej Janežič
- Laboratory for Structural Bioinformatics, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Katja Valjavec
- National Institute of Chemistry, Hajdrihova 19, SI 1001, Ljubljana, Slovenia
| | - Izidor Sosič
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, SI 1000, Ljubljana, Slovenia
| | - Stane Pajk
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, SI 1000, Ljubljana, Slovenia
| | - Martina Štampar
- National Institute of Biology, Department of Genetic Toxicology and Cancer Biology, Večna pot 111, 1000, Ljubljana, Slovenia
| | - Bojana Žegura
- National Institute of Biology, Department of Genetic Toxicology and Cancer Biology, Večna pot 111, 1000, Ljubljana, Slovenia
| | - Stanislav Gobec
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, SI 1000, Ljubljana, Slovenia
| | - Metka Filipič
- National Institute of Biology, Department of Genetic Toxicology and Cancer Biology, Večna pot 111, 1000, Ljubljana, Slovenia
| | - Andrej Perdih
- National Institute of Chemistry, Hajdrihova 19, SI 1001, Ljubljana, Slovenia.
| |
Collapse
|
20
|
Nassar IF, El-Sayed WA, Ragab TIM, Shalaby ASG, Mehany ABM. Design, Synthesis of New Pyridine and Pyrimidine Sugar Compounds as Antagonists Targeting the ERα via Structure-Based Virtual Screening. Mini Rev Med Chem 2019; 19:395-409. [PMID: 30124151 DOI: 10.2174/1389557518666180820125210] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/29/2018] [Accepted: 08/03/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND New aryl substituted cyclohepta[b]pyridine and cyclohepta[d]pyrimidine derivatives were synthesized. The sugar hydrazones of the synthesized pyridine and pyrimidine compounds were also prepared. METHOD In addition, the 1,3,4-oxadiazolyl acyclic C-nucleoside analogs of the pyridine system were prepared. The hemolytic, prebiotic, anticancer and antimicrobial activities of some of the synthesized compounds were also studied. Compounds 10 and 12 showed high activity against MCF-7, HEPG-2 and HCT-116 cell lines with IC50 at range 3.56-8.55 µg/mL. In addition, the synthesized condensed thiopyrimidine derivative 10 exhibited more potent bactericidal activity while compound 7 demonstrated potent antifungal activity against Aspergillus niger. Furthermore, the synthetic compounds of the pyrimidine base promoted the growth of lactic acid bacteria. RESULTS The predicted binding patterns of three of the prepared derivatives as possible antagonists against ERα were investigated which showed good binding patterns.
Collapse
Affiliation(s)
- Ibrahim F Nassar
- Faculty of Specific Education, Ain Shams University, Abbassia, Cairo, Egypt
| | - Wael A El-Sayed
- Photochemistry Department, National Research Centre, El-Behouth St, Dokki, Cairo, Egypt
| | - Tamer I M Ragab
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research, Division, National Research Centre, Dokki, Cairo, Egypt
| | - Al Shimaa Gamal Shalaby
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research, Division, National Research Centre, Dokki, Cairo, Egypt
| | - Ahmed B M Mehany
- Department of Zoology, Faculty of Science Al-Azhar University, Cairo, Egypt
| |
Collapse
|
21
|
Murugavel S, Ravikumar C, Jaabil G, Alagusundaram P. Synthesis, computational quantum chemical study, in silico ADMET and molecular docking analysis, in vitro biological evaluation of a novel sulfur heterocyclic thiophene derivative containing 1,2,3-triazole and pyridine moieties as a potential human topoisomerase IIα inhibiting anticancer agent. Comput Biol Chem 2019; 79:73-82. [PMID: 30731361 DOI: 10.1016/j.compbiolchem.2019.01.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 01/17/2019] [Accepted: 01/25/2019] [Indexed: 02/07/2023]
Abstract
Computational quantum chemical study and biological evaluation of a synthesized novel sulfur heterocyclic thiophene derivative containing 1,2,3-triazole and pyridine moieties namely BTPT [2-(1-benzyl-5-methyl-1H-1,2,3-triazol-4-yl)-6-methoxy-4-(thiophen-2-yl) pyridine] was presented in this study. The crystal structure was determined by SCXRD method. For the title compound BTPT, spectroscopic characterization like 1H NMR, 13C NMR, FTIR, UV-vis were carried out theoretically by computational DFT method and compared with experimental data. Druglikeness parameters of BTPT were found through in silico pharmacological ADMET properties estimation. The molecular docking investigation was performed with human topoisomerase IIα (PDB ID:1ZXM) targeting ATP binding site. In vitro cytotoxicity activity of BTPT/doxorubicin were examined by MTT assay procedure against three human cancer cell lines A549, PC-3, MDAMB-231 with IC50 values of 0.68/0.70, 1.03/0.77 and 0.88/0.98 μM, respectively. Our title compound BTPT reveals notable cytotoxicity against breast cancer cell (MDAMB-231), moderate activity with human lung cancer cell (A-549) and less inhibition with human prostate cancer cell (PC-3) compared to familiar cancer medicine doxorubicin. From the results, BTPT could be observed as a potential candidate for novel anticancer drug development process.
