1
|
Almeida AF, Miranda MS, Reis RL, Gomes ME, Rodrigues MT. Using Hybrid Nanoplatforms to Combine Traditional Anti-Inflammatory Drug Delivery with RNA-Based Therapeutics for Macrophage Reprograming. Int J Mol Sci 2024; 25:10693. [PMID: 39409023 PMCID: PMC11476774 DOI: 10.3390/ijms251910693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/16/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
There is growing evidence on the significant role of prolonged inflammation in triggering and progressing of numerous diseases with substantial health and socioeconomic impacts, such as musculoskeletal, cardiovascular and autoimmune disorders, and cancer. Therefore, there is an urgent need to develop therapies that can overcome the main challenges of currently used approaches, such as non-target action, partial modulation of the complex inflammatory pathways, and short-term effects, to effectively manage and resolve chronic inflammatory states. This work investigates the therapeutic synergy of clinically relevant anti-inflammatory agents approaching naïve and classically activated macrophages owing to their central role in inflammation. Aiming at human therapies, a dual-loading nanoplatform reunites molecules with different physico-chemical properties in a single system, seeking to more effectively and comprehensively regulate macrophage functions for precision cell guidance and greater versatility in disease managing. To build this platform, palmitic acid grafted chitosan, superparamagnetic iron oxide nanoparticles, the clinically approved NSAID celecoxib (also known as Celebrex®), and RNA technologies were combined into superparamagnetic polymeric micelles (SPMs). Our findings demonstrated that traditional anti-inflammatory drugs such as celecoxib and microRNA molecules were efficiently delivered by the SPMs, altering the inflammatory profile of naïve (M0φ) and M1-primed macrophages (M1φ) assessed by gene and protein expression. The impact of the dual-loaded SPMs in naïve Mφ is an interesting finding towards the modulation of the initial immune response, reducing the potential for chronic inflammation and promoting tissue healing. Collectively, these encouraging results demonstrate the promise of multi-nanomedicine strategies to enhance the efficacy of therapeutic interventions by offering a fresh approach to more precisely and carefully regulated nanotherapeutics delivery.
Collapse
Affiliation(s)
- Ana F. Almeida
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; (A.F.A.); (M.S.M.); (R.L.R.)
- ICVS/3B’s–PT Government Associate Laboratory, 4710-057 Braga, Guimarães, Portugal
| | - Margarida S. Miranda
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; (A.F.A.); (M.S.M.); (R.L.R.)
- ICVS/3B’s–PT Government Associate Laboratory, 4710-057 Braga, Guimarães, Portugal
| | - Rui L. Reis
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; (A.F.A.); (M.S.M.); (R.L.R.)
- ICVS/3B’s–PT Government Associate Laboratory, 4710-057 Braga, Guimarães, Portugal
| | - Manuela E. Gomes
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; (A.F.A.); (M.S.M.); (R.L.R.)
- ICVS/3B’s–PT Government Associate Laboratory, 4710-057 Braga, Guimarães, Portugal
| | - Márcia T. Rodrigues
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; (A.F.A.); (M.S.M.); (R.L.R.)
- ICVS/3B’s–PT Government Associate Laboratory, 4710-057 Braga, Guimarães, Portugal
| |
Collapse
|
2
|
Kaur J, Bhardwaj A, Wuest F. Fluorine-18 Labelled Radioligands for PET Imaging of Cyclooxygenase-2. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123722. [PMID: 35744851 PMCID: PMC9227202 DOI: 10.3390/molecules27123722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 11/18/2022]
Abstract
Molecular imaging probes enable the early and accurate detection of disease-specific biomarkers and facilitate personalized treatment of many chronic diseases, including cancer. Among current clinically used functional imaging modalities, positron emission tomography (PET) plays a significant role in cancer detection and in monitoring the response to therapeutic interventions. Several preclinical and clinical studies have demonstrated the crucial involvement of cyclooxygenase-2 (COX-2) isozyme in cancer development and progression, making COX-2 a promising cancer biomarker. A variety of COX-2-targeting PET radioligands has been developed based on anti-inflammatory drugs and selective COX-2 inhibitors. However, many of those suffer from non-specific binding and insufficient metabolic stability. This article highlights examples of COX-2-targeting PET radioligands labelled with the short-lived positron emitter 18F, including radiosynthesis and PET imaging studies published in the last decade (2012–2021).
Collapse
Affiliation(s)
- Jatinder Kaur
- Department of Oncology, University of Alberta, Edmonton, AB T6G 1Z2, Canada;
- Correspondence: (J.K.); (F.W.)
| | - Atul Bhardwaj
- Department of Oncology, University of Alberta, Edmonton, AB T6G 1Z2, Canada;
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| | - Frank Wuest
- Department of Oncology, University of Alberta, Edmonton, AB T6G 1Z2, Canada;
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 1Z2, Canada
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 1Z2, Canada
- Correspondence: (J.K.); (F.W.)
| |
Collapse
|
3
|
Chen Z, Haider A, Chen J, Xiao Z, Gobbi L, Honer M, Grether U, Arnold SE, Josephson L, Liang SH. The Repertoire of Small-Molecule PET Probes for Neuroinflammation Imaging: Challenges and Opportunities beyond TSPO. J Med Chem 2021; 64:17656-17689. [PMID: 34905377 PMCID: PMC9094091 DOI: 10.1021/acs.jmedchem.1c01571] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Neuroinflammation is an adaptive response of the central nervous system to diverse potentially injurious stimuli, which is closely associated with neurodegeneration and typically characterized by activation of microglia and astrocytes. As a noninvasive and translational molecular imaging tool, positron emission tomography (PET) could provide a better understanding of neuroinflammation and its role in neurodegenerative diseases. Ligands to translator protein (TSPO), a putative marker of neuroinflammation, have been the most commonly studied in this context, but they suffer from serious limitations. Herein we present a repertoire of different structural chemotypes and novel PET ligand design for classical and emerging neuroinflammatory targets beyond TSPO. We believe that this Perspective will support multidisciplinary collaborations in academic and industrial institutions working on neuroinflammation and facilitate the progress of neuroinflammation PET probe development for clinical use.
Collapse
Affiliation(s)
- Zhen Chen
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, United States
| | - Ahmed Haider
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, United States
| | - Jiahui Chen
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, United States
| | - Zhiwei Xiao
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, United States
| | - Luca Gobbi
- Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| | - Michael Honer
- Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| | - Uwe Grether
- Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| | - Steven E. Arnold
- Department of Neurology and the Massachusetts Alzheimer’s Disease Research Center, Massachusetts General Hospital, Harvard Medical School, 114 16th Street, Charlestown, Massachusetts 02129, USA
| | - Lee Josephson
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, United States
| | - Steven H. Liang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, United States
| |
Collapse
|
4
|
Dagallier C, Avry F, Touchefeu Y, Buron F, Routier S, Chérel M, Arlicot N. Development of PET Radioligands Targeting COX-2 for Colorectal Cancer Staging, a Review of in vitro and Preclinical Imaging Studies. Front Med (Lausanne) 2021; 8:675209. [PMID: 34169083 PMCID: PMC8217454 DOI: 10.3389/fmed.2021.675209] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/03/2021] [Indexed: 12/29/2022] Open
Abstract
Colorectal cancer (CRC) is the second most common cause of cancer death, making early diagnosis a major public health challenge. The role of inflammation in tumorigenesis has been extensively explored, and among the identified markers of inflammation, cyclooxygenase-2 (COX-2) expression seems to be linked to lesions with a poor prognosis. Until now, COX-2 expression could only be accessed by invasive methods, mainly by biopsy. Imaging techniques such as functional Positron Emission Tomography (PET) could give access to in vivo COX-2 expression. This could make the staging of the disease more accurate and would be of particular interest in the exploration of the first metastatic stages. In this paper, we review recent progress in the development of COX-2 specific PET tracers by comparing the radioligands' characteristics and highlighting the obstacles that remain to be overcome in order to achieve the clinical development of such a radiotracer, and its evaluation in the management of CRC.
