1
|
Cazzaniga G, Capelli D, Montanari R, Fassi EMA, Grazioso G, Tresoldi A, Rinaldi F, Calleri E, Bassanini I, Romeo S, Garofalo M, Mori M, Meneghetti F, Villa S. Enhancing the activity of γ-hydroxy lactone derivatives as innovative peroxisome proliferator-activated receptor γ non-agonists inhibiting cyclin-dependent kinase 5-mediated phosphorylation. Eur J Med Chem 2025; 292:117657. [PMID: 40318479 DOI: 10.1016/j.ejmech.2025.117657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/09/2025] [Accepted: 04/17/2025] [Indexed: 05/07/2025]
Abstract
Insulin resistance (IR) is a pathological condition in which tissues exhibit a reduced response to normal or elevated levels of insulin. Type 2 diabetes mellitus (T2DM) and Metabolic Syndrome are the most prevalent disorders associated with IR. Most of the glitazones, traditional anti-diabetic drugs acting as Peroxisome Proliferator-Activated Receptor γ (PPARγ) agonists, have been withdrawn from the market. To mitigate the serious adverse effects associated with PPARγ agonism, a new opportunity is represented by the inhibitors of PPARγ phosphorylation by the Cyclin-Dependent Kinase 5 (CDK5). Their mechanism of action is mediated by the stabilization of the PPARγ β-sheet containing Ser245. Recently, we identified 4-(4-bromophenyl)-3-hydroxy-5-(3-hydroxyphenyl)furan-2(5H)-one (I) as a PPARγ non-agonist, capable of blocking the phosphorylation of the enzyme without direct effects on either CDK5 or PPARγ. Here, we isolated the two enantiomers of I, unambiguously defined their absolute configuration through single crystal X-ray diffraction and demonstrated by Grating-Coupled Interferometry binding assays that both (S)-I and (R)-I exhibited comparable affinity for PPARγ. Then, a library of 12 analogs was designed through structure-based modifications, optimizing the interactions within the ligand-binding domain. GCI analysis identified derivative 11, featuring an oxyacetic group in place of the initial hydroxyl function of the reference compound I, as the most promising candidate (KD = 186 nM). The crystal structure of the PPARγ-LBD/11 complex revealed a hydrogen bond interaction with Arg280, further stabilizing the binding conformation. These findings highlight the potential of γ-hydroxy lactone derivatives as PPARγ modulators and provide a foundation for future drug development targeting IR.
Collapse
Affiliation(s)
- Giulia Cazzaniga
- Department of Pharmaceutical Sciences, University of Milan, via L. Mangiagalli 25, 20133, Milano, Italy; Department of Science and High Technology, University of Insubria, via Valleggio 9, 22100, Como, Italy
| | - Davide Capelli
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Strada Provinciale 35d, n. 9-00010, Montelibretti, 34149, Rome, Italy
| | - Roberta Montanari
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Strada Provinciale 35d, n. 9-00010, Montelibretti, 34149, Rome, Italy
| | | | - Giovanni Grazioso
- Department of Pharmaceutical Sciences, University of Milan, via L. Mangiagalli 25, 20133, Milano, Italy
| | - Andrea Tresoldi
- Department of Pharmaceutical Sciences, University of Milan, via L. Mangiagalli 25, 20133, Milano, Italy
| | - Francesca Rinaldi
- Department of Drug Sciences, University of Pavia, via T. Taramelli 12, 27100, Pavia, Italy
| | - Enrica Calleri
- Department of Drug Sciences, University of Pavia, via T. Taramelli 12, 27100, Pavia, Italy
| | - Ivan Bassanini
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", Consiglio Nazionale delle Ricerche, Via Mario Bianco 9, 20131, Milano, Italy
| | - Sergio Romeo
- Department of Pharmaceutical Sciences, University of Milan, via L. Mangiagalli 25, 20133, Milano, Italy; Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", Consiglio Nazionale delle Ricerche, Via Mario Bianco 9, 20131, Milano, Italy
| | - Mariangela Garofalo
- Department of Pharmaceutical Sciences, University of Padova, via F. Marzolo 5, 35131, Padova, Italy
| | - Matteo Mori
- Department of Pharmaceutical Sciences, University of Milan, via L. Mangiagalli 25, 20133, Milano, Italy.
