1
|
Chen J, Zhou X, Yang Y, Li L. Protein translocation through α-helical channels and insertases. Structure 2025; 33:15-28. [PMID: 39591975 DOI: 10.1016/j.str.2024.10.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/19/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024]
Abstract
Protein translocation systems are essential for distributing proteins across various lipid membranes in cells. Cellular membranes, such as the endoplasmic reticulum (ER) membrane and mitochondrial inner membrane, require highly regulated protein translocation machineries that specifically allow the passage of protein polypeptides while blocking smaller molecules like ions and water. Key translocation systems include the Sec translocation channel, the protein insertases of the Oxa1 superfamily, and the translocases of the mitochondrial inner membrane (TIM). These machineries utilize different mechanisms to create pathways for proteins to move across membranes while preventing ion leakage during the dynamic translocation processes. In this review, we highlight recent advances in our understanding of these α-helical translocation machineries and examine their structures, mechanisms, and regulation. We also discuss the therapeutic potential of these translocation pathways and summarize the progress in drug development targeting these systems for treating diseases.
Collapse
Affiliation(s)
- Jingxia Chen
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
| | - Xueyin Zhou
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Yuqi Yang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
| | - Long Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
2
|
Swain A, Senapati SS, Pan A. Transcriptome and interactome-based analyses to unravel crucial proteins and pathways involved in Acinetobacter baumannii pathogenesis. Mol Divers 2024:10.1007/s11030-024-11041-1. [PMID: 39543024 DOI: 10.1007/s11030-024-11041-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024]
Abstract
The present study employed an integrated transcriptome and interactome-based analyses to identify key proteins and pathways associated with Acinetobacter baumannii infection towards the development of novel therapeutics against this pathogen. Transcriptome analysis of A.baumannii strains (ATCC 17978 and AbH12O-A2) identified 253 and 619 differentially expressed genes (DEGs), respectively. These genes were involved in essential molecular functions, including DNA binding, metal ion binding, and oxidoreductase activity. The centrality and module analyses of these identified DEGs had shortlisted 27 and 41 hub proteins, which were central to the ATCC 17978 and AbH12O-A2 networks, and essential for bacterial survival. Significantly, three proteins (SecA, glutathione synthase, and aromatic-amino-acid transaminase) from the ATCC 17978 strain and seven proteins (ATP synthase subunit alpha, translation initiation factor IF-2, SecY, elongation factors G, Tu, and Ts, and tRNA guanine-N1-methyltransferase) from the AbH12O-A2 strain showed interactions with human proteins, identified through host-pathogen interaction (HPI) analysis of hub proteins (referred as hub-HPI proteins). These proteins were observed to participate in vital pathways, including glutathione metabolism, secondary metabolite biosynthesis and quorum sensing. Targeting these hub-HPI proteins through novel therapeutic strategies holds the potential to disrupt the critical bacterial pathways, thereby controlling A. baumannii infections. Furthermore, their localization analysis indicated that nine proteins were cytoplasmic and one was membrane protein. Among them, six were druggable and four were novel proteins. Overall, this comprehensive study provides valuable insights into the crucial proteins and pathways involved during A. baumannii infection, and offers potential therapeutic targets for designing novel antimicrobial agents to tackle the pathogen.
Collapse
Affiliation(s)
- Aishwarya Swain
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, R.V. Nagar, Kalapet, Puducherry, 605014, India
| | - Smruti Sikha Senapati
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, R.V. Nagar, Kalapet, Puducherry, 605014, India
| | - Archana Pan
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, R.V. Nagar, Kalapet, Puducherry, 605014, India.
| |
Collapse
|
3
|
Sitsel O, Wang Z, Janning P, Kroczek L, Wagner T, Raunser S. Yersinia entomophaga Tc toxin is released by T10SS-dependent lysis of specialized cell subpopulations. Nat Microbiol 2024; 9:390-404. [PMID: 38238469 PMCID: PMC10847048 DOI: 10.1038/s41564-023-01571-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 11/29/2023] [Indexed: 02/04/2024]
Abstract
Disease-causing bacteria secrete numerous toxins to invade and subjugate their hosts. Unlike many smaller toxins, the secretion machinery of most large toxins remains enigmatic. By combining genomic editing, proteomic profiling and cryo-electron tomography of the insect pathogen Yersinia entomophaga, we demonstrate that a specialized subset of these cells produces a complex toxin cocktail, including the nearly ribosome-sized Tc toxin YenTc, which is subsequently exported by controlled cell lysis using a transcriptionally coupled, pH-dependent type 10 secretion system (T10SS). Our results dissect the Tc toxin export process by a T10SS, identifying that T10SSs operate via a previously unknown lytic mode of action and establishing them as crucial players in the size-insensitive release of cytoplasmically folded toxins. With T10SSs directly embedded in Tc toxin operons of major pathogens, we anticipate that our findings may model an important aspect of pathogenesis in bacteria with substantial impact on agriculture and healthcare.