Collapse
Affiliation(s)
- Caroline Dagallier
- Unité de Radiopharmacie, CHRU de Tours, Tours, France.,Inserm UMR1253, iBrain, Université de Tours, Tours, France
| | - François Avry
- Inserm UMR1253, iBrain, Université de Tours, Tours, France
| | - Yann Touchefeu
- CRCINA, INSERM, CNRS, Nantes University, Nantes, France.,Institut des Maladies de l'Appareil Digestif, University Hospital, Nantes, France
| | - Frédéric Buron
- ICOA, Université d'Orléans, UMR CNRS 7311, Orléans, France
| | | | - Michel Chérel
- CRCINA, INSERM, CNRS, Nantes University, Nantes, France
| | - Nicolas Arlicot
- Unité de Radiopharmacie, CHRU de Tours, Tours, France.,Inserm UMR1253, iBrain, Université de Tours, Tours, France.,INSERM CIC 1415, CHRU de Tours, Tours, France
| |
Collapse
|
5
|
Prabhakaran J, Molotkov A, Mintz A, Mann JJ. Progress in PET Imaging of Neuroinflammation Targeting COX-2 Enzyme. Molecules 2021; 26:molecules26113208. [PMID: 34071951 PMCID: PMC8198977 DOI: 10.3390/molecules26113208] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/12/2021] [Accepted: 05/24/2021] [Indexed: 01/01/2023] Open
Abstract
Neuroinflammation and cyclooxygenase-2 (COX-2) upregulation are associated with the pathogenesis of degenerative brain diseases such as Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), epilepsy, and a response to traumatic brain injury (TBI) or stroke. COX-2 is also induced in acute pain, depression, schizophrenia, various cancers, arthritis and in acute allograft rejection. Positron emission tomography (PET) imaging allows for the direct measurement of in vivo COX-2 upregulation and thereby enables disease staging, therapy evaluation and aid quantifying target occupancy of novel nonsteroidal anti-inflammatory drugs or NSAIDs. Thus far, no clinically useful radioligand is established for monitoring COX-2 induction in brain diseases due to the delay in identifying qualified COX-2-selective inhibitors entering the brain. This review examines radiolabeled COX-2 inhibitors reported in the past decade and identifies the most promising radioligands for development as clinically useful PET radioligands. Among the radioligands reported so far, the three tracers that show potential for clinical translation are, [11CTMI], [11C]MC1 and [18F]MTP. These radioligands demonstrated BBB permeablity and in vivo binding to constitutive COX-2 in the brain or induced COX-2 during neuroinflammation.
Collapse
Affiliation(s)
- Jaya Prabhakaran
- Department of Psychiatry, Columbia University Medical Center, New York, NY 10032, USA;
- Correspondence:
| | - Andrei Molotkov
- Department of Radiology, Columbia University Medical Center, New York, NY 10032, USA; (A.M.); (A.M.)
| | - Akiva Mintz
- Department of Radiology, Columbia University Medical Center, New York, NY 10032, USA; (A.M.); (A.M.)
- Area Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY 10032, USA
| | - J. John Mann
- Department of Psychiatry, Columbia University Medical Center, New York, NY 10032, USA;
- Area Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY 10032, USA
| |
Collapse
|
6
|
Hernández-Valdés D, Sadeghi S. Electrochemical Radiofluorination of Small Molecules: New Advances. CHEM REC 2021; 21:2397-2410. [PMID: 34010479 DOI: 10.1002/tcr.202100086] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/20/2021] [Indexed: 12/14/2022]
Abstract
The development of new 18 F-based radiopharmaceuticals constantly demands innovations in the search for new radiofluorination methods. [18 F]fluoride is the simplest and most convenient chemical form of the isotope for the synthesis of 18 F-based radiopharmaceuticals. The ease of production and handling, as well as the possibility of obtaining high molar activities, makes it the preferred choice for radiofluorination. However, the use of [18 F]fluoride in late-stage radiofluorination comes with challenges, especially for the radiolabeling of electron-rich molecules where SN 2 and SN Ar reactions are not suitable. New developments in fluorination chemistry have been extensively studied to overcome these difficulties. Selective electrochemical oxidation of precursors, using a controlled potential, is one method to create reactive intermediates and overcome the activation energy required for nucleophilic fluorination of electron-rich moieties. This method has been used for years in cold fluorination of organic molecules and more recently has been adapted as an alternative to traditional radiofluorination methods. Although relatively young, this field stands out as a promising route for the synthesis of new PET probes as well as fluorinated pharmaceuticals. This review focuses on recent advances in electrochemical radiofluorination as an alternative for the late-stage radiolabeling of organic molecules.
Collapse
Affiliation(s)
- Daniel Hernández-Valdés
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4 L8, Canada
| | - Saman Sadeghi
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4 L8, Canada.,Department of Molecular and Medical Pharmacology and Crump Institute for Molecular Imaging, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
7
|
Wang M, Liu T, Chen S, Wu M, Han J, Li Z. Design and synthesis of 3-(4-pyridyl)-5-(4-sulfamido-phenyl)-1,2,4-oxadiazole derivatives as novel GSK-3β inhibitors and evaluation of their potential as multifunctional anti-Alzheimer agents. Eur J Med Chem 2021; 209:112874. [PMID: 33017743 DOI: 10.1016/j.ejmech.2020.112874] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 01/01/2023]
Abstract
Pleiotropic intervention has prominent advantages for complex pathomechanisms, such as Alzheimer's disease (AD). In this study, a series of novel 3-(4-pyridyl)-5-(4- sulfamido-phenyl)-1,2,4-oxadiazole derivatives were designed and synthesized following the multitarget-directed ligand-based strategy. All compounds were evaluated for glycogen synthase kinase 3β (GSK-3β) inhibition and antineuroinflammatory and neuroprotective activities. Given that abnormal glucose metabolism plays an important role in AD occurrence and development, the effects of all compounds on glucose consumption in HepG2 cells was evaluated. Compounds 5e and 10b showed good dual potency in GSK-3β inhibition (IC50: 5e = 1.52 μM, 10b = 0.19 μM) and antineuroinflammatory potency (IC50: 5e = 0.47 ± 0.64 μM, 10b = 6.94 ± 2.33 μM). The effect of compound 10b on glucose consumption was higher than that of positive drug metformin. These compounds exerted a certain neuroprotective effect. Compound 10b dramatically reduced Aβ-induced Tau hyperphosphorylation, thus inhibiting GSK-3β at the cellular level. Notably, compounds 5e and 10b exhibited good inhibitory effects on the formation of intracellular reactive oxygen species (ROS). Moreover, these compounds displayed proper blood-brain barrier permeability and lacked neurotoxicity up to 50 μM concentration. Finally, in vivo experiments revealed that compound 10b improved cognitive impairment in scopolamine-induced mouse models. Results indicated that compound 10b deserves further study as a multifunctional lead compound.