| | - Fiorella Meneghetti
- Department of Pharmaceutical Sciences, University of Milan, via L. Mangiagalli 25, 20133, Milano, Italy
| | - Stefania Villa
- Department of Pharmaceutical Sciences, University of Milan, via L. Mangiagalli 25, 20133, Milano, Italy
| |
Collapse
|
2
|
Falbo E, Delre P, Lavecchia A. From Apo to Ligand-Bound: Unraveling PPARγ-LBD Conformational Shifts via Advanced Molecular Dynamics. ACS OMEGA 2025; 10:13303-13318. [PMID: 40224459 PMCID: PMC11983173 DOI: 10.1021/acsomega.4c11128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/05/2025] [Accepted: 02/11/2025] [Indexed: 04/15/2025]
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ) is a nuclear receptor whose ligand-induced conformational changes, primarily driven by helix 12 (H12) repositioning, regulate transcriptional activity. However, the precise mechanism remains elusive. In this study, we performed classical molecular dynamics (cMD) simulations of the PPARγ ligand binding domain (LBD) in complex with two agonists (BRL, 3EA), a partial agonist (GW0072), and an antagonist (EKP), generating 3 μs trajectories for each system. To gain deeper insights, we integrated machine learning-assisted clustering with MD simulations, revealing a favorable trend in binding free energy (ΔG b), suggesting enhanced complex stability. A case study on EKP demonstrated that, despite fitting within the binding site, it failed to induce rapid LBD or H12 rearrangements in the apo agonist-induced conformation. Additionally, we investigated the apo-state conformations of PPARγ-LBD influenced by agonist and antagonist ligands, utilizing cMD and Gaussian accelerated molecular dynamics (GaMD) over a cumulative 6 μs (3 μs cMD + 3 μs GaMD). Key residues known to modulate PPARγ function upon mutation were analyzed, and simulations confirmed the high stability of both apo and ligand-bound conformations. Notably, in the apo state, specific H12 residues interacted with other PPARγ-LBD regions, preventing disorder and abrupt transitions. These findings guided the selection of collective variables (CVs) for well-tempered metadynamics (WT-MetaD) simulations, which-in the apo-agonist state-captured the H12 shift from agonist- to antagonist-like conformations, consistent with resolved X-ray structures. Overall, this computational framework provides novel insights into PPARγ-LBD conformational dynamics and establishes a valuable approach for rationally assessing the effects of modulators on PPARγ activity.
Collapse
Affiliation(s)
| | | | - Antonio Lavecchia
- Department of Pharmacy, “Drug
Discovery Laboratory”, University
of Naples Federico II, via Domenico Montesano 49, I-80131 Naples, Italy
| |
Collapse
|
3
|
Chen F, Ma L, Liu Q, Zhou Z, Yi W. Recent advances and therapeutic applications of PPARγ-targeted ligands based on the inhibition mechanism of Ser273 phosphorylation. Metabolism 2025; 163:156097. [PMID: 39637972 DOI: 10.1016/j.metabol.2024.156097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/27/2024] [Accepted: 11/30/2024] [Indexed: 12/07/2024]
Abstract
PPARγ functions as a master ligand-dependent transcription factor that regulates the expressions of a variety of key genes related to metabolic homeostasis and inflammatory immunity. It has been recognized as a popular and druggable target in modern drug discovery. Similar to other nuclear receptors, PPARγ is a phosphoprotein, and its biological functions are regulated by phosphorylation, especially at Ser273 site which is mediated by CDK5 or ERK. In the past decade, the excessive level of PPARγ-Ser273 phosphorylation has been confirmed to be a crucial factor in promoting the occurrence and development of some major diseases. Ligands capable of inhibiting PPARγ-Ser273 phosphorylation have shown great potentials for treatment. Despite these achievements, to our knowledge, no related review focusing on this topic has been conducted so far. Therefore, we herein summarize the basic knowledge of PPARγ and CDK5/ERK-mediated PPARγ-Ser273 phosphorylation as well as its physiopathological role in representative diseases. We also review the developments and therapeutic applications of PPARγ-targeted ligands based on this mechanism. Finally, we suggest several directions for future investigations. We expect that this review can evoke more inspiration of scientific communities, ultimately facilitating the promotion of the PPARγ-Ser273 phosphorylation-involved mechanism as a promising breakthrough point for addressing the clinical treatment of human diseases.
Collapse
Affiliation(s)
- Fangyuan Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology, the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Lei Ma
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology, the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Qingmei Liu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology, the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Zhi Zhou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology, the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China.
| | - Wei Yi
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology, the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China.
| |
Collapse
|
4
|
Lian YE, Wang M, Ma L, Yi W, Liao S, Gao H, Zhou Z. Identification of Novel PPARγ Partial Agonists Based on Virtual Screening Strategy: In Silico and In Vitro Experimental Validation. Molecules 2024; 29:4881. [PMID: 39459249 PMCID: PMC11509912 DOI: 10.3390/molecules29204881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Thiazolidinediones (TZDs) including rosiglitazone and pioglitazone function as peroxisome proliferator-activated receptor gamma (PPARγ) full agonists, which have been known as a class to be among the most effective drugs for the treatment of type 2 diabetes mellitus (T2DM). However, side effects of TZDs such as fluid retention and weight gain are associated with their full agonistic activities toward PPARγ induced by the AF-2 helix-involved "locked" mechanism. Thereby, this study aimed to obtain novel PPARγ partial agonists without direct interaction with the AF-2 helix. Through performing virtual screening of the Targetmol L6000 Natural Product Library and utilizing molecular dynamics (MD) simulation, as well as molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) analysis, four compounds including tubuloside b, podophyllotoxone, endomorphin 1 and paliperidone were identified as potential PPARγ partial agonists. An in vitro TR-FRET competitive binding assay showed podophyllotoxone displayed the optimal binding affinity toward PPARγ among the screened compounds, exhibiting IC50 and ki values of 27.43 µM and 9.86 µM, respectively. Further cell-based transcription assays were conducted and demonstrated podophyllotoxone's weak agonistic activity against PPARγ compared to that of the PPARγ full agonist rosiglitazone. These results collectively demonstrated that podophyllotoxone could serve as a PPARγ partial agonist and might provide a novel candidate for the treatment of various diseases such as T2DM.