Collapse
Affiliation(s)
- Oleg Sitsel
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Zhexin Wang
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Petra Janning
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Lara Kroczek
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Thorsten Wagner
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Stefan Raunser
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany.
| |
Collapse
|
4
|
Luo Y, Wen Z, Xiong Y, Chen X, Shen Z, Li P, Peng Y, Deng Q, Yu Z, Zheng J, Han S. The potential target of bithionol against Staphylococcus aureus: design, synthesis and application of biotinylated probes Bio-A2. J Antibiot (Tokyo) 2023:10.1038/s41429-023-00618-x. [PMID: 37185582 DOI: 10.1038/s41429-023-00618-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/07/2023] [Accepted: 03/19/2023] [Indexed: 05/17/2023]
Abstract
This study aims to explore the potential targets of bithionol in Staphylococcus aureus.The four bithionol biotinylated probes Bio-A2-1, Bio-A2-2, Bio-A2-3, and Bio-A2-4 were synthesized, the minimal inhibitory concentrations (MICs) of these probes against S. aureus were determined. The bithionol binding proteins in S. aureus were identified through immunoprecipitation and LC-MS/MS with bithionol biotinylated probe. The biotinylated bithionol probes Bio-A2-1 and Bio-A2-3 displayed antibacterial activities against S. aureus. The Bio-A2-1 showed lower MICs than Bio-A2-3, and both with the MIC50/MIC90 at 12.5/12.5 μM against S. aureus clinical isolates. The inhibition rates of bithionol biotinylated probes Bio-A2-1 and Bio-A2-3 on the biofilm formation of S. aureus were comparable to that of bithionol, and were stronger than that of Bio-A2-2 and Bio-A2-4. The biofilm formation of 10 out of 12S. aureus clinical isolates could be inhibited by Bio-A2-1 (at 1/4×, or 1/2× MICs). There are three proteins identified in S. aureus through immunoprecipitation and LC-MS/MS with bithionol biotinylated probe Bio-A2-1: Protein translocase subunit SecA 1 (secA1), Alanine--tRNA ligase (alaS) and DNA gyrase subunit A (gyrA), and in which the SecA1 protein the highest coverage and the most unique peptides. The LYS112, GLN143, ASP213, GLY496 and ASP498 of SecA1 protein act as hydrogen acceptors to form 6 hydrogen bonds with bithionol biotinylated probe Bio-A2-1 by molecular docking analysis. In conclusion, the bithionol biotinylated probe Bio-A2-1 has antibacterial and anti-biofilm activities against S. aureus, and SecA1 was probably one of the potential targets of bithionol in S. aureus.
Collapse
Affiliation(s)
- Yue Luo
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Zewen Wen
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, 518052, China
| | - Yanpeng Xiong
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Xuecheng Chen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Zonglin Shen
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, 518052, China
| | - Peiyu Li
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, 518052, China
| | - Yalan Peng
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Qiwen Deng
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, 518052, China
| | - Zhijian Yu
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, 518052, China
| | - Jinxin Zheng
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, 518052, China.
| | - Shiqing Han
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China.
| |
Collapse
|
5
|
Ye J, Chen X. Current Promising Strategies against Antibiotic-Resistant Bacterial Infections. Antibiotics (Basel) 2022; 12:antibiotics12010067. [PMID: 36671268 PMCID: PMC9854991 DOI: 10.3390/antibiotics12010067] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
Infections caused by antibiotic-resistant bacteria (ARB) are one of the major global health challenges of our time. In addition to developing new antibiotics to combat ARB, sensitizing ARB, or pursuing alternatives to existing antibiotics are promising options to counter antibiotic resistance. This review compiles the most promising anti-ARB strategies currently under development. These strategies include the following: (i) discovery of novel antibiotics by modification of existing antibiotics, screening of small-molecule libraries, or exploration of peculiar places; (ii) improvement in the efficacy of existing antibiotics through metabolic stimulation or by loading a novel, more efficient delivery systems; (iii) development of alternatives to conventional antibiotics such as bacteriophages and their encoded endolysins, anti-biofilm drugs, probiotics, nanomaterials, vaccines, and antibody therapies. Clinical or preclinical studies show that these treatments possess great potential against ARB. Some anti-ARB products are expected to become commercially available in the near future.
Collapse
|
6
|
Potteth US, Upadhyay T, Saini S, Saraogi I. Novel Antibacterial Targets in Protein Biogenesis Pathways. Chembiochem 2021; 23:e202100459. [PMID: 34643994 DOI: 10.1002/cbic.202100459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/12/2021] [Indexed: 11/11/2022]
Abstract
Antibiotic resistance has emerged as a global threat due to the ability of bacteria to quickly evolve in response to the selection pressure induced by anti-infective drugs. Thus, there is an urgent need to develop new antibiotics against resistant bacteria. In this review, we discuss pathways involving bacterial protein biogenesis as attractive antibacterial targets since many of them are essential for bacterial survival and virulence. We discuss the structural understanding of various components associated with bacterial protein biogenesis, which in turn can be utilized for rational antibiotic design. We highlight efforts made towards developing inhibitors of these pathways with insights into future possibilities and challenges. We also briefly discuss other potential targets related to protein biogenesis.