Collapse
Affiliation(s)
- S Murugavel
- Department of Physics, Thanthai Periyar Government Institute of Technology, Vellore, 632002, Tamil Nadu, India.
| | - C Ravikumar
- Department of Physics, Thanthai Periyar EVR Government Polytechnic College, Vellore, 632002, Tamil Nadu, India
| | - G Jaabil
- Department of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India
| | - Ponnuswamy Alagusundaram
- Department of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India
| |
Collapse
|
22
|
Hu W, Huang XS, Wu JF, Yang L, Zheng YT, Shen YM, Li ZY, Li X. Discovery of Novel Topoisomerase II Inhibitors by Medicinal Chemistry Approaches. J Med Chem 2018; 61:8947-8980. [PMID: 29870668 DOI: 10.1021/acs.jmedchem.7b01202] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Wei Hu
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, 27 South Shanda Road, 250100 Ji’nan, Shandong, P. R. China
| | - Xu-Sheng Huang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Science and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Ji-Feng Wu
- Institute of Criminal Science and Technology, Ji’nan Public Security Bureau, 21 South QiliShan Road, 250000 Ji’nan, Shandong, P. R. China
| | - Liang Yang
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Ji’nan, Shandong, P. R. China
| | - Yong-Tang Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Science and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yue-Mao Shen
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Ji’nan, Shandong, P. R. China
| | - Zhi-Yu Li
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Philadelphia, Pennsylvania 19104, United States
| | - Xun Li
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Ji’nan, Shandong, P. R. China
| |
Collapse
|
23
|
Dong G, Wu Y, Sun Y, Liu N, Wu S, Zhang W, Sheng C. Identification of potent catalytic inhibitors of human DNA topoisomerase II by structure-based virtual screening. MEDCHEMCOMM 2018; 9:1142-1146. [PMID: 30109001 DOI: 10.1039/c8md00219c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 05/18/2018] [Indexed: 01/03/2023]
Abstract
Human DNA topoisomerase II (Top2) is a promising target for cancer treatment. To overcome the limitations of known Top2 inhibitors, novel Top2 catalytic inhibitors with new scaffolds were identified by structure-based virtual screening. In particular, compound 8 showed good in vitro antiproliferative activity with a broad spectrum. Top2-mediated cleavage assay and molecular modeling rationalized the mode of action. The new Top2 inhibitors are considered as good starting points for further hit-to-lead optimization in anticancer drug discovery.
Collapse
Affiliation(s)
- Guoqiang Dong
- Department of Medicinal Chemistry , School of Pharmacy , Second Military , Medical University , 325 Guohe Road , Shanghai 200433 , China .
| | - Ying Wu
- Department of Medicinal Chemistry , School of Pharmacy , Second Military , Medical University , 325 Guohe Road , Shanghai 200433 , China .
| | - Ying Sun
- Naval Medical Research Institute , Second Military Medical University , 880 Xiangyin Road , Shanghai 200433 , China
| | - Na Liu
- Department of Medicinal Chemistry , School of Pharmacy , Second Military , Medical University , 325 Guohe Road , Shanghai 200433 , China .
| | - Shanchao Wu
- Department of Medicinal Chemistry , School of Pharmacy , Second Military , Medical University , 325 Guohe Road , Shanghai 200433 , China .
| | - Wannian Zhang
- Department of Medicinal Chemistry , School of Pharmacy , Second Military , Medical University , 325 Guohe Road , Shanghai 200433 , China .
| | - Chunquan Sheng
- Department of Medicinal Chemistry , School of Pharmacy , Second Military , Medical University , 325 Guohe Road , Shanghai 200433 , China .
| |
Collapse
|
24
|
de Almeida SMV, Ribeiro AG, de Lima Silva GC, Ferreira Alves JE, Beltrão EIC, de Oliveira JF, de Carvalho LB, Alves de Lima MDC. DNA binding and Topoisomerase inhibition: How can these mechanisms be explored to design more specific anticancer agents? Biomed Pharmacother 2017; 96:1538-1556. [DOI: 10.1016/j.biopha.2017.11.054] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/07/2017] [Accepted: 11/07/2017] [Indexed: 12/11/2022] Open
|
25
|
Janežič M, Pogorelčnik B, Brvar M, Solmajer T, Perdih A. 3-substituted-1H-indazoles as Catalytic Inhibitors of the Human DNA Topoisomerase IIα. ChemistrySelect 2017. [DOI: 10.1002/slct.201601554] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Matej Janežič
- National Institute of Chemistry; Hajdrihova 19, SI- 1001 Ljubljana Slovenia
| | | | - Matjaž Brvar
- National Institute of Chemistry; Hajdrihova 19, SI- 1001 Ljubljana Slovenia
| | - Tom Solmajer
- National Institute of Chemistry; Hajdrihova 19, SI- 1001 Ljubljana Slovenia
| | - Andrej Perdih
- National Institute of Chemistry; Hajdrihova 19, SI- 1001 Ljubljana Slovenia
| |
Collapse
|
26
|
Recent progress of cyclin-dependent kinase inhibitors as potential anticancer agents. Future Med Chem 2016; 8:2047-2076. [DOI: 10.4155/fmc-2016-0129] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Deregulation of the cell cycle is a common feature in human cancer. The inhibition of cyclin-dependent kinases (CDKs), which play a crucial role in control of the cell cycle, has always been one of the most promising areas in cancer chemotherapy. This review first summarizes the biology of CDKs and then focuses on the recent advances in both broad-range and selective CDK inhibitors during the last 5 years. The design rationale, structural optimization and structure–activity relationships analysis of these small molecules have been discussed in detail and the key interactions with the amino-acid residues of the most important compounds are highlighted. Future perspectives for CDKs inhibitors will be defined in the development of highly selective CDK inhibitors, an accurate knowledge of gene control mechanism and further predictive biomarker research.