Collapse
Affiliation(s)
- Min Wang
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University; The Key Llaboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Tongtong Liu
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University; The Key Llaboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Shiming Chen
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University; The Key Llaboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Mingfei Wu
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University; The Key Llaboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Jianfei Han
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University; The Key Llaboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Zeng Li
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University; The Key Llaboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China.
| |
Collapse
|
8
|
Kaur J, Bhardwaj A, Wuest F. In Cellulo Generation of Fluorescent Probes for Live-Cell Imaging of Cylooxygenase-2. Chemistry 2020; 27:3326-3337. [PMID: 32786126 DOI: 10.1002/chem.202003315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/09/2020] [Indexed: 02/01/2023]
Abstract
Live-cell imaging with fluorescent probes is an essential tool in chemical biology to visualize the dynamics of biological processes in real-time. Intracellular disease biomarker imaging remains a formidable challenge due to the intrinsic limitations of conventional fluorescent probes and the complex nature of cells. This work reports the in cellulo assembly of a fluorescent probe to image cyclooxygenase-2 (COX-2). We developed celecoxib-azide derivative 14, possessing favorable biophysical properties and excellent COX-2 selectivity profile. In cellulo strain-promoted fluorogenic click chemistry of COX-2-engaged compound 14 with non/weakly-fluorescent compounds 11 and 17 formed fluorescent probes 15 and 18 for the detection of COX-2 in living cells. Competitive binding studies, biophysical, and comprehensive computational analyses were used to describe protein-ligand interactions. The reported new chemical toolbox enables precise visualization and tracking of COX-2 in live cells with superior sensitivity in the visible range.
Collapse
Affiliation(s)
- Jatinder Kaur
- Department of Oncology, University of Alberta, Edmonton, AB, Canada.,Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Atul Bhardwaj
- Department of Oncology, University of Alberta, Edmonton, AB, Canada.,Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Frank Wuest
- Department of Oncology, University of Alberta, Edmonton, AB, Canada.,Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada.,Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
9
|
Laube M, Gassner C, Neuber C, Wodtke R, Ullrich M, Haase-Kohn C, Löser R, Köckerling M, Kopka K, Kniess T, Hey-Hawkins E, Pietzsch J. Deuteration versus ethylation - strategies to improve the metabolic fate of an 18F-labeled celecoxib derivative. RSC Adv 2020; 10:38601-38611. [PMID: 35517533 PMCID: PMC9057277 DOI: 10.1039/d0ra04494f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/11/2020] [Indexed: 12/14/2022] Open
Abstract
The inducible isoenzyme cyclooxygenase-2 (COX-2) is closely associated with chemo-/radioresistance and poor prognosis of solid tumors. Therefore, COX-2 represents an attractive target for functional characterization of tumors by positron emission tomography (PET). In this study, the celecoxib derivative 3-([18F]fluoromethyl)-1-[4-(methylsulfonyl)phenyl]-5-(p-tolyl)-1H-pyrazole ([18F]5a) was chosen as a lead compound having a reported high COX-2 inhibitory potency and a potentially low carbonic anhydrase binding tendency. The respective deuterated analog [D2,18F]5a and the fluoroethyl-substituted derivative [18F]5b were selected to study the influence of these modifications with respect to COX inhibition potency in vitro and metabolic stability of the radiolabeled tracers in vivo. COX-2 inhibitory potency was found to be influenced by elongation of the side chain but, as expected, not by deuteration. An automated radiosynthesis comprising 18F-fluorination and purification under comparable conditions provided the radiotracers [18F]5a,b and [D2,18F]5a in good radiochemical yields (RCY) and high radiochemical purity (RCP). Biodistribution and PET studies comparing all three compounds revealed bone accumulation of 18F-activity to be lowest for the ethyl derivative [18F]5b. However, the deuterated analog [D2,18F]5a turned out to be the most stable compound of the three derivatives studied here. Time-dependent degradation of [18F]5a,b and [D2,18F]5a after incubation in murine liver microsomes was in accordance with the data on metabolism in vivo. Furthermore, metabolites were identified based on UPLC-MS/MS. The aim of this study is to investigate the influence of deuteration and elongation on an 18F-labeled COX-2 inhibitor with focus on metabolic stability to develop suitable COX-2 targeting radiotracers.![]()
Collapse
Affiliation(s)
- Markus Laube
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research Bautzner Landstrasse 400 01328 Dresden Germany
| | - Cemena Gassner
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research Bautzner Landstrasse 400 01328 Dresden Germany .,Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden Mommsenstrasse 4 D-01062 Dresden Germany
| | - Christin Neuber
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research Bautzner Landstrasse 400 01328 Dresden Germany
| | - Robert Wodtke
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research Bautzner Landstrasse 400 01328 Dresden Germany
| | - Martin Ullrich
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research Bautzner Landstrasse 400 01328 Dresden Germany
| | - Cathleen Haase-Kohn
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research Bautzner Landstrasse 400 01328 Dresden Germany
| | - Reik Löser
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research Bautzner Landstrasse 400 01328 Dresden Germany
| | - Martin Köckerling
- University of Rostock, Institute of Chemistry, Department of Inorganic Solid State Chemistry Albert-Einstein-Str. 3a D-18059 Rostock Germany
| | - Klaus Kopka
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research Bautzner Landstrasse 400 01328 Dresden Germany
| | - Torsten Kniess
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research Bautzner Landstrasse 400 01328 Dresden Germany
| | - Evamarie Hey-Hawkins
- Leipzig University, Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry Johannisallee 29 D-04103 Leipzig Germany
| | - Jens Pietzsch
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research Bautzner Landstrasse 400 01328 Dresden Germany .,Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden Mommsenstrasse 4 D-01062 Dresden Germany
| |
Collapse
|
10
|
Kumar JSD, Prabhakaran J, Molotkov A, Sattiraju A, Kim J, Doubrovin M, Mann JJ, Mintz A. Radiosynthesis and evaluation of [ 18F]FMTP, a COX-2 PET ligand. Pharmacol Rep 2020; 72:1433-1440. [PMID: 32632914 DOI: 10.1007/s43440-020-00124-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/22/2020] [Accepted: 06/25/2020] [Indexed: 01/07/2023]
Abstract
BACKGROUND The upregulation of cyclooxygenase-2 (COX-2) is involved in neuroinflammation associated with many neurological diseases as well as cancers of the brain. Outside the brain, inflammation and COX-2 induction contribute to the pathogenesis of pain, arthritis, acute allograft rejection, and in response to infections, tumors, autoimmune disorders, and injuries. Herein, we report the radiochemical synthesis and evaluation of [18F]6-fluoro-2-(4-(methylsulfonyl)phenyl)-N-(thiophen-2-ylmethyl)pyrimidin-4-amine ([18F]FMTP), a high-affinity COX-2 inhibitor, by cell uptake and PET imaging studies. METHODS The radiochemical synthesis of [18F]FMTP was optimized using chlorine to fluorine displacement method, by reacting [18F]fluoride/K222/K2CO3 with the precursor molecule. Cellular uptake studies of [18F]FMTP was performed in COX-2 positive BxPC3 and COX-2 negative PANC-1 cell lines with unlabeled FMTP as well as celecoxib to define specific binding agents. Dynamic microPET image acquisitionwas performed in anesthetized nude mice (n = 3), lipopolysaccharide (LPS) induced neuroinflammation mice (n = 4), and phosphate-buffered saline (PBS) administered control mice (n = 4) using a Trifoil microPET/CT for a scan period of 60 min. RESULTS A twofold higher binding of [18F]FMTP was found in COX-2 positive BxPC3 cells compared with COX-2 negative PANC-1 cells. The radioligand did not show specific binding to COX-2 negative PANC-1 cells. MicroPET imaging in wild-type mice indicated blood-brain barrier (BBB) penetration and fast washout of [18F]FMTP in the brain, likely due to the low constitutive COX-2 expression in the normal brain. In contrast, a ~ twofold higher uptake of the radioligand was found in LPS-induced mice brain than PBS treated control mice. CONCLUSIONS Specific binding to COX-2 in BxPC3 cell lines, BBB permeability, and increased brain uptake in neuroinflammation mice qualifies [18F]FMTP as a potential PET tracer for studying inflammation.
