1
|
Panayides JL, Riley DL, Hasenmaile F, van Otterlo WAL. The role of silicon in drug discovery: a review. RSC Med Chem 2024; 15:3286-3344. [PMID: 39430101 PMCID: PMC11484438 DOI: 10.1039/d4md00169a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/07/2024] [Indexed: 10/22/2024] Open
Abstract
This review aims to highlight the role of silicon in drug discovery. Silicon and carbon are often regarded as being similar with silicon located directly beneath carbon in the same group in the periodic table. That being noted, in many instances a clear dichotomy also exists between silicon and carbon, and these differences often lead to vastly different physiochemical and biological properties. As a result, the utility of silicon in drug discovery has attracted significant attention and has grown rapidly over the past decade. This review showcases some recent advances in synthetic organosilicon chemistry and examples of the ways in which silicon has been employed in the drug-discovery field.
Collapse
Affiliation(s)
- Jenny-Lee Panayides
- Pharmaceutical Technologies, Future Production: Chemicals, Council for Scientific and Industrial Research (CSIR) Meiring Naude Road, Brummeria Pretoria South Africa
| | - Darren Lyall Riley
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria Lynnwood Road Pretoria South Africa
| | - Felix Hasenmaile
- Department of Chemistry and Polymer Science, Stellenbosch University Matieland Stellenbosch 7600 South Africa
| | - Willem A L van Otterlo
- Department of Chemistry and Polymer Science, Stellenbosch University Matieland Stellenbosch 7600 South Africa
| |
Collapse
|
2
|
Dakkouri M. A Theoretical Investigation of Novel Sila- and Germa-Spirocyclic Imines and Their Relevance for Electron-Transporting Materials and Drug Discovery. Molecules 2023; 28:6298. [PMID: 37687127 PMCID: PMC10489060 DOI: 10.3390/molecules28176298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
A new class of spirocyclic imines (SCIs) has been theoretically investigated by applying a variety of quantum chemical methods and basis sets. The uniqueness of these compounds is depicted by various peculiarities, e.g., the incidence of planar six-membered rings each with two imine groups (two π bonds) and the incorporation of the isosteres carbon, silicon, or germanium spiro centers. Additional peculiarities of these novel SCIs are mirrored by their three-dimensionality, the simultaneous occurrence of nucleophilic and electrophilic centers, and the cross-hyperconjugative (spiro-conjugation) interactions, which provoke charge mobility along the spirocyclic scaffold. Substitution of SCIs with strong electron-withdrawing substituents, like the cyano group or fluorine, enhances their docking capability and impacts their reactivity and charge mobility. To gain thorough knowledge about the molecular properties of these SCIs, their structures have been optimized and various quantum chemical concepts and models were applied, e.g., full NBO analysis and the frontier molecular orbitals (FMOs) theory (HOMO-LUMO energy gap) and the chemical reactivity descriptors derived from them. For the assessment of the charge density distribution along the SCI framework, additional complementary quantum chemical methods were used, e.g., molecular electrostatic potential (MESP) and Bader's QTAIM. Additionally, using the aromaticity index NICS (nuclear independent chemical shift) and other criteria, it could be shown that the investigated cross-hyperconjugated sila and germa SCIs are spiro-aromatics of the Heilbronner Craig-type Möbius aromaticity.
