1
|
Huang X, Chorianopoulou A, Kalkounou P, Georgiou M, Pousias A, Davies A, Pearce A, Harris M, Lambrinidis G, Marakos P, Pouli N, Kolocouris A, Lougiakis N, Ladds G. Hit-to-Lead Optimization of Heterocyclic Carbonyloxycarboximidamides as Selective Antagonists at Human Adenosine A3 Receptor. J Med Chem 2024; 67:13117-13146. [PMID: 39073853 PMCID: PMC11320584 DOI: 10.1021/acs.jmedchem.4c01092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/18/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024]
Abstract
Antagonism of the human adenosine A3 receptor (hA3R) has potential therapeutic application. Alchemical relative binding free energy calculations of K18 and K32 suggested that the combination of a 3-(2,6-dichlorophenyl)-isoxazolyl group with 2-pyridinyl at the ends of a carbonyloxycarboximidamide group should improve hA3R affinity. Of the 25 new analogues synthesized, 37 and 74 showed improved hA3R affinity compared to K18 (and K32). This was further improved through the addition of a bromine group to the 2-pyridinyl at the 5-position, generating compound 39. Alchemical relative binding free energy calculations, mutagenesis studies and MD simulations supported the compounds' binding pattern while suggesting that the bromine of 39 inserts deep into the hA3R orthosteric pocket, so highlighting the importance of rigidification of the carbonyloxycarboximidamide moiety. MD simulations highlighted the importance of rigidification of the carbonyloxycarboximidamide, while suggesting that the bromine of 39 inserts deep into the hA3R orthosteric pocket, which was supported through mutagenesis studies 39 also selectively antagonized endogenously expressed hA3R in nonsmall cell lung carcinoma cells, while pharmacokinetic studies indicated low toxicity enabling in vivo evaluation. We therefore suggest that 39 has potential for further development as a high-affinity hA3R antagonist.
Collapse
Affiliation(s)
- Xianglin Huang
- Department
of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, U.K.
| | - Anna Chorianopoulou
- Laboratory
of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department
of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou 15771, Athens, Greece
| | - Panagoula Kalkounou
- Laboratory
of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department
of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou 15771, Athens, Greece
| | - Maria Georgiou
- Laboratory
of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department
of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou 15771, Athens, Greece
| | - Athanasios Pousias
- Laboratory
of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department
of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou 15771, Athens, Greece
| | - Amy Davies
- Department
of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, U.K.
| | - Abigail Pearce
- Department
of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, U.K.
| | - Matthew Harris
- Department
of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, U.K.
| | - George Lambrinidis
- Laboratory
of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department
of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou 15771, Athens, Greece
| | - Panagiotis Marakos
- Laboratory
of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department
of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou 15771, Athens, Greece
| | - Nicole Pouli
- Laboratory
of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department
of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou 15771, Athens, Greece
| | - Antonios Kolocouris
- Laboratory
of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department
of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou 15771, Athens, Greece
| | - Nikolaos Lougiakis
- Laboratory
of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department
of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou 15771, Athens, Greece
| | - Graham Ladds
- Department
of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, U.K.
| |
Collapse
|
2
|
Cao X, He B, Liu F, Zhang Y, Xing L, Zhang N, Zhou Y, Gong C, Xue W. Design, synthesis and bioactivity of myricetin derivatives for control of fungal disease and tobacco mosaic virus disease. RSC Adv 2023; 13:6459-6465. [PMID: 36845581 PMCID: PMC9947517 DOI: 10.1039/d2ra08176h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/18/2023] [Indexed: 02/25/2023] Open
Abstract
A series of myricetin derivatives containing isoxazole were designed and synthesized. All the synthesized compounds were characterized by NMR and HRMS. In terms of antifungal activity, Y3 had a good inhibitory effect on Sclerotinia sclerotiorum (Ss), and the median effective concentration (EC50) value was 13.24 μg mL-1, which was better than azoxystrobin (23.04 μg mL-1) and kresoxim-methyl (46.35 μg mL-1). Release of cellular contents and cell membrane permeability experiments further revealed that Y3 causes the destruction of the cell membrane of the hyphae, which in turn plays an inhibitory role. The anti-tobacco mosaic virus (TMV) activity in vivo showed that Y18 had the best curative and protective activities, with EC50 values of 286.6 and 210.1 μg mL-1 respectively, the effect was better than ningnanmycin. Microscale thermophoresis (MST) data showed that Y18 had a strong binding affinity with tobacco mosaic virus coat protein (TMV-CP), with a dissociation constant (K d) value of 0.855 μM, which was better than ningnanmycin (2.244 μM). Further molecular docking revealed that Y18 interacts with multiple key amino acid residues of TMV-CP, which may hinder the self-assembly of TMV particles. Overall, after the introduction of isoxazole on the structure of myricetin, its anti-Ss and anti-TMV activities have been significantly improved, which can be further studied.