Collapse
Affiliation(s)
- J S Dileep Kumar
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, Manhattan, NY, USA.
| | - Jaya Prabhakaran
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, Manhattan, NY, USA.,Department of Psychiatry, Columbia University Medical Center, Manhattan, NY, USA
| | - Andrei Molotkov
- Department of Radiology, Columbia University Medical Center, Manhattan, NY, USA
| | - Anirudh Sattiraju
- Department of Radiology, Columbia University Medical Center, Manhattan, NY, USA
| | - Jongho Kim
- Department of Radiology, Columbia University Medical Center, Manhattan, NY, USA
| | - Mikhail Doubrovin
- Department of Radiology, Columbia University Medical Center, Manhattan, NY, USA
| | - J John Mann
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, Manhattan, NY, USA.,Department of Psychiatry, Columbia University Medical Center, Manhattan, NY, USA.,Department of Radiology, Columbia University Medical Center, Manhattan, NY, USA
| | - Akiva Mintz
- Department of Radiology, Columbia University Medical Center, Manhattan, NY, USA.
| |
Collapse
|
11
|
Litchfield M, Wuest M, Glubrecht D, Wuest F. Radiosynthesis and Biological Evaluation of [ 18F]Triacoxib: A New Radiotracer for PET Imaging of COX-2. Mol Pharm 2019; 17:251-261. [PMID: 31816246 DOI: 10.1021/acs.molpharmaceut.9b00986] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Inducible isozyme cyclooxygenase-2 (COX-2) is upregulated under acute and chronic inflammatory conditions, including cancer, wherein it promotes angiogenesis, tissue invasion, and resistance to apoptosis. Due to its high expression in various cancers, COX-2 has become an important biomarker for molecular imaging and therapy of cancer. Recently, our group applied in situ click chemistry for the identification of the highly potent and selective COX-2 inhibitor triacoxib. In this study, we present the radiosynthesis in vitro and in vivo radiopharmacological validation of [18F]triacoxib, a novel radiotracer for PET imaging of COX-2. Radiosynthesis of [18F]triacoxib was accomplished using copper-mediated late-stage radiofluorination chemistry. The radiosynthesis, including radio-HPLC purification, of [18F]triacoxib was accomplished within 90 min in decay-corrected radiochemical yields of 72% (n = 7) at molar activities exceeding 90 GBq/μmol. Cellular uptake and inhibition studies with [18F]triacoxib were carried out in COX-2 expressing HCA-7 cells. Cellular uptake of [18F]triacoxib in HCA-7 cells reached 25% radioactivity/mg protein after 60 min. Cellular uptake was reduced by 63% upon pretreatment with 0.1 mM celecoxib, and 90% of the radiotracer remained intact in vivo after 60 min p.i. in mice. [18F]Triacoxib was further evaluated in HCA-7 tumor-bearing mice using dynamic PET imaging, radiometabolite analysis, autoradiography, and immunohistochemistry. PET imaging revealed a favorable baseline radiotracer uptake in HCA-7 tumors (SUV60min = 0.76 ± 0.02 (n = 4)), which could be blocked by 20% through i.p. pretreatment with 2 mg of celecoxib. Autoradiography and immunohistochemistry experiments further the confirmed blocking of COX-2 in vivo. [18F]Triacoxib, whose nonradioactive analogue was identified through in situ click chemistry, is a novel radiotracer for PET imaging of COX-2 in cancer. Despite a substantial amount of nonspecific uptake in vivo, [18F]triacoxib displayed specific binding to COX-2 in vivo and reinforced the feasibility of optimal structure selection by in situ click chemistry. It remains to be elucidated how this novel radiotracer would perform in first-in-human studies to detect COX-2 with PET.
Collapse
Affiliation(s)
- Marcus Litchfield
- Department of Oncology , University of Alberta , 11560 University Avenue , Edmonton , Alberta T6G 1Z2 , Canada
| | - Melinda Wuest
- Department of Oncology , University of Alberta , 11560 University Avenue , Edmonton , Alberta T6G 1Z2 , Canada.,Cancer Research Institute of Northern Alberta , University of Alberta , Edmonton , Alberta T6G 2S2 , Canada
| | - Darryl Glubrecht
- Department of Oncology , University of Alberta , 11560 University Avenue , Edmonton , Alberta T6G 1Z2 , Canada
| | - Frank Wuest
- Department of Oncology , University of Alberta , 11560 University Avenue , Edmonton , Alberta T6G 1Z2 , Canada.,Cancer Research Institute of Northern Alberta , University of Alberta , Edmonton , Alberta T6G 2S2 , Canada
| |
Collapse
|
12
|
Development of brain PET imaging agents: Strategies for imaging neuroinflammation in Alzheimer's disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 165:371-399. [DOI: 10.1016/bs.pmbts.2019.04.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Tietz O, Kaur J, Bhardwaj A, Wuest FR. Pyrimidine-based fluorescent COX-2 inhibitors: synthesis and biological evaluation. Org Biomol Chem 2018; 14:7250-7. [PMID: 27383140 DOI: 10.1039/c6ob00493h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The cyclooxygenase-2 (COX-2) enzyme is overexpressed in a variety of cancers and mediates inflammatory processes that aid the growth and progression of malignancies. Three novel and selective fluorescent COX-2 inhibitors have been designed and synthesized on the basis of previously reported pyrimidine-based COX-2 inhibitors and the 7-nitrobenzofurazan fluorophore. In vitro evaluation of COX-1/COX-2 isozyme inhibition identified N-(2-((7-nitro-benzo[c][1,2,5]oxadiazol-4-yl)amino)propyl)-4-[4-(methylsulfonyl)phenyl]-6-(trifluoro-methyl)-pyrimidin-2-amine (6) as a novel potent and selective COX-2 inhibitor (IC50 = 1.8 μM). Lead compound (6) was further evaluated for its ability to selectively visualize COX-2 isozyme in COX-2 expressing human colon cancer cell line HCA-7 using confocal microscopy experiments.