Collapse
Affiliation(s)
| | | | | | - Wei Yi
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | | | - Hui Gao
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Zhi Zhou
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| |
Collapse
|
5
|
Capelli D, Cazzaniga G, Mori M, Laghezza A, Loiodice F, Quaglia M, Negro E, Meneghetti F, Villa S, Montanari R. Biological Screening and Crystallographic Studies of Hydroxy γ-Lactone Derivatives to Investigate PPARγ Phosphorylation Inhibition. Biomolecules 2023; 13:biom13040694. [PMID: 37189440 DOI: 10.3390/biom13040694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/31/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
PPARγ represents a key target for the treatment of type 2 diabetes and metabolic syndrome. To avoid serious adverse effects related to the PPARγ agonism profile of traditional antidiabetic drugs, a new opportunity is represented by the development of molecules acting as inhibitors of PPARγ phosphorylation by the cyclin-dependent kinase 5 (CDK5). Their mechanism of action is mediated by the stabilization of the PPARγ β-sheet containing Ser273 (Ser245 in PPARγ isoform 1 nomenclature). In this paper, we report the identification of new γ-hydroxy-lactone-based PPARγ binders from the screening of an in-house library. These compounds exhibit a non-agonist profile towards PPARγ, and one of them prevents Ser245 PPARγ phosphorylation by acting mainly on PPARγ stabilization and exerting a weak CDK5 inhibitory effect.
Collapse
Affiliation(s)
- Davide Capelli
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Strada Provinciale 35d, n. 9-00010, Montelibretti, 34149 Rome, Italy
| | - Giulia Cazzaniga
- Department of Pharmaceutical Sciences, University of Milan, Via L. Mangiagalli 25, 20133 Milano, Italy
| | - Matteo Mori
- Department of Pharmaceutical Sciences, University of Milan, Via L. Mangiagalli 25, 20133 Milano, Italy
| | - Antonio Laghezza
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Via Orabona 4, 70125 Bari, Italy
| | - Fulvio Loiodice
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Via Orabona 4, 70125 Bari, Italy
| | - Martina Quaglia
- Department of Pharmaceutical Sciences, University of Milan, Via L. Mangiagalli 25, 20133 Milano, Italy
| | - Elisa Negro
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Strada Provinciale 35d, n. 9-00010, Montelibretti, 34149 Rome, Italy
| | - Fiorella Meneghetti
- Department of Pharmaceutical Sciences, University of Milan, Via L. Mangiagalli 25, 20133 Milano, Italy
| | - Stefania Villa
- Department of Pharmaceutical Sciences, University of Milan, Via L. Mangiagalli 25, 20133 Milano, Italy
| | - Roberta Montanari
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Strada Provinciale 35d, n. 9-00010, Montelibretti, 34149 Rome, Italy
| |
Collapse
|
6
|
Ballav S, Biswas B, Sahu VK, Ranjan A, Basu S. PPAR-γ Partial Agonists in Disease-Fate Decision with Special Reference to Cancer. Cells 2022; 11:3215. [PMID: 36291082 PMCID: PMC9601205 DOI: 10.3390/cells11203215] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/03/2022] [Accepted: 10/09/2022] [Indexed: 11/16/2023] Open
Abstract
Peroxisome proliferator-activated receptor-γ (PPAR-γ) has emerged as one of the most extensively studied transcription factors since its discovery in 1990, highlighting its importance in the etiology and treatment of numerous diseases involving various types of cancer, type 2 diabetes mellitus, autoimmune, dermatological and cardiovascular disorders. Ligands are regarded as the key determinant for the tissue-specific activation of PPAR-γ. However, the mechanism governing this process is merely a contradictory debate which is yet to be systematically researched. Either these receptors get weakly activated by endogenous or natural ligands or leads to a direct over-activation process by synthetic ligands, serving as complete full agonists. Therefore, fine-tuning on the action of PPAR-γ and more subtle modulation can be a rewarding approach which might open new avenues for the treatment of several diseases. In the recent era, researchers have sought to develop safer partial PPAR-γ agonists in order to dodge the toxicity induced by full agonists, akin to a balanced activation. With a particular reference to cancer, this review concentrates on the therapeutic role of partial agonists, especially in cancer treatment. Additionally, a timely examination of their efficacy on various other disease-fate decisions has been also discussed.
Collapse
Affiliation(s)
- Sangeeta Ballav
- Cancer and Translational Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune 411033, India
| | - Bini Biswas
- Cancer and Translational Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune 411033, India
| | - Vishal Kumar Sahu
- Cancer and Translational Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune 411033, India
| | - Amit Ranjan
- Cancer and Translational Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune 411033, India
| | - Soumya Basu
- Cancer and Translational Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune 411033, India
| |
Collapse
|
7
|
PPAR Alpha as a Metabolic Modulator of the Liver: Role in the Pathogenesis of Nonalcoholic Steatohepatitis (NASH). BIOLOGY 2022; 11:biology11050792. [PMID: 35625520 PMCID: PMC9138523 DOI: 10.3390/biology11050792] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 12/31/2022]
Abstract
Simple Summary In the context of liver disease, one of the more growing public health problems is the transition from simple steatosis to non-alcoholic steatohepatitis. Profound metabolic dysregulations linked to inflammation and hepatic injury are features of non-alcoholic steatohepatitis. Since the peroxisomal-proliferator-activated receptor alpha has long been considered one of the key transcriptional factors in hepatic metabolism, its role in the pathogenesis of non-alcoholic steatohepatitis is discussed in this review. Abstract The strong relationship between metabolic alterations and non-alcoholic steatohepatitis (NASH) suggests a pathogenic interplay. However, many aspects have not yet been fully clarified. Nowadays, NASH is becoming the main cause of liver-associated morbidity and mortality. Therefore, an effort to understand the mechanisms underlying the pathogenesis of NASH is critical. Among the nuclear receptor transcription factors, peroxisome-proliferator-activated receptor alpha (PPARα) is highly expressed in the liver, where it works as a pivotal transcriptional regulator of the intermediary metabolism. In this context, PPARα’s function in regulating the lipid metabolism is essential for proper liver functioning. Here, we review metabolic liver genes under the control of PPARα and discuss how this aspect can impact the inflammatory condition and pathogenesis of NASH.