Collapse
Affiliation(s)
- Xiao Cao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 P. R. China +86-851-88292090 +86-851-88292090
| | - Bangcan He
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 P. R. China +86-851-88292090 +86-851-88292090
| | - Fang Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 P. R. China +86-851-88292090 +86-851-88292090
| | - Yuanquan Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 P. R. China +86-851-88292090 +86-851-88292090
| | - Li Xing
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 P. R. China +86-851-88292090 +86-851-88292090
| | - Nian Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 P. R. China +86-851-88292090 +86-851-88292090
| | - Yuanxiang Zhou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 P. R. China +86-851-88292090 +86-851-88292090
| | - Chenyu Gong
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 P. R. China +86-851-88292090 +86-851-88292090
| | - Wei Xue
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 P. R. China +86-851-88292090 +86-851-88292090
| |
Collapse
|
3
|
Kimura R, Sato Y, Morisaki K, Nishi T. [3 + 2] cycloaddition of 1-(4-Methoxybenzyl)indoles and azaindoles with nitrile oxides. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
4
|
Potenza M, Cavalluzzi MM, Milani G, Lauro G, Carino A, Roselli R, Fiorucci S, Zampella A, Pierri CL, Lentini G, Bifulco G. Inverse Virtual Screening for the rapid re-evaluation of the presumed biological safe profile of natural products. The case of steviol from Stevia rebaudiana glycosides on farnesoid X receptor (FXR). Bioorg Chem 2021; 111:104897. [PMID: 33901797 DOI: 10.1016/j.bioorg.2021.104897] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 01/20/2021] [Accepted: 04/05/2021] [Indexed: 10/21/2022]
Abstract
Nonnutritive sweeteners (NNSs) are widely employed as dietary substitutes for classical sugars thanks to their safety profile and low toxicity. In this study, a re-evaluation of the biological effects of steviol (1), the main metabolite from Stevia rebaudiana glycosides, was performed using the Inverse Virtual Screening (IVS) target fishing computational approach. Starting from well-known pharmacological properties of Stevia rebaudiana glycosides, this computational tool was employed for predicting the putative interacting targets of 1 and, afterwards, of its five synthetic ester derivatives 2-6, accounting a large panel of proteins involved in cancer and inflammation events. Applying this methodology, the farnesoid X receptor (FXR) was identified as the putative target partner of 1-6. The predicted ligand-protein interactions were corroborated by transactivation assays, specifically disclosing the agonistic activity of 1 and the antagonistic activities of 2-6 on FXR. The reported results highlight the feasibility of IVS as a fast and potent tool for predicting the interacting targets of query compounds, addressing the re-evaluation of their bioactivity. In light of the obtained results, the presumably safe profile of known compounds, such as the case of steviol (1), is critically discussed.
Collapse
Affiliation(s)
- Marianna Potenza
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano 84084, Italy
| | - Maria Maddalena Cavalluzzi
- Department of Pharmacy - Drug Sciences, University of Bari Aldo Moro, Via Edoardo Orabona, 4, Bari 70126, Italy
| | - Gualtiero Milani
- Department of Pharmacy - Drug Sciences, University of Bari Aldo Moro, Via Edoardo Orabona, 4, Bari 70126, Italy
| | - Gianluigi Lauro
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano 84084, Italy
| | - Adriana Carino
- Department of Surgery and Biomedical Sciences, Nuova facoltà di Medicina, Perugia, Italy
| | - Rosalinda Roselli
- Department of Pharmacy, University of Naples, Via Domenico Montesano, 49, Naples 80131, Italy
| | - Stefano Fiorucci
- Department of Surgery and Biomedical Sciences, Nuova facoltà di Medicina, Perugia, Italy
| | - Angela Zampella
- Department of Pharmacy, University of Naples, Via Domenico Montesano, 49, Naples 80131, Italy
| | - Ciro Leonardo Pierri
- Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari Aldo Moro, Via Edoardo Orabona, 4, Bari 70126, Italy
| | - Giovanni Lentini
- Department of Pharmacy - Drug Sciences, University of Bari Aldo Moro, Via Edoardo Orabona, 4, Bari 70126, Italy
| | - Giuseppe Bifulco
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano 84084, Italy.