Collapse
Affiliation(s)
- Ole Tietz
- Department of Oncology, Cross Cancer Institute, University of Alberta, 11560 University Avenue, T6G 1Z2, Edmonton, AB, Canada.
| | - Jatinder Kaur
- Department of Oncology, Cross Cancer Institute, University of Alberta, 11560 University Avenue, T6G 1Z2, Edmonton, AB, Canada. and Department of Pharmacy and Pharmaceutical Sciences, Medical Sciences Building, University of Alberta, T6G 2H1, Edmonton, AB, Canada
| | - Atul Bhardwaj
- Department of Oncology, Cross Cancer Institute, University of Alberta, 11560 University Avenue, T6G 1Z2, Edmonton, AB, Canada. and Department of Pharmacy and Pharmaceutical Sciences, Medical Sciences Building, University of Alberta, T6G 2H1, Edmonton, AB, Canada
| | - Frank R Wuest
- Department of Oncology, Cross Cancer Institute, University of Alberta, 11560 University Avenue, T6G 1Z2, Edmonton, AB, Canada. and Department of Pharmacy and Pharmaceutical Sciences, Medical Sciences Building, University of Alberta, T6G 2H1, Edmonton, AB, Canada
| |
Collapse
|
14
|
Elie J, Vercouillie J, Arlicot N, Lemaire L, Bidault R, Bodard S, Hosselet C, Deloye JB, Chalon S, Emond P, Guilloteau D, Buron F, Routier S. Design of selective COX-2 inhibitors in the (aza)indazole series. Chemistry, in vitro studies, radiochemistry and evaluations in rats of a [ 18F] PET tracer. J Enzyme Inhib Med Chem 2018; 34:1-7. [PMID: 30362376 PMCID: PMC6211253 DOI: 10.1080/14756366.2018.1501043] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A series of novel derivatives exhibiting high affinity and selectivity towards the COX-2 enzyme in the (aza) indazole series was developed. A short synthetic route involving a bromination/arylation sequence under microwave irradiation and direct C–H activation were established in the indazole and azaindazole series respectively. In vitro assays were conducted and structural modifications were carried out on these scaffolds to furnish compound 16 which exhibited effective COX-2 inhibitory activity, with IC50 values of 0.409 µM and an excellent selectivity versus COX-1. Radiolabeling of this most potent derivative [18F]16 was achieved after boron ester release and the tracer was evaluated in vivo in a rat model of neuroinflammation. All chemistry, radiochemistry and biological experimental data are discussed.
Collapse
Affiliation(s)
- Jonathan Elie
- a ICOA, UMR CNRS 7311 , University of Orleans , Orleans , France.,b UMR 1253, iBrain , Université de Tours, Inserm , Tours , France
| | - Johnny Vercouillie
- b UMR 1253, iBrain , Université de Tours, Inserm , Tours , France.,c CERRP , Centre d'Etude et de Recherche sur les Radiopharmaceutiques , Tours , France.,d CHRU , de Tours , Tours , France.,e INSERM CIC 1415 , University of François-Rabelais de Tours , Tours , France
| | - Nicolas Arlicot
- b UMR 1253, iBrain , Université de Tours, Inserm , Tours , France.,c CERRP , Centre d'Etude et de Recherche sur les Radiopharmaceutiques , Tours , France.,d CHRU , de Tours , Tours , France.,e INSERM CIC 1415 , University of François-Rabelais de Tours , Tours , France
| | - Lucas Lemaire
- a ICOA, UMR CNRS 7311 , University of Orleans , Orleans , France
| | - Rudy Bidault
- b UMR 1253, iBrain , Université de Tours, Inserm , Tours , France
| | - Sylvie Bodard
- b UMR 1253, iBrain , Université de Tours, Inserm , Tours , France
| | - Christel Hosselet
- b UMR 1253, iBrain , Université de Tours, Inserm , Tours , France.,c CERRP , Centre d'Etude et de Recherche sur les Radiopharmaceutiques , Tours , France
| | - Jean-Bernard Deloye
- c CERRP , Centre d'Etude et de Recherche sur les Radiopharmaceutiques , Tours , France.,f Biopôle Clermont-Limagne , Laboratoires Cyclopharma , Saint-Beauzire , France
| | - Sylvie Chalon
- b UMR 1253, iBrain , Université de Tours, Inserm , Tours , France
| | - Patrick Emond
- b UMR 1253, iBrain , Université de Tours, Inserm , Tours , France
| | - Denis Guilloteau
- b UMR 1253, iBrain , Université de Tours, Inserm , Tours , France.,c CERRP , Centre d'Etude et de Recherche sur les Radiopharmaceutiques , Tours , France.,d CHRU , de Tours , Tours , France.,e INSERM CIC 1415 , University of François-Rabelais de Tours , Tours , France
| | - Frédéric Buron
- a ICOA, UMR CNRS 7311 , University of Orleans , Orleans , France
| | - Sylvain Routier
- a ICOA, UMR CNRS 7311 , University of Orleans , Orleans , France
| |
Collapse
|
15
|
Cortes-Salva MY, Shrestha S, Singh P, Morse CL, Jenko KJ, Montero Santamaria JA, Zoghbi SS, Innis RB, Pike VW. 2-(4-Methylsulfonylphenyl)pyrimidines as Prospective Radioligands for Imaging Cyclooxygenase-2 with PET-Synthesis, Triage, and Radiolabeling. Molecules 2018; 23:molecules23112850. [PMID: 30400142 PMCID: PMC6278313 DOI: 10.3390/molecules23112850] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 10/26/2018] [Accepted: 10/27/2018] [Indexed: 11/23/2022] Open
Abstract
Cyclooxygenase 2 (COX-2) is an inducible enzyme responsible for the conversion of arachidonic acid into the prostaglandins, PGG2 and PGH2. Expression of this enzyme increases in inflammation. Therefore, the development of probes for imaging COX-2 with positron emission tomography (PET) has gained interest because they could be useful for the study of inflammation in vivo, and for aiding anti-inflammatory drug development targeting COX-2. Nonetheless, effective PET radioligands are still lacking. We synthesized eleven COX-2 inhibitors based on a 2(4-methylsulfonylphenyl)pyrimidine core from which we selected three as prospective PET radioligands based on desirable factors, such as high inhibitory potency for COX-2, very low inhibitory potency for COX-1, moderate lipophilicity, and amenability to labeling with a positron-emitter. These inhibitors, namely 6-methoxy-2-(4-(methylsulfonyl)phenyl-N-(thiophen-2ylmethyl)pyrimidin-4-amine (17), the 6-fluoromethyl analogue (20), and the 6-(2-fluoroethoxy) analogue (27), were labeled in useful yields and with high molar activities by treating the 6-hydroxy analogue (26) with [11C]iodomethane, [18F]2-fluorobromoethane, and [d2-18F]fluorobromomethane, respectively. [11C]17, [18F]20, and [d2-18F]27 were readily purified with HPLC and formulated for intravenous injection. These methods allow these radioligands to be produced for comparative evaluation as PET radioligands for measuring COX-2 in healthy rhesus monkey and for assessing their abilities to detect inflammation.
Collapse
Affiliation(s)
- Michelle Y Cortes-Salva
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA.
| | - Stal Shrestha
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA.
| | - Prachi Singh
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA.
| | - Cheryl L Morse
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA.
| | - Kimberly J Jenko
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA.
| | - Jose A Montero Santamaria
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA.
| | - Sami S Zoghbi
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA.
| | - Robert B Innis
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA.