Collapse
Affiliation(s)
- Upasana S Potteth
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal Bypass Road, Bhopal, 462066, Madhya Pradesh, India
| | - Tulsi Upadhyay
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal Bypass Road, Bhopal, 462066, Madhya Pradesh, India
| | - Snehlata Saini
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal Bypass Road, Bhopal, 462066, Madhya Pradesh, India
| | - Ishu Saraogi
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal Bypass Road, Bhopal, 462066, Madhya Pradesh, India.,Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal Bypass Road, Bhopal - 462066, Madhya Pradesh, India
| |
Collapse
|
7
|
Thiouracil SecA inhibitors: bypassing the effects of efflux pumps and attenuating virulence factor secretion in MRSA and Bacillus anthracis. Med Chem Res 2021. [DOI: 10.1007/s00044-021-02750-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Cui P, Zhang D, Guo X, Ji S, Jiang Q. Synthesis and Antibacterial Evaluation of Thiouracil Derivatives Containing 1,2,4-Triazolo[1,5-a]Pyrimidine. LETT ORG CHEM 2021. [DOI: 10.2174/1570178617999200826164227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A series of new thiouracil compounds containing 1,2,4-triazolo[1,5-a]pyrimidine were designed
and synthesized. The in vitro antibacterial activities of the new compounds against Bacillus amyloliquefaciens,
Staphylococcus aureus and Bacillus subtilis were tested. The results showed that some
of the new compounds had strong inhibitory activities against the tested bacteria. At the concentration
of 50 μg/mL, the compound 12d had broad and the highest inhibitory activity with the 100% inhibition
against the three tested strains, the same as norfloxacin which was used as the control.
Collapse
Affiliation(s)
- Penglei Cui
- College of Science, Hebei Agricultural University, 071001 Baoding,China
| | - Di Zhang
- College of Food Science and Technology, Hebei Agricultural University, 071001 Baoding,China
| | - Xiumin Guo
- College of Science, Hebei Agricultural University, 071001 Baoding,China
| | - Shujing Ji
- College of Science, Hebei Agricultural University, 071001 Baoding,China
| | - Qingmei Jiang
- College of Science, Hebei Agricultural University, 071001 Baoding,China
| |
Collapse
|
9
|
André LSP, Pereira RFA, Pinheiro FR, Pascoal ACRF, Ferreira VF, de Carvalho da Silva F, Gonzaga DTG, Costa DCS, Ribeiro T, Sachs D, Aguiar-Alves F. Biological Evaluation of Selected 1,2,3-triazole Derivatives as Antibacterial and Antibiofilm Agents. Curr Top Med Chem 2021; 20:2186-2191. [PMID: 32648843 DOI: 10.2174/1568026620666200710104737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/17/2020] [Accepted: 04/10/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Resistance to antimicrobial agents is a major public health problem, being Staphylococcus aureus prevalent in infections in hospital and community environments and, admittedly, related to biofilm formation in biotic and abiotic surfaces. Biofilms form a complex and structured community of microorganisms surrounded by an extracellular matrix adhering to each other and to a surface that gives them even more protection from and resistance against the action of antimicrobial agents, as well as against host defenses. METHODS Aiming to control and solve these problems, our study sought to evaluate the action of 1,2,3- triazoles against a Staphylococcus aureus isolate in planktonic and in the biofilm form, evaluating the activity of this triazole through Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) tests. We have also performed cytotoxic evaluation and Scanning Electron Microscopy (SEM) of the biofilms under the treatment of the compound. The 1,2,3-triazole DAN 49 showed bacteriostatic and bactericidal activity (MIC and MBC 128 μg/mL). In addition, its presence interfered with the biofilm formation stage (1/2 MIC, p <0.000001) and demonstrated an effect on young preformed biofilm (2 MICs, p <0.05). RESULTS Scanning Electron Microscopy images showed a reduction in the cell population and the appearance of deformations on the surface of some bacteria in the biofilm under treatment with the compound. CONCLUSION Therefore, it was possible to conclude the promising anti-biofilm potential of 1,2,3-triazole, demonstrating the importance of the synthesis of new compounds with biological activity.