| |
Collapse
|
5
|
Delpe-Acharige A, Zhang M, Eschliman K, Dalecki A, Covarrubias-Zambrano O, Minjarez-Almeida A, Shrestha T, Lewis T, Al-Ibrahim F, Leonard S, Roberts R, Tebeje A, Malalasekera AP, Wang H, Kalubowilage M, Wolschendorf F, Kutsch O, Bossmann SH. Pyrazolyl Thioureas and Carbothioamides with an NNSN Motif against MSSA and MRSA. ACS OMEGA 2021; 6:6088-6099. [PMID: 33718700 PMCID: PMC7948249 DOI: 10.1021/acsomega.0c04513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 01/20/2021] [Indexed: 05/27/2023]
Abstract
A novel series of copper-activatable drugs intended for use against methicillin-sensitive Staphylococcus aureus (MSSA) and methicillin-resistant S. aureus (MRSA) were synthesized, characterized, and tested against the MSSA strain Newman and the MRSA Lac strain (a USA300 strain), respectively. These drugs feature an NNSN structural motif, which enables the binding of copper. In the absence of copper, no activity against MSSA and MRSA at realistic drug concentrations was observed. Although none of the novel drug candidates exhibits a stereocenter, sub-micromolar activities against SA Newman and micromolar activities against SA Lac were observed in the presence, but not in the absence, of bioavailable copper. Copper influx is a component of cellular response to bacterial infections, which is often described as nutritional immunity.
Collapse
Affiliation(s)
- Anjana Delpe-Acharige
- Department
of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Man Zhang
- Department
of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Kayla Eschliman
- Department
of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Alex Dalecki
- Department
of Medicine, University of Alabama at Birmingham, 845 19th Street S, Birmingham, Alabama 35294, United States
| | | | | | - Tejaswi Shrestha
- Department
of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Tanji Lewis
- Department
of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Fatimah Al-Ibrahim
- Department
of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Sophia Leonard
- Department
of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Riana Roberts
- Department
of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Anteneh Tebeje
- Department
of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Aruni P. Malalasekera
- Department
of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Hongwang Wang
- Department
of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Madumali Kalubowilage
- Department
of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Frank Wolschendorf
- Department
of Medicine, University of Alabama at Birmingham, 845 19th Street S, Birmingham, Alabama 35294, United States
| | - Olaf Kutsch
- Department
of Medicine, University of Alabama at Birmingham, 845 19th Street S, Birmingham, Alabama 35294, United States
| | - Stefan H. Bossmann
- Department
of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
- Department
of Cancer Biology, The University of Kansas
Cancer Center, 3901 Rainbow
Blvd, Kansas City, Kansas 66160, United States
| |
Collapse
|
6
|
De Marino S, Festa C, Sepe V, Zampella A. Chemistry and Pharmacology of GPBAR1 and FXR Selective Agonists, Dual Agonists, and Antagonists. Handb Exp Pharmacol 2019; 256:137-165. [PMID: 31201554 DOI: 10.1007/164_2019_237] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In the recent years, bile acid receptors FXR and GPBAR1 have attracted the interest of scientific community and companies, as they proved promising targets for the treatment of several diseases, ranging from liver cholestatic disorders to metabolic syndrome, inflammatory states, nonalcoholic steatohepatitis (NASH), and diabetes.Consequently, the development of dual FXR/GPBAR1 agonists, as well as selective targeting of one of these receptors, is considered a hopeful possibility in the treatment of these disorders. Because endogenous bile acids and steroidal ligands, which cover the same chemical space of bile acids, often target both receptor families, speculation on nonsteroidal ligands represents a promising and innovative strategy to selectively target GPBAR1 or FXR.In this review, we summarize the most recent acquisition on natural, semisynthetic, and synthetic steroidal and nonsteroidal ligands, able to interact with FXR and GPBAR1.