| | - Victor W Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
16
|
Krüll J, Heinrich MR. [
18
F]Fluorine‐Labeled Pharmaceuticals: Direct Aromatic Fluorination Compared to Multi‐Step Strategies. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201800494] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jasmin Krüll
- Department of Chemistry and Pharmacy, Pharmaceutical ChemistryFriedrich-Alexander Universität Erlangen-Nürnberg Nikolaus-Fiebiger-Str. 10 91058 Erlangen
| | - Markus R. Heinrich
- Department of Chemistry and Pharmacy, Pharmaceutical ChemistryFriedrich-Alexander Universität Erlangen-Nürnberg Nikolaus-Fiebiger-Str. 10 91058 Erlangen
| |
Collapse
|
17
|
Tietz O, Marshall A, Bergman C, Wuest M, Wuest F. Impact of structural alterations on the radiopharmacological profile of 18F-labeled pyrimidines as cyclooxygenase-2 (COX-2) imaging agents. Nucl Med Biol 2018; 62-63:9-17. [PMID: 29800798 DOI: 10.1016/j.nucmedbio.2018.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 04/19/2018] [Accepted: 05/02/2018] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Non-invasive imaging of COX-2 in cancer represents a powerful tool for assessing COX-2-mediated effects on chemoprevention and radiosensitization using potent and selective COX-2 inhibitors as an emerging class of anticancer drugs. Careful assessment of the pharmacokinetic profile of radiolabeled COX-2 inhibitors is of crucial importance for the development of suitable radiotracers for COX-2 imaging in vivo. The delicate balance between the selection of typical COX-2 pharmacophores and the resulting physicochemical characteristics of the COX-2 inhibitor represents a formidable challenge for the search of radiolabeled COX-2 imaging agents. Several pyrimidine-based COX-2 inhibitors demonstrated favorable in vitro and in vivo COX-2 imaging properties in various COX-2 expressing cancer cell lines. Here, we describe a comparative radiopharmacological study of three 18F-labeled COX-2 inhibitors based on a pyrimidine scaffold. The objective of this study was to investigate how subtle structural alterations influence the pharmacokinetic profile of lead compound [18F]1a ([18F]Pyricoxib) to afford 18F-labeled pyrimidine-based COX-2 inhibitors with improved COX-2 imaging properties in vivo. METHODS Radiosynthesis of radiotracers was accomplished through reaction with 4-[18F]fluorobenzyl amine on a methyl-sulfone labeling precursor ([18F]1a and [18F]2a) or late-stage radiofluorination using a iodyl-containing labeling precursor ([18F]3a). Radiopharmacological profile of 18F-labeled pyrimidine-based COX-2 inhibitors [18F]1a, [18F]2a and [18F]3a was studied in COX-2-expressing human HCA-7 colorectal cancer cell line, including cellular uptake studies in HCA-7 cells and dynamic PET imaging studies in HCA-7 xenografts. RESULTS Cellular uptake of radiotracers [18F]2a and [18F]3a in HCA-7 cells was 450% and 300% radioactivity/mg protein, respectively, after 90 min incubation, compared to 600% radioactivity/mg protein for radiotracer [18F]1a. Dynamic PET imaging studies revealed a tumor SUV of 0.53 ([18F]2a) and 0.54 ([18F]3a) after 60 min p.i. with a tumor-to-muscle ratio of ~1. Tumor SUV for [18F]1a (60 min p.i.) was 0.76 and a tumor-to-muscle ratio of ~1.5. Pyricoxib analogues [18F]2a and [18F]3a showed distinct pharmacokinetic profiles in comparison to lead compound [18F]1a with a significantly improved lung clearance pattern. Replacing the 4-[18F]fluorobenzyl amine motif in radiotracer [18F]1a with a 4-[18F]fluorobenzyl alcohol motif in radiotracer [18F]3a resulted in re-routing of the metabolic pathway as demonstrated by a more rapid liver clearance and higher initial kidney uptake and more rapid kidney clearance compared to radiotracers [18F]1a and [18F]2a. Moreover, radiotracer [18F]3a displayed favorable rapid brain uptake and retention. CONCLUSION The radiopharmacological profile of three 18F-labeled COX-2 inhibitors based on a pyrimidine scaffold were evaluated in COX-2 expressing human colorectal cancer cell line HCA-7 and HCA-7 xenografts in mice. Despite the overall structural similarity and comparable COX-2 inhibitory potency of all three radiotracers, subtle structural alterations led to significantly different in vitro and in vivo metabolic profiles. ADVANCES IN KNOWLEDGE Among all tested pyrimidine-based 18F-labeled COX-2 inhibitors, lead compound [18F]1a remains the most suitable radiotracer for assessing COX-2 expression in vivo. Radiotracer [18F]3a showed significantly improved first pass pulmonary passage in comparison to radiotracer [18F]1a and might represents a promising lead compound for the development of radiotracers for PET imaging of COX-2 in neuroinflammation.
Collapse
Affiliation(s)
- Ole Tietz
- Department of Oncology, University of Alberta, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada
| | - Alison Marshall
- Department of Oncology, University of Alberta, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada
| | - Cody Bergman
- Department of Oncology, University of Alberta, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada
| | - Melinda Wuest
- Department of Oncology, University of Alberta, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada
| | - Frank Wuest
- Department of Oncology, University of Alberta, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada; Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2H1, Canada.
| |
Collapse
|
18
|
Abstract
Neuroinflammation, which involves microglial activation, is thought to play a key role in the development and progression of neurodegenerative diseases and other brain pathologies. Positron emission tomography is an ideal imaging technique for studying biochemical processes in vivo, and particularly for studying the living brain. Neuroinflammation has been traditionally studied using radiotracers targeting the translocator protein 18 kDa, but this comes with certain limitations. The current review describes alternative biological targets that have gained interest for the imaging of microglial activation over recent years, such as the cannabinoid receptor type 2, cyclooxygenase-2, the P2X₇ receptor and reactive oxygen species, and some promising radiotracers for these targets. Although many advances have been made in the field of neuroinflammation imaging, current radiotracers all target the pro-inflammatory (M1) phenotype of activated microglia, since the number of known biological targets specific for the anti-inflammatory (M2) phenotype that are also suited as a target for radiotracer development is still limited. Next to proceeding the currently available tracers for M1 microglia into the clinic, the development of a suitable radiotracer for M2 microglia would mean a great advance in the field, as this would allow for imaging of the dynamics of microglial activation in different diseases.
Collapse
Affiliation(s)
- Bieneke Janssen
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Danielle J Vugts
- Department of Radiology & Nuclear Medicine, VU University Medical Center, 1081 HV Amsterdam, The Netherlands.
| | - Albert D Windhorst
- Department of Radiology & Nuclear Medicine, VU University Medical Center, 1081 HV Amsterdam, The Netherlands.
| | - Robert H Mach
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
19
|
Notter T, Coughlin JM, Sawa A, Meyer U. Reconceptualization of translocator protein as a biomarker of neuroinflammation in psychiatry. Mol Psychiatry 2018; 23:36-47. [PMID: 29203847 DOI: 10.1038/mp.2017.232] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 09/05/2017] [Accepted: 10/02/2017] [Indexed: 02/06/2023]
Abstract
A great deal of interest in psychiatric research is currently centered upon the pathogenic role of inflammatory processes. Positron emission tomography (PET) using radiolabeled ligands selective for the 18 kDa translocator protein (TSPO) has become the most widely used technique to assess putative neuroimmune abnormalities in vivo. Originally used to detect discrete neurotoxic damages, TSPO has generally turned into a biomarker of 'neuroinflammation' or 'microglial activation'. Psychiatric research has mostly accepted these denotations of TSPO, even if they may be inadequate and misleading under many pathological conditions. A reliable and neurobiologically meaningful diagnosis of 'neuroinflammation' or 'microglial activation' is unlikely to be achieved by the sole use of TSPO PET imaging. It is also very likely that the pathological meanings of altered TSPO binding or expression are disease-specific, and therefore, not easily generalizable across different neuropathologies or inflammatory conditions. This difficulty is intricately linked to the varying (and still ill-defined) physiological functions and cellular expression patterns of TSPO in health and disease. While altered TSPO binding or expression may indeed mirror ongoing neuroinflammatory processes in some cases, it may reflect other pathophysiological processes such as abnormalities in cell metabolism, energy production and oxidative stress in others. Hence, the increasing popularity of TSPO PET imaging has paradoxically introduced substantial uncertainty regarding the nature and meaning of neuroinflammatory processes and microglial activation in psychiatry, and likely in other neuropathological conditions as well. The ambiguity of conceiving TSPO simply as a biomarker of 'neuroinflammation' or 'microglial activation' calls for alternative interpretations and complimentary approaches. Without the latter, the ongoing scientific efforts and excitement surrounding the role of the neuroimmune system in psychiatry may not turn into therapeutic hope for affected individuals.