Collapse
|
8
|
PPARγ transcription effect on naturally occurring O-prenyl cinnamaldehydes and cinnamyl alcohol derivatives. Future Med Chem 2021; 13:1175-1183. [PMID: 34013764 DOI: 10.4155/fmc-2021-0054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Background: PPARγ is known to be a key regulator of metabolism and storage of lipids and glucose and to be implicated in the pathology of severe syndromes like obesity, diabetes, atherosclerosis and cancer. Methods: As a continuation of the authors' studies on oxyprenylated secondary metabolites as effective PPARγ agonists, the authors describe herein the chemical synthesis of natural O-prenyl cinnamaldehydes and cinnamyl alcohols and preliminary data on their in vitro effects on PPARγ transcription. Results: Among the panel of eight compounds tested, three - namely, (2E)-3-(4-((E)3,7-dimethylocta-2,6-dienyloxy)-3-methoxyphenyl)acrylaldehyde, (2E)-3-(4-((E)3,7-dimethylocta-2,6-dienyloxy)-3-methoxyphenyl)prop-2-en-1-ol and boropinal A - exerted activity in a dose-dependent manner. Conclusion: O-prenyl cinnamaldehydes and cinnamyl alcohols have the potential to effectively interact with PPARγ receptor.
Collapse
|
9
|
Camerino GM, Tarantino N, Canfora I, De Bellis M, Musumeci O, Pierno S. Statin-Induced Myopathy: Translational Studies from Preclinical to Clinical Evidence. Int J Mol Sci 2021; 22:ijms22042070. [PMID: 33669797 PMCID: PMC7921957 DOI: 10.3390/ijms22042070] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/14/2021] [Accepted: 02/15/2021] [Indexed: 02/07/2023] Open
Abstract
Statins are the most prescribed and effective drugs to treat cardiovascular diseases (CVD). Nevertheless, these drugs can be responsible for skeletal muscle toxicity which leads to reduced compliance. The discontinuation of therapy increases the incidence of CVD. Thus, it is essential to assess the risk. In fact, many studies have been performed at preclinical and clinical level to investigate pathophysiological mechanisms and clinical implications of statin myotoxicity. Consequently, new toxicological aspects and new biomarkers have arisen. Indeed, these drugs may affect gene transcription and ion transport and contribute to muscle function impairment. Identifying a marker of toxicity is important to prevent or to cure statin induced myopathy while assuring the right therapy for hypercholesterolemia and counteracting CVD. In this review we focused on the mechanisms of muscle damage discovered in preclinical and clinical studies and highlighted the pathological situations in which statin therapy should be avoided. In this context, preventive or substitutive therapies should also be evaluated.
Collapse
Affiliation(s)
- Giulia Maria Camerino
- Section of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (G.M.C.); (N.T.); (I.C.); (M.D.B.)
| | - Nancy Tarantino
- Section of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (G.M.C.); (N.T.); (I.C.); (M.D.B.)
| | - Ileana Canfora
- Section of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (G.M.C.); (N.T.); (I.C.); (M.D.B.)
| | - Michela De Bellis
- Section of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (G.M.C.); (N.T.); (I.C.); (M.D.B.)
| | - Olimpia Musumeci
- Unit of Neurology and Neuromuscular Disorders, Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy;
| | - Sabata Pierno
- Section of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (G.M.C.); (N.T.); (I.C.); (M.D.B.)
- Correspondence:
| |
Collapse
|
10
|
Natural Compounds for the Prevention and Treatment of Cardiovascular and Neurodegenerative Diseases. Foods 2020; 10:foods10010029. [PMID: 33374186 PMCID: PMC7824130 DOI: 10.3390/foods10010029] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/15/2020] [Accepted: 12/22/2020] [Indexed: 12/12/2022] Open
Abstract
Secondary metabolites from plants and fungi are stimulating growing interest in consumers and, consequently, in the food and supplement industries. The beneficial effects of these natural compounds are being thoroughly studied and there are frequent updates about the biological activities of old and new molecules isolated from plants and fungi. In this article, we present a review of the most recent literature regarding the recent discovery of secondary metabolites through isolation and structural elucidation, as well as the in vitro and/or in vivo evaluation of their biological effects. In particular, the possibility of using these bioactive molecules in the prevention and/or treatment of widely spread pathologies such as cardiovascular and neurodegenerative diseases is discussed.