Collapse
Affiliation(s)
- Lialyz Soares Pereira André
- Universidade Fluminense Federal, Molecular Epidemiology and Biotechnology Laboratory (LEMB), Rodolpho Albino University Laboratory (LURA), Niterói-RJ, Brazil,Universidade Federal Fluminense, Graduate Program in Pathology and Graduate Program in Applied Microbiology and Parasitology, Niterói-RJ, Brazil
| | - Renata Freire Alves Pereira
- Universidade Fluminense Federal, Molecular Epidemiology and Biotechnology Laboratory (LEMB), Rodolpho Albino University Laboratory (LURA), Niterói-RJ, Brazil,Universidade Federal Fluminense, Graduate Program in Biotechnology, Niterói-RJ, Brazil
| | - Felipe Ramos Pinheiro
- Universidade Fluminense Federal, Molecular Epidemiology and Biotechnology Laboratory (LEMB), Rodolpho Albino University Laboratory (LURA), Niterói-RJ, Brazil,Universidade Federal Fluminense, Graduate Program in Pathology and Graduate Program in Applied Microbiology and Parasitology, Niterói-RJ, Brazil
| | | | - Vitor Francisco Ferreira
- Universidade Federal Fluminense, Department of Pharmaceutical Technology, Pharmacy School, Niterói-RJ, Brazil
| | | | | | - Dora Cristina Silva Costa
- Universidade Federal Fluminense, Instituto de Química, Departamento de Química Orgânica, Niterói-RJ, Brazil
| | - Tainara Ribeiro
- Universidade Federal de Itajubá, Department of Physics and Chemistry, Institute of Exact Sciences, Itajubá-MG, Brazil
| | - Daniela Sachs
- Universidade Federal de Itajubá, Department of Physics and Chemistry, Institute of Exact Sciences, Itajubá-MG, Brazil
| | - Fábio Aguiar-Alves
- Universidade Fluminense Federal, Molecular Epidemiology and Biotechnology Laboratory (LEMB), Rodolpho Albino University Laboratory (LURA), Niterói-RJ, Brazil,Universidade Federal Fluminense, Graduate Program in Pathology and Graduate Program in Applied Microbiology and Parasitology, Niterói-RJ, Brazil,Universidade Federal Fluminense, Department of Basic Sciences, Nova Friburgo Health Institute, Nova Friburgo-RJ, Brazil
| |
Collapse
|
10
|
Oswald J, Njenga R, Natriashvili A, Sarmah P, Koch HG. The Dynamic SecYEG Translocon. Front Mol Biosci 2021; 8:664241. [PMID: 33937339 PMCID: PMC8082313 DOI: 10.3389/fmolb.2021.664241] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/24/2021] [Indexed: 12/13/2022] Open
Abstract
The spatial and temporal coordination of protein transport is an essential cornerstone of the bacterial adaptation to different environmental conditions. By adjusting the protein composition of extra-cytosolic compartments, like the inner and outer membranes or the periplasmic space, protein transport mechanisms help shaping protein homeostasis in response to various metabolic cues. The universally conserved SecYEG translocon acts at the center of bacterial protein transport and mediates the translocation of newly synthesized proteins into and across the cytoplasmic membrane. The ability of the SecYEG translocon to transport an enormous variety of different substrates is in part determined by its ability to interact with multiple targeting factors, chaperones and accessory proteins. These interactions are crucial for the assisted passage of newly synthesized proteins from the cytosol into the different bacterial compartments. In this review, we summarize the current knowledge about SecYEG-mediated protein transport, primarily in the model organism Escherichia coli, and describe the dynamic interaction of the SecYEG translocon with its multiple partner proteins. We furthermore highlight how protein transport is regulated and explore recent developments in using the SecYEG translocon as an antimicrobial target.
Collapse
Affiliation(s)
- Julia Oswald
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZMBZ), Faculty of Medicine, Albert Ludwigs Universität Freiburg, Freiburg, Germany
| | - Robert Njenga
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZMBZ), Faculty of Medicine, Albert Ludwigs Universität Freiburg, Freiburg, Germany.,Faculty of Biology, Albert Ludwigs Universität Freiburg, Freiburg, Germany
| | - Ana Natriashvili
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZMBZ), Faculty of Medicine, Albert Ludwigs Universität Freiburg, Freiburg, Germany.,Faculty of Biology, Albert Ludwigs Universität Freiburg, Freiburg, Germany
| | - Pinku Sarmah
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZMBZ), Faculty of Medicine, Albert Ludwigs Universität Freiburg, Freiburg, Germany.,Faculty of Biology, Albert Ludwigs Universität Freiburg, Freiburg, Germany
| | - Hans-Georg Koch
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZMBZ), Faculty of Medicine, Albert Ludwigs Universität Freiburg, Freiburg, Germany
| |
Collapse
|
11
|
Cui PL, Zhang D, Guo XM, Ji SJ, Jiang QM. Synthesis, antibacterial activities and molecular docking study of thiouracil derivatives containing oxadiazole moiety. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.1904990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Peng-Lei Cui
- College of Science, Hebei Agricultural University, Baoding, China
| | - Di Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Xiu-Min Guo
- College of Science, Hebei Agricultural University, Baoding, China
| | - Shu-Jing Ji
- College of Science, Hebei Agricultural University, Baoding, China
| | - Qing-Mei Jiang
- College of Science, Hebei Agricultural University, Baoding, China
| |
Collapse
|
12
|
Strzelecka M, Świątek P. 1,2,4-Triazoles as Important Antibacterial Agents. Pharmaceuticals (Basel) 2021; 14:ph14030224. [PMID: 33799936 PMCID: PMC7999634 DOI: 10.3390/ph14030224] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/23/2021] [Accepted: 03/01/2021] [Indexed: 12/15/2022] Open
Abstract
The global spread of drug resistance in bacteria requires new potent and safe antimicrobial agents. Compounds containing the 1,2,4-triazole ring in their structure are characterised by multidirectional biological activity. A large volume of research on triazole and their derivatives has been carried out, proving significant antibacterial activity of this heterocyclic core. This review is useful for further investigations on this scaffold to harness its optimum antibacterial potential. Moreover, rational design and development of the novel antibacterial agents incorporating 1,2,4-triazole can help in dealing with the escalating problems of microbial resistance.