Collapse
|
27
|
Macedo D, Mendonça Júnior FJB, de Moura RO, Marques-Santos LF. Antimitotic activity of the pyrimidinone derivative py-09 on sea urchin embryonic development. Toxicol In Vitro 2015; 31:72-85. [PMID: 26616279 DOI: 10.1016/j.tiv.2015.11.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 11/09/2015] [Accepted: 11/21/2015] [Indexed: 02/03/2023]
Abstract
Chemotherapy is the main cancer treatment and consists of drug administration that interferes with several metabolic pathways, leading to tumor cell death. Antimitotic drugs have a relevant role in chemotherapy. This study aimed to investigate the effect of a pyrimidinone derivative (6-(p-Anisyl)-2-(p-chlorophenyl)-4-oxo-3,4-dihydropyrimidine-5-carbonitrile, Py-09) on sea urchin embryonic development model. The effects of the compound were analyzed on fertilization, embryonic development, mitochondrial membrane potential (ΔΨm), production of reactive oxygen species (ROS) and ABC transporter activity. Py-09 inhibited the fertilization and the embryonic development in a time and dose-dependent pattern, with the maximum effect at 50 μM (EC50=12.5 μM). Py-09 induced the loss of ΔΨm without altering ROS intracellular levels. Morphological changes were observed in the pattern of embryo cleavage (unequal cleavage) and at larval stages (fissures of spicules and pigment cell leakage). We also demonstrated that Py-09 is not an ABC transporter substrate and the derivative does not circumvent the MXR phenomenon. Our study reports--for the first time--the antimitotic activity of Py-09 and stimulates new research on the potential of Py-09 as a pharmacological tool for in vitro studies, as well as its use as a new anticancer drug.
Collapse
Affiliation(s)
- Dalliane Macedo
- Laboratório de Biologia Celular e do Desenvolvimento (LABID), Departamento de Biologia Molecular, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
| | | | | | - Luis Fernando Marques-Santos
- Laboratório de Biologia Celular e do Desenvolvimento (LABID), Departamento de Biologia Molecular, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil.
| |
Collapse
|
28
|
Pogorelčnik B, Janežič M, Sosič I, Gobec S, Solmajer T, Perdih A. 4,6-Substituted-1,3,5-triazin-2(1H)-ones as monocyclic catalytic inhibitors of human DNA topoisomerase IIα targeting the ATP binding site. Bioorg Med Chem 2015; 23:4218-4229. [PMID: 26183545 DOI: 10.1016/j.bmc.2015.06.049] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 06/15/2015] [Accepted: 06/18/2015] [Indexed: 10/23/2022]
Abstract
Human DNA topoisomerase IIα (htIIα) is a validated target for the development of novel anticancer agents. Starting from our discovered 4-amino-1,3,5-triazine inhibitors of htIIα, we investigated a library of 2,4,6-trisubstituted-1,3,5-triazines for novel inhibitors that bind to the htIIα ATP binding site using a combination of structure-based and ligand-based pharmacophore models and molecular docking. 4,6-substituted-1,3,5-triazin-2(1H)-ones 8, 9 and 14 were identified as novel inhibitors with activity comparable to the established drug etoposide (1). Compound 8 inhibits the htIIα decatenation in a superior fashion to etoposide. Cleavage assays demonstrated that selected compounds 8 and 14 do not act as poisons and antagonize the poison effect of etoposide. Microscale thermophoresis (MST) confirmed binding of compound 8 to the htIIα ATPase domain and compound 14 effectively inhibits the htIIα mediated ATP hydrolysis. The molecular dynamics simulation study provides further insight into the molecular recognition. The 4,6-disubstituted-1,3,5-triazin-2(1H)-ones represent the first validated monocyclic class of catalytic inhibitors that bind to the to the htIIα ATPase domain.
Collapse
Affiliation(s)
| | - Matej Janežič
- National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia
| | - Izidor Sosič
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Stanislav Gobec
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Tom Solmajer
- National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia
| | - Andrej Perdih
- National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia.
| |
Collapse
|
29
|
Ajani OO, Isaac JT, Owoeye TF, Akinsiku AA. Exploration of the Chemistry and Biological Properties of Pyrimidine as a Privilege Pharmacophore in Therapeutics. ACTA ACUST UNITED AC 2015. [DOI: 10.3923/ijbc.2015.148.177] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|