Collapse
Affiliation(s)
- Marwan Dakkouri
- Department of Electrochemistry, University of Ulm, D-89069 Ulm, Germany
| |
Collapse
|
3
|
Kiran D, Basaraba RJ. Lactate Metabolism and Signaling in Tuberculosis and Cancer: A Comparative Review. Front Cell Infect Microbiol 2021; 11:624607. [PMID: 33718271 PMCID: PMC7952876 DOI: 10.3389/fcimb.2021.624607] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/13/2021] [Indexed: 12/16/2022] Open
Abstract
Infection with Mycobacterium tuberculosis (Mtb) leading to tuberculosis (TB) disease continues to be a major global health challenge. Critical barriers, including but not limited to the development of multi-drug resistance, lack of diagnostic assays that detect patients with latent TB, an effective vaccine that prevents Mtb infection, and infectious and non-infectious comorbidities that complicate active TB, continue to hinder progress toward a TB cure. To complement the ongoing development of new antimicrobial drugs, investigators in the field are exploring the value of host-directed therapies (HDTs). This therapeutic strategy targets the host, rather than Mtb, and is intended to augment host responses to infection such that the host is better equipped to prevent or clear infection and resolve chronic inflammation. Metabolic pathways of immune cells have been identified as promising HDT targets as more metabolites and metabolic pathways have shown to play a role in TB pathogenesis and disease progression. Specifically, this review highlights the potential role of lactate as both an immunomodulatory metabolite and a potentially important signaling molecule during the host response to Mtb infection. While long thought to be an inert end product of primarily glucose metabolism, the cancer research field has discovered the importance of lactate in carcinogenesis and resistance to chemotherapeutic drug treatment. Herein, we discuss similarities between the TB granuloma and tumor microenvironments in the context of lactate metabolism and identify key metabolic and signaling pathways that have been shown to play a role in tumor progression but have yet to be explored within the context of TB. Ultimately, lactate metabolism and signaling could be viable HDT targets for TB; however, critical additional research is needed to better understand the role of lactate at the host-pathogen interface during Mtb infection before adopting this HDT strategy.
Collapse
Affiliation(s)
| | - Randall J. Basaraba
- Metabolism of Infectious Diseases Laboratory, Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
4
|
Hu J, Cai M, Liu Y, Liu B, Xue X, Ji R, Bian X, Lou S. The roles of GRP81 as a metabolic sensor and inflammatory mediator. J Cell Physiol 2020; 235:8938-8950. [PMID: 32342523 DOI: 10.1002/jcp.29739] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 04/09/2020] [Accepted: 04/16/2020] [Indexed: 12/31/2022]
Abstract
GPR81 (also named as HCA1) is a member of a subfamily of orphan G-protein coupled receptors (GPCRs), coupled to Gi -type G proteins. GPR81 was discovered in 2001 and identified as the only known endogenous receptor of lactate under physiological conditions in 2008, which opened a new field of research on how lactate may act as a signal molecule along with the GPR81 expression in the roles of metabolic process and inflammatory response. Recent studies showed that the physiological functions of GPR81 include lipid metabolism in adipose tissues, metabolic excitability in the brain, cellular development, and inflammatory response modulation. These findings may reveal a novel therapeutic strategy to treat clinical, metabolic, and inflammatory diseases. This article will summarize past research on GPR81, including its characteristics of distribution and expression, functional residues, pharmacological, and physiological agonists, involvement in signal transduction, and pharmacological applications.