Collapse
|
13
|
Aggarwal R, Sumran G. An insight on medicinal attributes of 1,2,4-triazoles. Eur J Med Chem 2020; 205:112652. [PMID: 32771798 PMCID: PMC7384432 DOI: 10.1016/j.ejmech.2020.112652] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/04/2020] [Accepted: 07/07/2020] [Indexed: 02/01/2023]
Abstract
The present review aims to summarize the pharmacological profile of 1,2,4-triazole, one of the emerging privileged scaffold, as antifungal, antibacterial, anticancer, anticonvulsant, antituberculosis, antiviral, antiparasitic, analgesic and anti-inflammatory agents, etc. along with structure-activity relationship. The comprehensive compilation of work carried out in the last decade on 1,2,4-triazole nucleus will provide inevitable scope for researchers for the advancement of novel potential drug candidates having better efficacy and selectivity.
Collapse
Affiliation(s)
- Ranjana Aggarwal
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136 119, India; CSIR-National Institute of Science Technology and Development Studies, New Delhi, India.
| | - Garima Sumran
- Department of Chemistry, D. A. V. College (Lahore), Ambala City, 134 003, Haryana, India.
| |
Collapse
|
14
|
Ge X, Xu Z. 1,2,4-Triazole hybrids with potential antibacterial activity against methicillin-resistant Staphylococcus aureus. Arch Pharm (Weinheim) 2020; 354:e2000223. [PMID: 32985011 DOI: 10.1002/ardp.202000223] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/28/2020] [Accepted: 09/01/2020] [Indexed: 02/03/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) has developed numerous mechanisms of virulence and strategies to evade the human immune system, and it can be transmitted between humans, animals, and the environment. Thus, MRSA is an important cause of morbidity and mortality in both hospitals and in the community, creating an urgent demand for the development of novel anti-MRSA candidates. The 1,2,4-triazole nucleus is a bioisostere of amide, ester, and carboxylic acid, and the 1,2,4-triazole ring is found in many compounds with diverse biological effects. 1,2,4-Triazole derivatives could exert their antibacterial activity through inhibition of efflux pumps, filamentous temperature-sensitive protein Z, penicillin-binding protein, DNA gyrase, and topoisomerase IV, and they play an important role in the discovery of novel antibacterial agents. Among them, 1,2,4-triazole hybrids, which have the potential to exert dual/multiple mechanisms of action, possess a promising broad-spectrum antibacterial activity against a panel of clinically important drug-resistant pathogens including MRSA. This review outlines the recent developments of 1,2,4-triazole hybrids with a potential anti-MRSA activity, covering articles published between 2010 and 2020. The mechanisms of action, critical aspects of their design, and structure-activity relationships are also discussed.
Collapse
Affiliation(s)
- Xuemei Ge
- Department of Food Science and Technology, College of Light Industry Science and Engineering, Nanjing Forestry University, Nanjing, China
| | - Zhi Xu
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
15
|
Multiple ways to kill bacteria via inhibiting novel cell wall or membrane targets. Future Med Chem 2020; 12:1253-1279. [PMID: 32538147 DOI: 10.4155/fmc-2020-0046] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The rise of antibiotic-resistant infections has been well documented and the need for novel antibiotics cannot be overemphasized. US FDA approved antibiotics target only a small fraction of bacterial cell wall or membrane components, well-validated antimicrobial targets. In this review, we highlight small molecules that inhibit relatively unexplored cell wall and membrane targets. Some of these targets include teichoic acids-related proteins (DltA, LtaS, TarG and TarO), lipid II, Mur family enzymes, components of LPS assembly (MsbA, LptA, LptB and LptD), penicillin-binding protein 2a in methicillin-resistant Staphylococcus aureus, outer membrane protein transport (such as LepB and BamA) and lipoprotein transport components (LspA, LolC, LolD and LolE). Inhibitors of SecA, cell division protein, FtsZ and compounds that kill persister cells via membrane targeting are also covered.
Collapse
|
16
|
Bamba F, Jin J, Tai PC, Wang B. Synthesis and biological evaluation of novel 4-oxo-5-cyano thiouracil derivatives as SecA inhibitors. HETEROCYCL COMMUN 2020. [DOI: 10.1515/hc-2020-0100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractThe continuous emergence of drug-resistant strains of bacteria poses an urgent risk to human health and dictates the need for new antimicrobials. Along this line, we have been working on developing inhibitors of SecA, a key component of the bacterial Sec-dependent secretion machinery. Herein, we describe the synthesis and antimicrobial evaluation of 6-oxo-1,6-dihydropyrimidine-5-carbonitrile derivatives as potential SecA inhibitors.