Collapse
Affiliation(s)
- T Notter
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - J M Coughlin
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins Medical Institutions, Baltimore, MD, USA.,Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - A Sawa
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - U Meyer
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
20
|
Morgenroth A, Vogg ATJ, Neumaier B, Mottaghy FM, Zlatopolskiy BD. Radioiodinated indomethacin amide for molecular imaging of cyclooxygenase-2 expressing tumors. Oncotarget 2017; 8:18059-18069. [PMID: 28407689 PMCID: PMC5392307 DOI: 10.18632/oncotarget.15437] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 01/27/2017] [Indexed: 12/18/2022] Open
Abstract
Cyclooxygenase-2 (COX-2) is an important biomarker in several tumors. Available imaging probes display relatively low tumor to background ratios (smaller than 2:1). We evaluated newly developed indomethacin (Ind) derivatives for in vivo molecular imaging of COX-2 expressing carcinoma. Radioiodinated Ind derivatives Ind-NH-(CH2)4-NH-3-[I-125]I-Bz ([I-125]5), Ind-NH-(CH2)4-NH-5-[I-124/125]I-Nic ([I-124/125]6) and Ind-NH-(CH2)4-NH-5-[I-125]I-Iphth ([I-125]7) were prepared from the respective SnBu3-precursors (45-80% radiochemical yield; > 95% radiochemical purity). The cellular uptake of [I-125]5 and [I-125]6 correlated with COX-2 expression determined by SDS page/Western blot analysis. [I-125]5 was predominantly localized in the cell membrane while [I-125]6 was internalized and displayed a diffuse and favorable cytoplasmic distribution. In contrast, [I-125]7 showed only low uptake in COX-2 positive cells. Co-incubation with the COX-2 inhibitor Celecoxib led to an almost complete suppression of cellular uptake of [I-125]5 and [I-125]6. In vivo molecular imaging using positron emission tomography (PET) in SCID mice xenografted with COX-2+ (HT29) and COX-2- (HCT116) human colorectal carcinoma cells was performed for [I-124]6. HT29 xenografts displayed a significantly higher uptake than HCT-116 xenografts (5.6 ± 1.5 vs. 0.5 ± 0.1 kBq/g, P < 0.05) with an extraordinary high tumor to muscle ratio (50.3 ± 1.5). Immunohistological staining correlated with the imaging data. In conclusion, the novel radioiodinated indomethacin derivative ([I-124/125]6) could become a valuable tool for development of molecular imaging probes for visualization of COX-2 expressing tumors.
Collapse
Affiliation(s)
- Agnieszka Morgenroth
- Department for Nuclear Medicine, RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Andreas T J Vogg
- Department for Nuclear Medicine, RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Bernd Neumaier
- Institute of Radiochemistry and Experimental Molecular Imaging, University Clinic Cologne, 50937, Cologne, Germany.,Max Planck Institute of Metabolism Research, 50931, Cologne, Germany.,Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), Research Center Jülich, 52425, Jülich, Germany
| | - Felix M Mottaghy
- Department for Nuclear Medicine, RWTH Aachen University Hospital, 52074, Aachen, Germany.,Department of Nuclear Medicine, Maastricht University Medical Center, 6229 HX, Maastricht, The Netherlands
| | - Boris D Zlatopolskiy
- Department for Nuclear Medicine, RWTH Aachen University Hospital, 52074, Aachen, Germany.,Institute of Radiochemistry and Experimental Molecular Imaging, University Clinic Cologne, 50937, Cologne, Germany.,Max Planck Institute of Metabolism Research, 50931, Cologne, Germany
| |
Collapse
|
21
|
Fantoni ER, Dal Ben D, Falzoni S, Di Virgilio F, Lovestone S, Gee A. Design, synthesis and evaluation in an LPS rodent model of neuroinflammation of a novel 18F-labelled PET tracer targeting P2X7. EJNMMI Res 2017; 7:31. [PMID: 28374288 PMCID: PMC5378566 DOI: 10.1186/s13550-017-0275-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 03/08/2017] [Indexed: 01/08/2023] Open
Abstract
Background The P2X7 receptor has been shown to play a fundamental role in the initiation and sustenance of the inflammatory cascade. The development of a novel fluorine-18 PET tracer superior and with a longer half-life to those currently available is a promising step towards harnessing the therapeutic and diagnostic potential offered by this target. Inspired by the known antagonist A-804598, the present study outlines the design via molecular docking, synthesis and biological evaluation of the novel P2X7 tracer [18F]EFB. The tracer was radiolabelled via a three-step procedure, in vitro binding assessed in P2X7-transfected HEK293 and in B16 cells by calcium influx assays and an initial preclinical evaluation was performed in a lipopolysaccharide (LPS)-injected rat model of neuroinflammation. Results The novel tracer [18F]EFB was synthesised in 210 min in 3–5% decay-corrected radiochemical yield (DC RCY), >99% radiochemical purity (RCP) and >300 GBq/μmol and fully characterised. Functional assays showed that the compound binds with nM Ki to human, rat and mouse P2X7 receptors. In vivo, [18F]EFB displayed a desirable distribution profile, and while it showed low blood–brain barrier penetration, brain uptake was quantifiable and displayed significantly higher mean longitudinal uptake in inflamed versus control rat CNS regions. Conclusions [18F]EFB demonstrates strong in vitro affinity to human and rodent P2X7 and limited yet quantifiable BBB penetration. Considering the initial promising in vivo data in an LPS rat model with elevated P2X7 expression, this work constitutes an important step in the development of a radiotracer useful for the diagnosis and monitoring of clinical disorders with associated neuroinflammatory processes. Electronic supplementary material The online version of this article (doi:10.1186/s13550-017-0275-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Enrico Raffaele Fantoni
- Department of Imaging Sciences and Biomedical Engineering, King's College London, St Thomas' Hospital, 4th floor Lambeth Wing, SE1 7EH, London, UK
| | - Diego Dal Ben
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via S. Agostino 1, 62032, Camerino, MC, Italy
| | - Simonetta Falzoni
- Prof Francesco Di Virgilio and Dr Simonetta Falzoni, Dipartimento di Morfologia, Chirurgia e Medicina Sperimentale, Sezione di Patologia, Oncologia e Biologia Sperimentale, University of Ferrara, Ferrara, Italy
| | - Francesco Di Virgilio
- Prof Francesco Di Virgilio and Dr Simonetta Falzoni, Dipartimento di Morfologia, Chirurgia e Medicina Sperimentale, Sezione di Patologia, Oncologia e Biologia Sperimentale, University of Ferrara, Ferrara, Italy
| | - Simon Lovestone
- Department of Psychiatry, Warneford Hospital, University of Oxford, Warneford Lane, Oxford, OX3 7JX, UK
| | - Antony Gee
- Department of Imaging Sciences and Biomedical Engineering, King's College London, St Thomas' Hospital, 4th floor Lambeth Wing, SE1 7EH, London, UK.
| |
Collapse
|
22
|
van der Born D, Pees A, Poot AJ, Orru RVA, Windhorst AD, Vugts DJ. Fluorine-18 labelled building blocks for PET tracer synthesis. Chem Soc Rev 2017; 46:4709-4773. [DOI: 10.1039/c6cs00492j] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review presents a comprehensive overview of the synthesis and application of fluorine-18 labelled building blocks since 2010.