Collapse
Affiliation(s)
- Jingyun Hu
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Ming Cai
- College of Rehabilitation Sciences, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Yuran Liu
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Beibei Liu
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China.,Department of Clinical Medicine, Weifang Medical College, Weifang, Shandong, China
| | - Xiangli Xue
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Ruifang Ji
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Xuepeng Bian
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Shujie Lou
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
5
|
Jones NK, Stewart K, Czopek A, Menzies RI, Thomson A, Moran CM, Cairns C, Conway BR, Denby L, Livingstone DEW, Wiseman J, Hadoke PW, Webb DJ, Dhaun N, Dear JW, Mullins JJ, Bailey MA. Endothelin-1 Mediates the Systemic and Renal Hemodynamic Effects of GPR81 Activation. Hypertension 2020; 75:1213-1222. [PMID: 32200679 PMCID: PMC7176350 DOI: 10.1161/hypertensionaha.119.14308] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Supplemental Digital Content is available in the text. GPR81 (G-protein-coupled receptor 81) is highly expressed in adipocytes, and activation by the endogenous ligand lactate inhibits lipolysis. GPR81 is also expressed in the heart, liver, and kidney, but roles in nonadipose tissues are poorly defined. GPR81 agonists, developed to improve blood lipid profile, might also provide insights into GPR81 physiology. Here, we assessed the blood pressure and renal hemodynamic responses to the GPR81 agonist, AZ′5538. In male wild-type mice, intravenous AZ′5538 infusion caused a rapid and sustained increase in systolic and diastolic blood pressure. Renal artery blood flow, intrarenal tissue perfusion, and glomerular filtration rate were all significantly reduced. AZ′5538 had no effect on blood pressure or renal hemodynamics in Gpr81−/− mice. Gpr81 mRNA was expressed in renal artery vascular smooth muscle, in the afferent arteriole, in glomerular and medullary perivascular cells, and in pericyte-like cells isolated from kidney. Intravenous AZ′5538 increased plasma ET-1 (endothelin 1), and pretreatment with BQ123 (endothelin-A receptor antagonist) prevented the pressor effects of GPR81 activation, whereas BQ788 (endothelin-B receptor antagonist) did not. Renal ischemia-reperfusion injury, which increases renal extracellular lactate, increased the renal expression of genes encoding ET-1, KIM-1 (Kidney Injury Molecule 1), collagen type 1-α1, TNF-α (tumor necrosis factor-α), and F4/80 in wild-type mice but not in Gpr81−/− mice. In summary, activation of GPR81 in vascular smooth muscle and perivascular cells regulates renal hemodynamics, mediated by release of the potent vasoconstrictor ET-1. This suggests that lactate may be a paracrine regulator of renal blood flow, particularly relevant when extracellular lactate is high as occurs during ischemic renal disease.
Collapse
Affiliation(s)
- Natalie K Jones
- From the University/British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, Scotland, United Kingdom (N.K.J., K.S., A.C., R.I.M., A.T., C.M.M., C.C., B.R.C., L.D., D.E.W.L., P.W.H., D.J.W., N.D., J.W.D., J.J.M., M.A.B.)
| | - Kevin Stewart
- From the University/British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, Scotland, United Kingdom (N.K.J., K.S., A.C., R.I.M., A.T., C.M.M., C.C., B.R.C., L.D., D.E.W.L., P.W.H., D.J.W., N.D., J.W.D., J.J.M., M.A.B.)
| | - Alicja Czopek
- From the University/British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, Scotland, United Kingdom (N.K.J., K.S., A.C., R.I.M., A.T., C.M.M., C.C., B.R.C., L.D., D.E.W.L., P.W.H., D.J.W., N.D., J.W.D., J.J.M., M.A.B.)
| | - Robert I Menzies
- From the University/British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, Scotland, United Kingdom (N.K.J., K.S., A.C., R.I.M., A.T., C.M.M., C.C., B.R.C., L.D., D.E.W.L., P.W.H., D.J.W., N.D., J.W.D., J.J.M., M.A.B.)
| | - Adrian Thomson
- From the University/British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, Scotland, United Kingdom (N.K.J., K.S., A.C., R.I.M., A.T., C.M.M., C.C., B.R.C., L.D., D.E.W.L., P.W.H., D.J.W., N.D., J.W.D., J.J.M., M.A.B.)
| | - Carmel M Moran
- From the University/British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, Scotland, United Kingdom (N.K.J., K.S., A.C., R.I.M., A.T., C.M.M., C.C., B.R.C., L.D., D.E.W.L., P.W.H., D.J.W., N.D., J.W.D., J.J.M., M.A.B.)
| | - Carolynn Cairns
- From the University/British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, Scotland, United Kingdom (N.K.J., K.S., A.C., R.I.M., A.T., C.M.M., C.C., B.R.C., L.D., D.E.W.L., P.W.H., D.J.W., N.D., J.W.D., J.J.M., M.A.B.)