Collapse
Affiliation(s)
- Fante Bamba
- Departments of Chemistry, Georgia State University, Atlanta, Georgia 30303, USA
- Laboratoire de Chimie Organique et des Substances Naturelles, Université Félix Houphouët-Boigny, 22 Bp 582 Abidjan 22, AbidjanCote d‘Ivoire
| | - Jinshan Jin
- Departments of Biology, Georgia State University, Atlanta, Georgia 30303, USA
| | - Phang C. Tai
- Departments of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, USA
| | - Binghe Wang
- Departments of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, USA
| |
Collapse
|
17
|
Gao F, Wang T, Xiao J, Huang G. Antibacterial activity study of 1,2,4-triazole derivatives. Eur J Med Chem 2019; 173:274-281. [PMID: 31009913 DOI: 10.1016/j.ejmech.2019.04.043] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 04/14/2019] [Accepted: 04/15/2019] [Indexed: 12/12/2022]
Abstract
Antibiotics are commonly used to fight against bacterial infections, but bacteria have already been resistant to almost all antibiotics due to abuse of antibiotics. 1,2,4-Triazole derived compounds possess chemotherapeutic effects including potential antibacterial activities against drug-sensitive as well as drug-resistant pathogens. Hybridization displays a high potential to develop novel drugs with the capacity to overcome drug resistance, reduce toxicity and improve pharmacokinetic profiles. More effective antibacterial candidates might be obtained by the hybridization of 1,2,4-triazole with other antibacterial pharmacophores. This review summarizes the recent advances of 1,2,4-triazole derivatives as potential antibacterial compounds, and the structure-activity relationship is also discussed.
Collapse
Affiliation(s)
- Feng Gao
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China; Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, PR China; Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, PR China.
| | - Tengfei Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
| | - Jiaqi Xiao
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China; Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, PR China.
| | - Gang Huang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, PR China.
| |
Collapse
|
18
|
Jin J, Hsieh YH, Chaudhary AS, Cui J, Houghton JE, Sui SF, Wang B, Tai PC. SecA inhibitors as potential antimicrobial agents: differential actions on SecA-only and SecA-SecYEG protein-conducting channels. FEMS Microbiol Lett 2018; 365:5037921. [PMID: 30007321 PMCID: PMC7190897 DOI: 10.1093/femsle/fny145] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 06/13/2018] [Indexed: 12/13/2022] Open
Abstract
Sec-dependent protein translocation is an essential process in bacteria. SecA is a key component of the translocation machinery and has multiple domains that interact with various ligands. SecA acts as an ATPase motor to drive the precursor protein/peptide through the SecYEG protein translocation channels. As SecA is unique to bacteria and there is no mammalian counterpart, it is an ideal target for the development of new antimicrobials. Several reviews detail the assays for ATPase and protein translocation, as well as the search for SecA inhibitors. Recent studies have shown that, in addition to the SecA-SecYEG translocation channels, there are SecA-only channels in the lipid bilayers, which function independently from the SecYEG machinery. This mini-review focuses on recent advances on the newly developed SecA inhibitors that allow the evaluation of their potential as antimicrobial agents, as well as a fundamental understanding of mechanisms of SecA function(s). These SecA inhibitors abrogate the effects of efflux pumps in both Gram-positive and Gram-negative bacteria. We also discuss recent findings that SecA binds to ribosomes and nascent peptides, which suggest other roles of SecA. A model for the multiple roles of SecA is presented.
Collapse
Affiliation(s)
- Jinshan Jin
- Department of Biology, Center for Biotechnology and Drug Design and Georgia State University, Atlanta, GA 30303, USA
| | - Ying-Hsin Hsieh
- Department of Biology, Center for Biotechnology and Drug Design and Georgia State University, Atlanta, GA 30303, USA
| | - Arpana S Chaudhary
- Department of Chemistry, Center for Biotechnology and Drug Design and Georgia State University, P.O. Box 3965, Atlanta, GA 30303, USA
| | - Jianmei Cui
- Department of Chemistry, Center for Biotechnology and Drug Design and Georgia State University, P.O. Box 3965, Atlanta, GA 30303, USA
| | - John E Houghton
- Department of Biology, Center for Biotechnology and Drug Design and Georgia State University, Atlanta, GA 30303, USA
| | - Sen-fang Sui
- State Key Laboratory of Membrane Biology, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Binghe Wang
- Department of Chemistry, Center for Biotechnology and Drug Design and Georgia State University, P.O. Box 3965, Atlanta, GA 30303, USA
| | - Phang C Tai
- Department of Biology, Center for Biotechnology and Drug Design and Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
19
|
Van Puyenbroeck V, Vermeire K. Inhibitors of protein translocation across membranes of the secretory pathway: novel antimicrobial and anticancer agents. Cell Mol Life Sci 2018; 75:1541-1558. [PMID: 29305616 PMCID: PMC5897483 DOI: 10.1007/s00018-017-2743-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/15/2017] [Accepted: 12/27/2017] [Indexed: 12/22/2022]
Abstract
Proteins routed to the secretory pathway start their journey by being transported across biological membranes, such as the endoplasmic reticulum. The essential nature of this protein translocation process has led to the evolution of several factors that specifically target the translocon and block translocation. In this review, various translocation pathways are discussed together with known inhibitors of translocation. Properties of signal peptide-specific systems are highlighted for the development of new therapeutic and antimicrobial applications, as compounds can target signal peptides from either host cells or pathogens and thereby selectively prevent translocation of those specific proteins. Broad inhibition of translocation is also an interesting target for the development of new anticancer drugs because cancer cells heavily depend on efficient protein translocation into the endoplasmic reticulum to support their fast growth.