Collapse
|
11
|
Brunetti L, Carrieri A, Piemontese L, Tortorella P, Loiodice F, Laghezza A. Beyond the Canonical Endocannabinoid System. A Screening of PPAR Ligands as FAAH Inhibitors. Int J Mol Sci 2020; 21:ijms21197026. [PMID: 32987725 PMCID: PMC7582602 DOI: 10.3390/ijms21197026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 12/16/2022] Open
Abstract
In recent years, Peroxisome Proliferator-Activated Receptors (PPARs) have been connected to the endocannabinoid system. These nuclear receptors indeed mediate the effects of anandamide and similar substances such as oleoyl-ethanolamide and palmitoyl-ethanolamide. An increasing body of literature describing the interactions between the endocannabinoid system and PPARs has slowly but surely been accumulating over the past decade, and a multitarget approach involving these receptors and endocannabinoid degrading enzyme FAAH has been proposed for the treatment of inflammatory states, cancer, and Alzheimer’s disease. The lack of knowledge about compounds endowed with such an activity profile therefore led us to investigate a library of readily available, well-characterized PPAR agonists that we had synthesized over the years in order to find a plausible lead compound for further development. Moreover, we propose a rationalization of our results via a docking study, which sheds some light on the binding mode of these PPAR agonists to FAAH and opens the way for further research in this field.
Collapse
|
12
|
Leuci R, Brunetti L, Laghezza A, Tortorella P, Loiodice F, Piemontese L. A Review of Recent Patents (2016-2019) on Plant Food Supplements with Potential Application in the Treatment of Neurodegenerative and Metabolic Disorders. Recent Pat Food Nutr Agric 2020; 11:145-153. [PMID: 32167437 DOI: 10.2174/2212798411666200313145824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/09/2020] [Accepted: 02/14/2020] [Indexed: 12/11/2022]
Abstract
In the near future, it is expected that the prevalence of illnesses related to the increasing life expectancies and quality of life, such as neurodegenerative diseases and cardiovascular diseases related to metabolic disorders, will soar to unprecedented levels, leading to high socioeconomic costs. To address this rising threat, natural products are emerging as a novel strategy for the prevention and therapy of these ages- and lifestyle-related diseases, thanks to their high marketability and few side effects. In this patent review, we summarize selected patents for food supplements, functional and fortified foods, filed from 2016 to 2019, categorizing them based on the biological activity of their components.
Collapse
Affiliation(s)
- Rosalba Leuci
- Dipartimento di Farmacia-Scienze del Farmaco, Universita degli Studi di Bari "Aldo Moro", Via E. Orabona 4, I-70125 Bari, Italy
| | - Leonardo Brunetti
- Dipartimento di Farmacia-Scienze del Farmaco, Universita degli Studi di Bari "Aldo Moro", Via E. Orabona 4, I-70125 Bari, Italy
| | - Antonio Laghezza
- Dipartimento di Farmacia-Scienze del Farmaco, Universita degli Studi di Bari "Aldo Moro", Via E. Orabona 4, I-70125 Bari, Italy
| | - Paolo Tortorella
- Dipartimento di Farmacia-Scienze del Farmaco, Universita degli Studi di Bari "Aldo Moro", Via E. Orabona 4, I-70125 Bari, Italy
| | - Fulvio Loiodice
- Dipartimento di Farmacia-Scienze del Farmaco, Universita degli Studi di Bari "Aldo Moro", Via E. Orabona 4, I-70125 Bari, Italy
| | - Luca Piemontese
- Dipartimento di Farmacia-Scienze del Farmaco, Universita degli Studi di Bari "Aldo Moro", Via E. Orabona 4, I-70125 Bari, Italy
| |
Collapse
|
13
|
Laghezza A, Piemontese L, Tortorella P, Loiodice F. An update about the crucial role of stereochemistry on the effects of Peroxisome Proliferator-Activated Receptor ligands. Eur J Med Chem 2019; 176:326-342. [PMID: 31112893 DOI: 10.1016/j.ejmech.2019.05.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/16/2019] [Accepted: 05/06/2019] [Indexed: 10/26/2022]
Abstract
Peroxisome Proliferator-Activated Receptors (PPARs) are ligand-activated transcription factors that govern lipid and glucose homeostasis playing a central role in cardiovascular disease, obesity, and diabetes. These receptors show a high degree of stereoselectivity towards several classes of drugs. This review covers the most relevant findings that have been made in the last decade and takes into consideration only those compounds in which stereochemistry led to unexpected results or peculiar interactions with the receptors. These cases are reviewed and discussed with the aim to show how enantiomeric recognition originates at the molecular level. The structural characterization by crystallographic methods and docking experiments of complexes formed by PPARs with their ligands turns out to be an essential tool to explain receptor stereoselectivity.