| | - Bryan R Conway
- From the University/British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, Scotland, United Kingdom (N.K.J., K.S., A.C., R.I.M., A.T., C.M.M., C.C., B.R.C., L.D., D.E.W.L., P.W.H., D.J.W., N.D., J.W.D., J.J.M., M.A.B.)
| | - Laura Denby
- From the University/British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, Scotland, United Kingdom (N.K.J., K.S., A.C., R.I.M., A.T., C.M.M., C.C., B.R.C., L.D., D.E.W.L., P.W.H., D.J.W., N.D., J.W.D., J.J.M., M.A.B.)
| | - Dawn E W Livingstone
- From the University/British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, Scotland, United Kingdom (N.K.J., K.S., A.C., R.I.M., A.T., C.M.M., C.C., B.R.C., L.D., D.E.W.L., P.W.H., D.J.W., N.D., J.W.D., J.J.M., M.A.B.)
| | - John Wiseman
- Discovery Sciences, IMED Biotech Unit, AstraZeneca R&D Gothenburg, Sweden (J.W.)
| | - Patrick W Hadoke
- From the University/British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, Scotland, United Kingdom (N.K.J., K.S., A.C., R.I.M., A.T., C.M.M., C.C., B.R.C., L.D., D.E.W.L., P.W.H., D.J.W., N.D., J.W.D., J.J.M., M.A.B.)
| | - David J Webb
- From the University/British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, Scotland, United Kingdom (N.K.J., K.S., A.C., R.I.M., A.T., C.M.M., C.C., B.R.C., L.D., D.E.W.L., P.W.H., D.J.W., N.D., J.W.D., J.J.M., M.A.B.)
| | - Neeraj Dhaun
- From the University/British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, Scotland, United Kingdom (N.K.J., K.S., A.C., R.I.M., A.T., C.M.M., C.C., B.R.C., L.D., D.E.W.L., P.W.H., D.J.W., N.D., J.W.D., J.J.M., M.A.B.)
| | - James W Dear
- From the University/British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, Scotland, United Kingdom (N.K.J., K.S., A.C., R.I.M., A.T., C.M.M., C.C., B.R.C., L.D., D.E.W.L., P.W.H., D.J.W., N.D., J.W.D., J.J.M., M.A.B.)
| | - John J Mullins
- From the University/British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, Scotland, United Kingdom (N.K.J., K.S., A.C., R.I.M., A.T., C.M.M., C.C., B.R.C., L.D., D.E.W.L., P.W.H., D.J.W., N.D., J.W.D., J.J.M., M.A.B.)
| | - Matthew A Bailey
- From the University/British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, Scotland, United Kingdom (N.K.J., K.S., A.C., R.I.M., A.T., C.M.M., C.C., B.R.C., L.D., D.E.W.L., P.W.H., D.J.W., N.D., J.W.D., J.J.M., M.A.B.)
| |
Collapse
|
6
|
Davidsson Ö, Nilsson K, Brånalt J, Andersson T, Berggren K, Chen Y, Fjellström O, Gradén H, Gustafsson L, Hermansson NO, Jansen F, Johannesson P, Ohlsson B, Tyrchan C, Wellner A, Wellner E, Ölwegård-Halvarsson M. Identification of novel GPR81 agonist lead series for target biology evaluation. Bioorg Med Chem Lett 2020; 30:126953. [PMID: 31932225 DOI: 10.1016/j.bmcl.2020.126953] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/01/2020] [Indexed: 02/07/2023]
Abstract
GPR81 is a novel drug target that is implicated in the control of glucose and lipid metabolism. The lack of potent GPR81 modulators suitable for in vivo studies has limited the pharmacological characterization of this lactate sensing receptor. We performed a high throughput screen (HTS) and identified a GPR81 agonist chemical series containing a central acyl urea scaffold linker. During SAR exploration two additional new series were evolved, one containing cyclic acyl urea bioisosteres and another a central amide bond. These three series provide different selectivity and physicochemical properties suitable for in-vivo studies.