Collapse
Affiliation(s)
- Victor Van Puyenbroeck
- Laboratory of Virology and Chemotherapy, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven - University of Leuven, 3000, Leuven, Belgium
| | - Kurt Vermeire
- Laboratory of Virology and Chemotherapy, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven - University of Leuven, 3000, Leuven, Belgium.
| |
Collapse
|
20
|
Wang J, Niu L, Huang J, Yan Z, Wang J. A novel NBD-based fluorescent turn-on probe for the detection of cysteine and homocysteine in living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 192:52-58. [PMID: 29126008 DOI: 10.1016/j.saa.2017.10.064] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 10/16/2017] [Accepted: 10/25/2017] [Indexed: 06/07/2023]
Abstract
Biothiols, such as cysteine (Cys), homocysteine (Hcy) and glutathione (GSH), are involved in a number of biological processes and play crucial roles in biological systems. Thus, the detection of biothiols is highly important for early diagnosis of diseases and evaluation of disease progression. Herein, we developed a new turn-on fluorescent probe 1 based on 7-nitro-2,1,3-benzoxadiazole (NBD) with high selectivity and sensitivity for Cys/Hcy on account of nucleophilic substitution and Smiles rearrangement reaction. The probe could sense Cys/Hcy rapidly, the intensity of fluorescence increased immediately within 1min. Furthermore, the probe is low toxic and has been successfully applied to detect intracellular Cys/Hcy by cell fluorescence imaging in living normal and cancer cells.
Collapse
Affiliation(s)
- Jiamin Wang
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng 475004, PR China.
| | - Linqiang Niu
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng 475004, PR China
| | - Jing Huang
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng 475004, PR China
| | - Zhijie Yan
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng 475004, PR China
| | - Jianhong Wang
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng 475004, PR China.
| |
Collapse
|
21
|
Sedenkova KN, Averina EB, Grishin YK, Kolodyazhnaya JV, Rybakov VB, Vasilenko DA, Steglenko DV, Minkin VI, Kuznetsova TS, Zefirov NS. Heterocyclization of gem -dichlorocyclopropanes: “Fine tuning” of reactivity towards nitronium triflate. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.06.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
22
|
Cui P, Li X, Zhu M, Wang B, Liu J, Chen H. Design, synthesis and antibacterial activities of thiouracil derivatives containing acyl thiourea as SecA inhibitors. Bioorg Med Chem Lett 2017; 27:2234-2237. [DOI: 10.1016/j.bmcl.2016.11.060] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 11/11/2016] [Accepted: 11/22/2016] [Indexed: 12/28/2022]
|
23
|
Xie X, Li M, Tang F, Li Y, Zhang L, Jiao X, Wang X, Tang B. Combinatorial Strategy to Identify Fluorescent Probes for Biothiol and Thiophenol Based on Diversified Pyrimidine Moieties and Their Biological Applications. Anal Chem 2017; 89:3015-3020. [PMID: 28192974 DOI: 10.1021/acs.analchem.6b04608] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We present a feasible paradigm of developing original fluorescent probes for target biomolecules via combinatorial chemistry. In this developmental program, pyrimidine moieties were investigated and optimized as unique recognition units for thiols for the first time through a parallel synthesis in combination with a rapid screening process. This time-efficient and cost-saving process effectively facilitated the developmental progress and provided detailed structure-reactivity relationships. As a result, Res-Biot and Flu-Pht were identified as optimal fluorescent probes for biothiol and thiophenol, respectively. Their favorable characteristics and superior applicability have been well demonstrated in both chemical and biological contexts. In particular, Res-Biot enables the direct visualization of biothiol fluctuations during oxidative stress and cell apoptosis, indicating its suitability in elucidation of a specific pathophysiological process in both living cells and living animals. Meanwhile, Flu-Pht is competent to visualize thiophenols without the interference from endogenous biothiols in living cells.