Collapse
Affiliation(s)
- Simona De Marino
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Carmen Festa
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Valentina Sepe
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Angela Zampella
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy.
| |
Collapse
|
7
|
Schmidt J, Schierle S, Gellrich L, Kaiser A, Merk D. Structural optimization and in vitro profiling of N-phenylbenzamide-based farnesoid X receptor antagonists. Bioorg Med Chem 2018; 26:4240-4253. [PMID: 30026040 DOI: 10.1016/j.bmc.2018.07.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 07/08/2018] [Accepted: 07/10/2018] [Indexed: 02/06/2023]
Abstract
Activation of the nuclear farnesoid X receptor (FXR) which acts as cellular bile acid sensor has been validated as therapeutic strategy to counter liver disorders such as non-alcoholic steatohepatitis by the clinical efficacy of obeticholic acid. FXR antagonism, in contrast, is less well studied and potent small molecule FXR antagonists are rare. Here we report the systematic optimization of a novel class of FXR antagonists towards low nanomolar potency. The most optimized compound antagonizes baseline and agonist induced FXR activity in a full length FXR reporter gene assay and represses intrinsic expression of FXR regulated genes in hepatoma cells. With this activity and a favorable toxicity-, stability- and selectivity-profile it appears suitable to further study FXR antagonism in vitro and in vivo.
Collapse
Affiliation(s)
- Jurema Schmidt
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| | - Simone Schierle
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| | - Leonie Gellrich
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| | - Astrid Kaiser
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| | - Daniel Merk
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany.
| |
Collapse
|
8
|
Szilágyi B, Kovács P, Ferenczy GG, Rácz A, Németh K, Visy J, Szabó P, Ilas J, Balogh GT, Monostory K, Vincze I, Tábi T, Szökő É, Keserű GM. Discovery of isatin and 1H-indazol-3-ol derivatives as d-amino acid oxidase (DAAO) inhibitors. Bioorg Med Chem 2018; 26:1579-1587. [DOI: 10.1016/j.bmc.2018.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/27/2018] [Accepted: 02/03/2018] [Indexed: 01/23/2023]
|
9
|
Vydzhak RN, Panchishin SY, Brovarets VS. Alkylation of 1-Alkyl-3-methyl-1,4-dihydropyrazolo[4,3-c]pyrazoles with Halocarboxylic Acids Esters. RUSS J GEN CHEM+ 2018. [DOI: 10.1134/s107036321802007x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
10
|
Roslan II, Ng KH, Chuah GK, Jaenicke S. Reagent-controlled regiodivergent intermolecular cyclization of 2-aminobenzothiazoles with β-ketoesters and β-ketoamides. Beilstein J Org Chem 2017; 13:2739-2750. [PMID: 29564009 PMCID: PMC5753174 DOI: 10.3762/bjoc.13.270] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 12/05/2017] [Indexed: 12/12/2022] Open
Abstract
Two regiodivergent approaches to intermolecular cyclization of 2-aminobenzothiazoles with β-ketoesters and amides have been developed, controlled by the reagents employed. With the Brønsted base KOt-Bu and CBrCl3 as radical initiator, benzo[d]imidazo[2,1-b]thiazoles are synthesized via attack at the α-carbon and keto carbon of the β-ketoester moiety. In contrast, switching to the Lewis acid catalyst, In(OTf)3, results in the regioselective nucleophilic attack at both carbonyl groups forming benzo[4,5]thiazolo[3,2-a]pyrimidin-4-ones instead.
Collapse
Affiliation(s)
- Irwan Iskandar Roslan
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| | - Kian-Hong Ng
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| | - Gaik-Khuan Chuah
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| | - Stephan Jaenicke
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| |
Collapse
|
11
|
Synthesis and Molecular Modeling Studies of N'-Hydroxyindazolecarboximidamides as Novel Indoleamine 2,3-Dioxygenase 1 (IDO1) Inhibitors. Molecules 2017; 22:molecules22111936. [PMID: 29120388 PMCID: PMC6150275 DOI: 10.3390/molecules22111936] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/08/2017] [Accepted: 11/08/2017] [Indexed: 11/28/2022] Open
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1) is an immunosuppressive enzyme that is highly overexpressed in various cancer cells and antigen-presenting cells. It has emerged as an attractive therapeutic target for cancer immunotherapy, which has prompted high interest in the development of small-molecule inhibitors. To discover novel IDO1 inhibitors, we designed and synthesized a series of N′-hydroxyindazolecarboximidamides. Among the compounds synthesized, compound 8a inhibited both tryptophan depletion and kynurenine production through the IDO1 enzyme. Molecular docking studies revealed that 8a binds to IDO1 with the same binding mode as the analog, epacadostat (INCB24360). Here, we report the synthesis and biological evaluation of these hydroxyindazolecarboximidamides and present the molecular docking study of 8a with IDO1.