Collapse
Affiliation(s)
- Öjvind Davidsson
- CVRM Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.
| | - Kristina Nilsson
- CVRM Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.
| | - Jonas Brånalt
- CVRM Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Terese Andersson
- CVRM Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden; Early Product Development, Pharmaceutical Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Kristina Berggren
- CVRM Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden; RIA Medicinal Chemistry, Research and Early Development, Respiratory, Inflammation and Autoimmune, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Yantao Chen
- CVRM Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Ola Fjellström
- CVRM Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden; Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Henrik Gradén
- CVRM Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Linda Gustafsson
- CVRM Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | | | - Frank Jansen
- Mechanistic Biology & Profiling, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Petra Johannesson
- CVRM Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden; Global Patient Safety CVRM, Chief Medical Office, AstraZeneca R&D, Gothenburg, Sweden
| | - Bengt Ohlsson
- CVRM Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Christian Tyrchan
- CVRM Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden; RIA Medicinal Chemistry, Research and Early Development, Respiratory, Inflammation and Autoimmune, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Annika Wellner
- CVRM Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden; RIA Medicinal Chemistry, Research and Early Development, Respiratory, Inflammation and Autoimmune, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Eric Wellner
- CVRM Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Maria Ölwegård-Halvarsson
- CVRM Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
7
|
Li Z, Xu S, Huang B, Yuan C, Chang W, Fu B, Jiao L, Wang P, Zhang Z. Pd-Catalyzed Carbonylation of Acyl Azides. J Org Chem 2019; 84:9497-9508. [PMID: 31268718 DOI: 10.1021/acs.joc.9b01048] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Pd-catalyzed reactions of azides with CO to access an isocynate intermediate have been developed extensively in recent years. However, the catalytic carbonylation of sensitive acyl azides has not been reported. Herein, we report a simple Pd-catalyzed carbonylation reaction of acyl azides with broad substrate scope, high efficiency, and simple operation under mild conditions, which provides facile access to acyl ureas. In addition, a mechanistic study was carried out by both experiment and DFT calculation. Control experiments and kinetic study revealed that the real active palladium species were Pd(0). The result of kinetic study suggested that palladium catalyst, azide, and CO were all involved in the turnover-limiting step except for amine. Further DFT study suggested that an unprecedented five-membered palladacycle intermediate was the key intermediate in the carbonylation reaction.
Collapse
Affiliation(s)
- Zongyang Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, and Department of Applied Chemistry , China Agricultural University , Beijing 100193 , China
| | - Shiyang Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, and Department of Applied Chemistry , China Agricultural University , Beijing 100193 , China
| | - Baoliang Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, and Department of Applied Chemistry , China Agricultural University , Beijing 100193 , China
| | - Chenhui Yuan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, and Department of Applied Chemistry , China Agricultural University , Beijing 100193 , China
| | - Wenxu Chang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, and Department of Applied Chemistry , China Agricultural University , Beijing 100193 , China
| | - Bin Fu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, and Department of Applied Chemistry , China Agricultural University , Beijing 100193 , China
| | - Lei Jiao
- Center of Basic Molecular Science (CBMS), Department of Chemistry , Tsinghua University , Beijing 10084 , China
| | - Peng Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, and Department of Applied Chemistry , China Agricultural University , Beijing 100193 , China
| | - Zhenhua Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, and Department of Applied Chemistry , China Agricultural University , Beijing 100193 , China
| |
Collapse
|
8
|
Zuo Z, Xu S, Zhang L, Gan L, Fang H, Liu G, Huang Z. Cobalt-Catalyzed Asymmetric Hydrogenation of Vinylsilanes with a Phosphine–Pyridine–Oxazoline Ligand: Synthesis of Optically Active Organosilanes and Silacycles. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00067] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ziqing Zuo
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Songgen Xu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Lei Zhang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Lan Gan
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Huaquan Fang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Guixia Liu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Zheng Huang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
- Chang-Kung Chuang Institute, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, People’s Republic of China
| |
Collapse
|
9
|
Ohmura T, Sasaki I, Suginome M. Catalytic Generation of Rhodium Silylenoid for Alkene-Alkyne-Silylene [2 + 2 + 1] Cycloaddition. Org Lett 2019; 21:1649-1653. [PMID: 30835127 DOI: 10.1021/acs.orglett.9b00326] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
An alkene-alkyne-silylene [2 + 2 + 1] cycloaddition takes place in the rhodium-catalyzed reaction of 1,6-enynes with borylsilanes bearing an alkoxy group on the silicon atoms, which react as synthetic equivalents of silylene. The reaction proceeds efficiently in 1,2-dichloroethane at 80-110 °C in the presence of a rhodium catalyst bearing bis(diphenylphosphino)methane (DPPM) as a ligand to afford 1-silacyclopent-2-enes in good to high yields.