Collapse
Affiliation(s)
- Xilei Xie
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University , Jinan 250014, P. R. China
| | - Mengmeng Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University , Jinan 250014, P. R. China
| | - Fuyan Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University , Jinan 250014, P. R. China
| | - Yong Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University , Jinan 250014, P. R. China
| | - Leilei Zhang
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 10050, China
| | - Xiaoyun Jiao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University , Jinan 250014, P. R. China
| | - Xu Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University , Jinan 250014, P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University , Jinan 250014, P. R. China
| |
Collapse
|
24
|
Hsieh YH, Zhang H, Jin J, Dai C, Jiang C, Wang B, Tai PC. Biphasic actions of SecA inhibitors on Prl/Sec suppressors: Possible physiological roles of SecA-only channels. Biochem Biophys Res Commun 2017; 482:296-300. [PMID: 27856243 DOI: 10.1016/j.bbrc.2016.11.057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 11/11/2016] [Indexed: 11/30/2022]
Abstract
SecA is an essential component in the bacterial Sec-dependent protein translocation process. We previously showed that in addition to the ubiquitous, high-affinity SecYEG-SecDF·YajC protein translocation channel, there is a low-affinity SecA-only channel that elicits ion channel activity and promotes protein translocation. The SecA-only channels are less efficient, and like Prl suppressors, lack signal peptide specificity; they function in the absence of signal peptides. The presence of SecYEG-SecDF·YajC alters the sensitivity of ATPase inhibitor Rose Bengal. In this study, we found that the suppressor membranes are much more resistant to inhibition by Rose Bengal. Similar results have been found for a SecA-specific inhibitor. Moreover, biphasic responses of inhibition of ion current and protein translocation activities were observed for many PrlA/SecY and PrlG/SecE suppressor membranes, with a low IC50 value similar to that of the SecA-only channels and a very high IC50. However, the suppressor strains are as sensitive to the inhibitor as the parental strain, suggesting that SecA-only channels have some essential physiological function(s) in the cells that are inhibited by the specific SecA inhibitor.
Collapse
Affiliation(s)
- Ying-Hsin Hsieh
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Hao Zhang
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Jinshan Jin
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Chaofeng Dai
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Chun Jiang
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Binghe Wang
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Phang C Tai
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA; Center for Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
25
|
Jin J, Hsieh YH, Cui J, Damera K, Dai C, Chaudhary AS, Zhang H, Yang H, Cao N, Jiang C, Vaara M, Wang B, Tai PC. Using Chemical Probes to Assess the Feasibility of Targeting SecA for Developing Antimicrobial Agents against Gram-Negative Bacteria. ChemMedChem 2016; 11:2511-2521. [PMID: 27753464 PMCID: PMC5189635 DOI: 10.1002/cmdc.201600421] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 09/25/2016] [Indexed: 11/07/2022]
Abstract
With the widespread emergence of drug resistance, there is an urgent need to search for new antimicrobials, especially those against Gram-negative bacteria. Along this line, the identification of viable targets is a critical first step. The protein translocase SecA is commonly believed to be an excellent target for the development of broad-spectrum antimicrobials. In recent years, we developed three structural classes of SecA inhibitors that have proven to be very effective against Gram-positive bacteria. However, we have not achieved the same level of success against Gram-negative bacteria, despite the potent inhibition of SecA in enzyme assays by the same inhibitors. In this study, we use representative inhibitors as chemical probes to gain an understanding as to why these inhibitors were not effective against Gram-negative bacteria. The results validate our initial postulation that the major difference in effectiveness against Gram-positive and Gram-negative bacteria is in the additional permeability barrier posed by the outer membrane of Gram-negative bacteria. We also found that the expression of efflux pumps, which are responsible for multidrug resistance (MDR), have no effect on the effectiveness of these SecA inhibitors. Identification of an inhibitor-resistant mutant and complementation tests of the plasmids containing secA in a secAts mutant showed that a single secA-azi-9 mutation increased the resistance, providing genetic evidence that SecA is indeed the target of these inhibitors in bacteria. Such results strongly suggest SecA as an excellent target for developing effective antimicrobials against Gram-negative bacteria with the intrinsic ability to overcome MDR. A key future research direction should be the optimization of membrane permeability.
Collapse
Affiliation(s)
- Jinshan Jin
- Department of Biology, Center for Biotechnology and Drug Design, and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303
| | - Ying-Hsin Hsieh
- Department of Biology, Center for Biotechnology and Drug Design, and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303
| | - Jianmei Cui
- Department of Chemistry, Center for Biotechnology and Drug Design, and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303
| | - Krishna Damera
- Department of Chemistry, Center for Biotechnology and Drug Design, and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303
| | - Chaofeng Dai
- Department of Chemistry, Center for Biotechnology and Drug Design, and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303
| | - Arpana S. Chaudhary
- Department of Chemistry, Center for Biotechnology and Drug Design, and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303
| | - Hao Zhang
- Department of Biology, Center for Biotechnology and Drug Design, and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303
| | - Hsiuchin Yang
- Department of Biology, Center for Biotechnology and Drug Design, and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303
| | - Nannan Cao
- Department of Biology, Center for Biotechnology and Drug Design, and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303
| | - Chun Jiang
- Department of Biology, Center for Biotechnology and Drug Design, and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303
| | - Martti Vaara
- Division of Clinical Microbiology, Helsinki University Hospital, FI-00029 HUSLAB, Helsinki, Finland, and Northern Antibiotics Ltd, FI-00720, Helsinki, Finland
| | - Binghe Wang
- Department of Chemistry, Center for Biotechnology and Drug Design, and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303
| | - Phang C. Tai
- Department of Biology, Center for Biotechnology and Drug Design, and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303
| |
Collapse
|