Collapse
|
12
|
Gütz C, Stenglein A, Waldvogel SR. Highly Modular Flow Cell for Electroorganic Synthesis. Org Process Res Dev 2017. [DOI: 10.1021/acs.oprd.7b00123] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Christoph Gütz
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Andreas Stenglein
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Siegfried R. Waldvogel
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| |
Collapse
|
13
|
Vydzhak RN, Panchishin SY, Brovarets VS. Alkylation of 4-(phenylthio)-1H-pyrazol-5-ols with methyl bromoacetate. RUSS J GEN CHEM+ 2017. [DOI: 10.1134/s107036321702013x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Teno N, Iguchi Y, Yamashita Y, Mori N, Une M, Nishimaki-Mogami T, Gohda K. Discovery and optimization of benzimidazole derivatives as a novel chemotype of farnesoid X receptor (FXR) antagonists. Bioorg Med Chem 2017; 25:1787-1794. [PMID: 28190654 DOI: 10.1016/j.bmc.2017.01.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/22/2017] [Accepted: 01/23/2017] [Indexed: 02/08/2023]
Abstract
We describe here a novel chemotype with substituted benzimidazole scaffold for nonsteroidal farnesoid X receptor (FXR) antagonists starting from the identification of a screening hit, BB-4. Structure diversity in four regions A-D of BB-4 or 1 is discussed. In particular, regions A and C had an effect on an antagonism against FXR as demonstrated by the derivatives represented by 7 and 15, respectively. Thus, compound 19 arising from the combination of regions A and C underscored an important fact on antagonism against FXR, also showing the reduced small heterodimer partner and the increased cholesterol 7α-hydroxylase expression levels.
Collapse
Affiliation(s)
- Naoki Teno
- Hiroshima International University, Faculty of Clinical Nutrition, 5-1-1, Hirokoshingai, Kure, Hiroshima 737-0112, Japan.
| | - Yusuke Iguchi
- Hiroshima International University, Faculty of Pharmaceutical Sciences, 5-1-1, Hirokoshingai, Kure, Hiroshima 737-0112, Japan
| | - Yukiko Yamashita
- Hiroshima International University, Faculty of Pharmaceutical Sciences, 5-1-1, Hirokoshingai, Kure, Hiroshima 737-0112, Japan
| | - Nobuhiro Mori
- Hiroshima International University, Faculty of Clinical Nutrition, 5-1-1, Hirokoshingai, Kure, Hiroshima 737-0112, Japan
| | - Mizuho Une
- Hiroshima International University, Faculty of Pharmaceutical Sciences, 5-1-1, Hirokoshingai, Kure, Hiroshima 737-0112, Japan
| | | | - Keigo Gohda
- Computer-aided Molecular Modeling Research Center, Kansai (CAMM-Kansai), 3-32-302, Tsuto-Otsuka, Nishinomiya 663-8241, Japan
| |
Collapse
|
15
|
Méndez-Sánchez D, Lavandera I, Gotor V, Gotor-Fernández V. Novel chemoenzymatic oxidation of amines into oximes based on hydrolase-catalysed peracid formation. Org Biomol Chem 2017; 15:3196-3201. [DOI: 10.1039/c7ob00374a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The efficient transformation of benzylamines into the corresponding oximes has been described by means of a chemoenzymatic process.
Collapse
Affiliation(s)
- Daniel Méndez-Sánchez
- Departamento de Química Orgánica e Inorgánica
- Instituto Universitario de Biotecnología de Asturias
- Universidad de Oviedo
- 33006 Oviedo
- Spain
| | - Iván Lavandera
- Departamento de Química Orgánica e Inorgánica
- Instituto Universitario de Biotecnología de Asturias
- Universidad de Oviedo
- 33006 Oviedo
- Spain
| | - Vicente Gotor
- Departamento de Química Orgánica e Inorgánica
- Instituto Universitario de Biotecnología de Asturias
- Universidad de Oviedo
- 33006 Oviedo
- Spain
| | - Vicente Gotor-Fernández
- Departamento de Química Orgánica e Inorgánica
- Instituto Universitario de Biotecnología de Asturias
- Universidad de Oviedo
- 33006 Oviedo
- Spain
| |
Collapse
|
16
|
Xu Y. Recent Progress on Bile Acid Receptor Modulators for Treatment of Metabolic Diseases. J Med Chem 2016; 59:6553-79. [DOI: 10.1021/acs.jmedchem.5b00342] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Yanping Xu
- Lilly Research
Laboratories, Eli Lilly and Company, Lilly Corporate Center, DC 1910, Indianapolis, Indiana 46285, United States
| |
Collapse
|