Collapse
Affiliation(s)
- Antonio Laghezza
- Dipartimento Farmacia-Scienze Del Farmaco, Università Degli Studi di Bari "Aldo Moro", Via Orabona 4, 70125, Bari, Italy.
| | - Luca Piemontese
- Dipartimento Farmacia-Scienze Del Farmaco, Università Degli Studi di Bari "Aldo Moro", Via Orabona 4, 70125, Bari, Italy.
| | - Paolo Tortorella
- Dipartimento Farmacia-Scienze Del Farmaco, Università Degli Studi di Bari "Aldo Moro", Via Orabona 4, 70125, Bari, Italy.
| | - Fulvio Loiodice
- Dipartimento Farmacia-Scienze Del Farmaco, Università Degli Studi di Bari "Aldo Moro", Via Orabona 4, 70125, Bari, Italy.
| |
Collapse
|
14
|
Development of Fibrates as Important Scaffolds in Medicinal Chemistry. ChemMedChem 2019; 14:1051-1066. [DOI: 10.1002/cmdc.201900128] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Indexed: 12/13/2022]
|
15
|
Piemontese L. An innovative approach for the treatment of Alzheimer's disease: the role of peroxisome proliferator-activated receptors and their ligands in development of alternative therapeutic interventions. Neural Regen Res 2019; 14:43-45. [PMID: 30531068 PMCID: PMC6262998 DOI: 10.4103/1673-5374.241043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Alzheimer’s disease is a multifactorial pathology, for which no cure is currently available. Nowadays, researchers are moving towards a new hypothesis of the onset of the illness, linking it to a metabolic impairment. This innovative approach will lead to the identification of new targets for the preparation of new effective drugs. Peroxisome proliferator-activated receptors and their ligands are the ideal candidates to reach the necessary breakthrough to defeat this complicate disease.
Collapse
Affiliation(s)
- Luca Piemontese
- Dipartimento Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
16
|
Laghezza A, Piemontese L, Cerchia C, Montanari R, Capelli D, Giudici M, Crestani M, Tortorella P, Peiretti F, Pochetti G, Lavecchia A, Loiodice F. Identification of the First PPARα/γ Dual Agonist Able To Bind to Canonical and Alternative Sites of PPARγ and To Inhibit Its Cdk5-Mediated Phosphorylation. J Med Chem 2018; 61:8282-8298. [DOI: 10.1021/acs.jmedchem.8b00835] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Antonio Laghezza
- Dipartimento Farmacia-Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, Via Orabona 4, 70125 Bari, Italy
| | - Luca Piemontese
- Dipartimento Farmacia-Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, Via Orabona 4, 70125 Bari, Italy
| | - Carmen Cerchia
- Dipartimento di Farmacia, “Drug Discovery” Laboratory, Università degli Studi di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy
| | - Roberta Montanari
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Montelibretti, 00015 Monterotondo Stazione, Roma, Italy
| | - Davide Capelli
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Montelibretti, 00015 Monterotondo Stazione, Roma, Italy
| | - Marco Giudici
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy
| | - Maurizio Crestani
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy
| | - Paolo Tortorella
- Dipartimento Farmacia-Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, Via Orabona 4, 70125 Bari, Italy
| | - Franck Peiretti
- Aix Marseille Université, INSERM 1263, INRA 1260, C2VN, 13005 Marseille, France
| | - Giorgio Pochetti
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Montelibretti, 00015 Monterotondo Stazione, Roma, Italy
| | - Antonio Lavecchia
- Dipartimento di Farmacia, “Drug Discovery” Laboratory, Università degli Studi di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy
| | - Fulvio Loiodice
- Dipartimento Farmacia-Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, Via Orabona 4, 70125 Bari, Italy
| |
Collapse
|
17
|
Boubia B, Poupardin O, Barth M, Binet J, Peralba P, Mounier L, Jacquier E, Gauthier E, Lepais V, Chatar M, Ferry S, Thourigny A, Guillier F, Llacer J, Amaudrut J, Dodey P, Lacombe O, Masson P, Montalbetti C, Wettstein G, Luccarini JM, Legendre C, Junien JL, Broqua P. Design, Synthesis, and Evaluation of a Novel Series of Indole Sulfonamide Peroxisome Proliferator Activated Receptor (PPAR) α/γ/δ Triple Activators: Discovery of Lanifibranor, a New Antifibrotic Clinical Candidate. J Med Chem 2018; 61:2246-2265. [DOI: 10.1021/acs.jmedchem.7b01285] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Stéphanie Ferry
- Novalix, Boulevard Sebastien Brant Bioparc, 67405 Illkirch, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Functional role of PPAR-γ on the proliferation and migration of fibroblast-like synoviocytes in rheumatoid arthritis. Sci Rep 2017; 7:12671. [PMID: 28978936 PMCID: PMC5627284 DOI: 10.1038/s41598-017-12570-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 09/05/2017] [Indexed: 11/21/2022] Open
Abstract
Peroxisome proliferator-activated receptor (PPAR)-γ is involved in both normal physiological processes and pathology of various diseases. The purpose of this study was to explore the function and underlying mechanisms of PPAR-γ in rheumatoid arthritis (RA) fibroblast-like synoviocytes (FLSs) proliferation and migration. In the present study, we found PPAR-γ expression was remarkably reduced in RA synovium patient compare with OA and normal, as well as it was low-expression in Adjuvant-induced arthritis (AA). Moreover, inhibition PPAR-γ expression by T0070907 (12.5 μM) or PPAR-γ siRNA could promote FLSs proliferation and expressions of c-Myc, Cyclin D1, MMP-1, and MMP-9 in AA FLSs, except for TIPM-1. These date indicate that up-regulation of PPAR-γ may play a critical role in RA FLSs. Interestingly, co-incubation FLSs with Pioditazone (25 μM) and over expression vector with pEGFP-N1-PPAR-γ reduced proliferation and expressions of c-Myc, Cyclin D1, MMP-1, and MMP-9 in AA FLSs, besides TIMP-1. Further study indicates that PPAR-γ may induce activation Wnt/β-catenin signaling. In short, these results indicate that PPAR-γ may play a pivotal role during FLSs activation and activation of Wnt/β-catenin signaling pathway.