Collapse
Affiliation(s)
- Dion van der Born
- Department of Radiology & Nuclear Medicine
- VU University Medical Center
- 1081 HV Amsterdam
- The Netherlands
| | - Anna Pees
- Department of Radiology & Nuclear Medicine
- VU University Medical Center
- 1081 HV Amsterdam
- The Netherlands
| | - Alex J. Poot
- Department of Radiology & Nuclear Medicine
- VU University Medical Center
- 1081 HV Amsterdam
- The Netherlands
| | - Romano V. A. Orru
- Department of Chemistry and Pharmaceutical Sciences and Amsterdam Institute for Molecules
- Medicines & Systems (AIMMS)
- VU University Amsterdam
- Amsterdam
- The Netherlands
| | - Albert D. Windhorst
- Department of Radiology & Nuclear Medicine
- VU University Medical Center
- 1081 HV Amsterdam
- The Netherlands
| | - Danielle J. Vugts
- Department of Radiology & Nuclear Medicine
- VU University Medical Center
- 1081 HV Amsterdam
- The Netherlands
| |
Collapse
|
23
|
Positron emission tomography in amyotrophic lateral sclerosis: Towards targeting of molecular pathological hallmarks. Eur J Nucl Med Mol Imaging 2016; 44:533-547. [PMID: 27933416 DOI: 10.1007/s00259-016-3587-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 11/23/2016] [Indexed: 12/18/2022]
|
24
|
Gassner C, Neuber C, Laube M, Bergmann R, Kniess T, Pietzsch J. Development of a18F-labeled Diaryl-Substituted Dihydropyrrolo[3,2,1-hi]indole as Potential Probe for Functional Imaging of Cyclooxygenase-2 with PET. ChemistrySelect 2016. [DOI: 10.1002/slct.201601618] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Cemena Gassner
- Helmholtz-Zentrum Dresden-Rossendorf; Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research; Bautzner Landstrasse 400 01328 Dresden Germany
- Department of Chemistry and Food Chemistry; Technische Universität Dresden; 01062 Dresden Germany
| | - Christin Neuber
- Helmholtz-Zentrum Dresden-Rossendorf; Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research; Bautzner Landstrasse 400 01328 Dresden Germany
| | - Markus Laube
- Helmholtz-Zentrum Dresden-Rossendorf; Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research; Bautzner Landstrasse 400 01328 Dresden Germany
| | - Ralf Bergmann
- Helmholtz-Zentrum Dresden-Rossendorf; Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research; Bautzner Landstrasse 400 01328 Dresden Germany
| | - Torsten Kniess
- Helmholtz-Zentrum Dresden-Rossendorf; Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research; Bautzner Landstrasse 400 01328 Dresden Germany
| | - Jens Pietzsch
- Helmholtz-Zentrum Dresden-Rossendorf; Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research; Bautzner Landstrasse 400 01328 Dresden Germany
- Department of Chemistry and Food Chemistry; Technische Universität Dresden; 01062 Dresden Germany
| |
Collapse
|
25
|
Tietz O, Wuest M, Marshall A, Glubrecht D, Hamann I, Wang M, Bergman C, Way JD, Wuest F. PET imaging of cyclooxygenase-2 (COX-2) in a pre-clinical colorectal cancer model. EJNMMI Res 2016; 6:37. [PMID: 27112768 PMCID: PMC4844587 DOI: 10.1186/s13550-016-0192-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 04/18/2016] [Indexed: 01/20/2023] Open
Abstract
Background Cyclooxygenase-2 (COX-2) is the inducible isoform of the cyclooxygenase enzyme family. COX-2 is involved in tumor development and progression, and frequent overexpression of COX-2 in a variety of human cancers has made COX-2 an important drug target for cancer treatment. Non-invasive imaging of COX-2 expression in cancer would be useful for assessing COX-2-mediated effects on chemoprevention and radiosensitization using COX-2 inhibitors as an emerging class of anti-cancer drugs, especially for colorectal cancer. Herein, we describe the radiopharmacological analysis of [18F]Pyricoxib, a novel radiolabeled COX-2 inhibitor, for specific PET imaging of COX-2 in colorectal cancer. Methods Uptake of [18F]Pyricoxib was assessed in human colorectal cancer cell lines HCA-7 (COX-2 positive) and HCT-116 (COX-2 negative). Standard COX-2 inhibitors were used to test for specificity of [18F]Pyricoxib for COX-2 binding in vitro and in vivo. PET imaging, biodistribution, and radiometabolite analyses were included into radiopharmacological evaluation of [18F]Pyricoxib. Results Radiotracer uptake in COX-2 positive HCA-7 cells was significantly higher than in COX-2 negative HCT-116 cells (P < 0.05). COX-2 inhibitors, celecoxib, rofecoxib, and SC58125, blocked uptake of [18F]Pyricoxib in HCA-7 cells in a concentration-dependent manner. The radiotracer was slowly metabolized in mice, with approximately 60 % of intact compound after 2 h post-injection. Selective COX-2-mediated tumor uptake of [18F]Pyricoxib in HCA-7 xenografts was confirmed in vivo. Celecoxib (100 mg/kg) selectively blocked tumor uptake by 16 % (PET image analysis; P < 0.05) and by 51 % (biodistribution studies; P < 0.01). Conclusions The novel PET radiotracer [18F]Pyricoxib displays a promising radiopharmacological profile to study COX-2 expression in cancer in vivo. Electronic supplementary material The online version of this article (doi:10.1186/s13550-016-0192-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ole Tietz
- Department of Oncology, University of Alberta, 11560- University Avenue, Edmonton, AB, T6G 1Z2, Canada
| | - Melinda Wuest
- Department of Oncology, University of Alberta, 11560- University Avenue, Edmonton, AB, T6G 1Z2, Canada
| | - Alison Marshall
- Department of Oncology, University of Alberta, 11560- University Avenue, Edmonton, AB, T6G 1Z2, Canada
| | - Darryl Glubrecht
- Department of Oncology, University of Alberta, 11560- University Avenue, Edmonton, AB, T6G 1Z2, Canada
| | - Ingrit Hamann
- Department of Oncology, University of Alberta, 11560- University Avenue, Edmonton, AB, T6G 1Z2, Canada
| | - Monica Wang
- Department of Oncology, University of Alberta, 11560- University Avenue, Edmonton, AB, T6G 1Z2, Canada
| | - Cody Bergman
- Department of Oncology, University of Alberta, 11560- University Avenue, Edmonton, AB, T6G 1Z2, Canada
| | - Jenilee D Way
- Department of Oncology, University of Alberta, 11560- University Avenue, Edmonton, AB, T6G 1Z2, Canada
| | - Frank Wuest
- Department of Oncology, University of Alberta, 11560- University Avenue, Edmonton, AB, T6G 1Z2, Canada. .,Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada.
| |
Collapse
|
26
|
Isomeric methoxy analogs of nimesulide for development of brain cyclooxygense-2 (COX-2)-targeted imaging agents: Synthesis, in vitro COX-2-inhibitory potency, and cellular transport properties. Bioorg Med Chem 2015; 23:6807-14. [DOI: 10.1016/j.bmc.2015.10.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 10/03/2015] [Accepted: 10/05/2015] [Indexed: 12/23/2022]
|