Collapse
Affiliation(s)
- Toshimichi Ohmura
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering , Kyoto University , Katsura, Nishikyo-ku , Kyoto 615-8510 , Japan
| | - Ikuo Sasaki
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering , Kyoto University , Katsura, Nishikyo-ku , Kyoto 615-8510 , Japan
| | - Michinori Suginome
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering , Kyoto University , Katsura, Nishikyo-ku , Kyoto 615-8510 , Japan
| |
Collapse
|
10
|
Ramesh R, Reddy DS. Quest for Novel Chemical Entities through Incorporation of Silicon in Drug Scaffolds. J Med Chem 2017; 61:3779-3798. [DOI: 10.1021/acs.jmedchem.7b00718] [Citation(s) in RCA: 203] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Remya Ramesh
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110 025, India
| | - D. Srinivasa Reddy
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110 025, India
| |
Collapse
|
11
|
Abstract
Application of silyl functionalities is one of the most promising strategies among various ‘elements chemistry’ approaches for the development of novel and distinctive drug candidates. Replacement of one or more carbon atoms of various biologically active compounds with silicon (so-called sila-substitution) has been intensively studied for decades, and is often effective for alteration of activity profile and improvement of metabolic profile. In addition to simple C/Si exchange, several novel approaches for utilizing silicon in medicinal chemistry have been suggested in recent years, focusing on the intrinsic differences between silicon and carbon. Sila-substitution offers great potential for enlarging the chemical space of medicinal chemistry, and provides many options for structural development of drug candidates.
Collapse
|
12
|
Lühning LH, Strehl J, Schmidtmann M, Doye S. Hydroaminoalkylation of Allylsilanes and a One-Pot Procedure for the Synthesis of 1,5-Benzoazasilepines. Chemistry 2017; 23:4197-4202. [PMID: 28124797 DOI: 10.1002/chem.201605923] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 01/26/2017] [Indexed: 11/11/2022]
Abstract
Allylsilanes undergo highly regioselective intermolecular alkene hydroaminoalkylation with secondary amines in the presence of a titanium mono(formamidinate) catalyst. Corresponding reactions of a suitable allyl(2-bromophenyl)silane which exclusively deliver the branched hydroaminoalkylation products combined with a subsequent Buchwald-Hartwig amination result in the development of an elegant one-pot procedure for the synthesis of literature-unknown silicon analogues of 1,5-benzodiazepines, the so-called 1,5-benzoazasilepines.
Collapse
Affiliation(s)
- Lars H Lühning
- Institut für Chemie, Universität Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26111, Oldenburg, Germany
| | - Julia Strehl
- Institut für Chemie, Universität Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26111, Oldenburg, Germany
| | - Marc Schmidtmann
- Institut für Chemie, Universität Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26111, Oldenburg, Germany
| | - Sven Doye
- Institut für Chemie, Universität Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26111, Oldenburg, Germany
| |
Collapse
|