Collapse
|
19
|
Li HD, Chen X, Yang Y, Huang HM, Zhang L, Zhang X, Zhang L, Huang C, Meng XM, Li J. Wogonin attenuates inflammation by activating PPAR-γ in alcoholic liver disease. Int Immunopharmacol 2017. [DOI: 10.1016/j.intimp.2017.06.013] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
20
|
Pirat C, Dacquet C, Leclerc V, Hennuyer N, Beucher-Gaudin M, Zanirato G, Géant A, Staels B, Ktorza A, Farce A, Caignard DH, Berthelot P, Lebegue N. Anti-diabetic activity of fused PPARγ-SIRT1 ligands with limited body-weight gain by mimicking calorie restriction and decreasing SGK1 expression. Eur J Med Chem 2017; 137:310-326. [DOI: 10.1016/j.ejmech.2017.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/31/2017] [Accepted: 06/02/2017] [Indexed: 12/27/2022]
|
21
|
Herranz-López M, Olivares-Vicente M, Encinar JA, Barrajón-Catalán E, Segura-Carretero A, Joven J, Micol V. Multi-Targeted Molecular Effects of Hibiscus sabdariffa Polyphenols: An Opportunity for a Global Approach to Obesity. Nutrients 2017; 9:nu9080907. [PMID: 28825642 PMCID: PMC5579700 DOI: 10.3390/nu9080907] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 08/11/2017] [Accepted: 08/14/2017] [Indexed: 12/30/2022] Open
Abstract
Improper diet can alter gene expression by breaking the energy balance equation and changing metabolic and oxidative stress biomarkers, which can result in the development of obesity-related metabolic disorders. The pleiotropic effects of dietary plant polyphenols are capable of counteracting by modulating different key molecular targets at the cell, as well as through epigenetic modifications. Hibiscus sabdariffa (HS)-derived polyphenols are known to ameliorate various obesity-related conditions. Recent evidence leads to propose the complex nature of the underlying mechanism of action. This multi-targeted mechanism includes the regulation of energy metabolism, oxidative stress and inflammatory pathways, transcription factors, hormones and peptides, digestive enzymes, as well as epigenetic modifications. This article reviews the accumulated evidence on the multiple anti-obesity effects of HS polyphenols in cell and animal models, as well as in humans, and its putative molecular targets. In silico studies reveal the capacity of several HS polyphenols to act as putative ligands for different digestive and metabolic enzymes, which may also deserve further attention. Therefore, a global approach including integrated and networked omics techniques, virtual screening and epigenetic analysis is necessary to fully understand the molecular mechanisms of HS polyphenols and metabolites involved, as well as their possible implications in the design of safe and effective polyphenolic formulations for obesity.
Collapse
Affiliation(s)
- María Herranz-López
- Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández (UMH), Edificio Torregaitán, Elche 03202, Spain.
| | - Mariló Olivares-Vicente
- Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández (UMH), Edificio Torregaitán, Elche 03202, Spain.
| | - José Antonio Encinar
- Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández (UMH), Edificio Torregaitán, Elche 03202, Spain.
| | - Enrique Barrajón-Catalán
- Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández (UMH), Edificio Torregaitán, Elche 03202, Spain.
| | - Antonio Segura-Carretero
- Department of Analytical Chemistry, University of Granada, Avda. Fuentenueva s/n, Granada 18071, Spain.
- Research and Development of Functional Food Centre (CIDAF), PTS Granada, Avda. del Conocimiento s/n., Edificio BioRegión, Granada 18016, Spain.
| | - Jorge Joven
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus 43201, Spain.
| | - Vicente Micol
- Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández (UMH), Edificio Torregaitán, Elche 03202, Spain.
- CIBER: CB12/03/30038, Fisiopatología de la Obesidad y la Nutrición, CIBERobn, Instituto de Salud Carlos III (ISCIII), Palma de Mallorca 07122, Spain.
| |
Collapse
|
22
|
Hiremathad A, Piemontese L. Heterocyclic compounds as key structures for the interaction with old and new targets in Alzheimer's disease therapy. Neural Regen Res 2017; 12:1256-1261. [PMID: 28966636 PMCID: PMC5607816 DOI: 10.4103/1673-5374.213541] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2017] [Indexed: 12/18/2022] Open
Abstract
Nowadays, Alzheimer's disease (AD) is widely recognized as a real social problem. In fact, only five drugs are FDA approved for the therapy of this widespread neurodegenerative disease, but with low results so far. Three of them (rivastigmine, donepezil and galantamine) are acetylcholinesterase inhibitors, memantine is a N-methyl-D-aspartate receptor antagonist, whereas the fifth formulation is a combination of donepezil with memantine. The prevention and treatment of AD is the new challenge for pharmaceutical industry, as well as for public institutions, physicians, patients, and their families. The discovery of a new and safe way to cure this neurodegenerative disease is urgent and should not be delayed further. Because of the multiple origin of this pathology, a multi-target strategy is currently strongly pursued by researchers. In this review, we have discussed new structures designed to better the activity on the classical AD targets. We have also examined old and new potential drugs that could prove useful future for the therapy of the pathology by acting on innovative, not usual, and not yet fully explored targets like peroxisome proliferator-activated receptor (PPARs).
Collapse
Affiliation(s)
- Asha Hiremathad
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Kanakapura, Ramanagaram, Bangalore, India
| | - Luca Piemontese
- Dipartimento di Farmacia–Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, Bari, Italy
| |
Collapse
|
23
|
Piemontese L. New approaches for prevention and treatment of Alzheimer's disease: a fascinating challenge. Neural Regen Res 2017; 12:405-406. [PMID: 28469653 PMCID: PMC5399716 DOI: 10.4103/1673-5374.202942] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Luca Piemontese
- Dipartimento Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", Bari, Italy; Centro de Química Estrutural, Instituto Superior Técnico-Universidade Técnica de Lisboa, Lisboa, Portugal
| |
Collapse
|
24
|
Piemontese L. Plant Food Supplements with Antioxidant Properties for the Treatment of Chronic and Neurodegenerative Diseases: Benefits or Risks? J Diet Suppl 2016; 14:478-484. [PMID: 27893282 DOI: 10.1080/19390211.2016.1247936] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Wine by-products, in particular grape pomace, can be an important source of polyphenols and dietary fibers and are increasingly being used as a starting material in the industrial production of plant food supplements, such as other matrices containing biomolecules, with antioxidant properties. The risk associated with the consumption of these products was recently analyzed through a study of potential genotoxic and carcinogenic compounds that can be found in the marketed products. In particular, occurrence data about contamination with the mycotoxin ochratoxin A were also reported. This short review aims at giving an overview about the quality and benefits of these kinds of food supplements, and also about risks of incorrect use, focusing on the emerging need for stricter European regulations.
Collapse
Affiliation(s)
- Luca Piemontese
- a Dipartimento Farmacia-Scienze del Farmaco , Università degli Studi di Bari "Aldo Moro" , Bari , Italy.,b Istituto di Scienze delle Produzioni Alimentari , Consiglio Nazionale delle Ricerche (ISPA-CNR) , Bari , Italy
| |
Collapse
|
25
|
Screening of saponins and sapogenins from Medicago species as potential PPARγ agonists and X-ray structure of the complex PPARγ/caulophyllogenin. Sci Rep 2016; 6:27658. [PMID: 27283034 PMCID: PMC4901321 DOI: 10.1038/srep27658] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 05/18/2016] [Indexed: 01/01/2023] Open
Abstract
A series of saponins and sapogenins from Medicago species were tested for their ability to bind and activate the nuclear receptor PPARγ by SPR experiments and transactivation assay, respectively. The SPR analysis proved to be a very powerful and fast technique for screening a large number of compounds for their affinity to PPARγ and selecting the better candidates for further studies. Based on the obtained results, the sapogenin caulophyllogenin was proved to be a partial agonist towards PPARγ and the X-ray structure of its complex with PPARγ was also solved, in order to investigate the binding mode in the ligand binding domain of the nuclear receptor. This is the first known crystal structure of a sapogenin directly interacting with PPARγ. Another compound of the series, the echinocistic acid, showed antagonist activity towards PPARγ, a property that could be useful to inhibit the adipocyte differentiation which is a typical adverse effect of PPARγ agonists. This study confirms the interest on saponins and sapogenins as a valuable natural resource exploitable in the medical and food industry for ameliorating the metabolic syndrome.
Collapse
|
26
|
Huang C, Yang Y, Li WX, Wu XQ, Li XF, Ma TT, Zhang L, Meng XM, Li J. Hyperin attenuates inflammation by activating PPAR-γ in mice with acute liver injury (ALI) and LPS-induced RAW264.7 cells. Int Immunopharmacol 2015; 29:440-447. [DOI: 10.1016/j.intimp.2015.10.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/14/2015] [Accepted: 10/15/2015] [Indexed: 10/22/2022]
|
27
|
Review of the Structural and Dynamic Mechanisms of PPARγ Partial Agonism. PPAR Res 2015; 2015:816856. [PMID: 26435709 PMCID: PMC4578752 DOI: 10.1155/2015/816856] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 08/19/2015] [Indexed: 01/02/2023] Open
Abstract
PPARγ (peroxisome proliferator activated receptor γ) is a ligand activated transcription factor of the nuclear receptor superfamily that controls the expression of a variety of genes involved in fatty acid metabolism, adipogenesis, and insulin sensitivity. While endogenous ligands of PPARγ include fatty acids and eicosanoids, synthetic full agonists of the receptor, including members of the thiazolidinedione (TZD) class, have been widely prescribed for the treatment of type II diabetes mellitus (T2DM). Unfortunately, the use of full agonists has been hampered by harsh side effects with some removed from the market in many countries. In contrast, partial agonists of PPARγ have been shown to retain favourable insulin sensitizing effects while exhibiting little to no side effects and thus represent a new potential class of therapeutics for the treatment of T2DM. Partial agonists have been found to not only display differences in transcriptional and cellular outcomes, but also act through distinct structural and dynamic mechanisms within the ligand binding cavity compared to full agonists.
Collapse
|