1
|
Hann JL, Lyall CL, Kociok-Köhn G, Faverio C, Pantoş GD, Lewis SE. Unusual Regio- and Chemoselectivity in Oxidation of Pyrroles and Indoles Enabled by a Thianthrenium Salt Intermediate. Angew Chem Int Ed Engl 2024; 63:e202405057. [PMID: 38830180 DOI: 10.1002/anie.202405057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/05/2024]
Abstract
A dearomative oxidation of pyrroles to Δ3-pyrrol-2-ones is described, which employs a sulfoxide as oxidant, in conjunction with a carboxylic acid anhydride and a Brønsted acid additive. 3-substituted pyrroles undergo regioselective oxidation to give the product isomer in which oxygen has been introduced at the more hindered position. Regioselectivity is rationalized by a proposed mechanism that proceeds by initial thianthrenium introduction at the less-hindered pyrrole α-position, followed by distal attack of an oxygen nucleophile and subsequent elimination of thianthrene. The same reaction conditions are also able to effect a chemoselective oxidation of indoles to indolin-3-ones and additionally of indolin-3-ones to 2-hydroxyindolin-3-ones. Here again, the regio- and chemoselectivities are rationalized through the intermediacy of a thianthrenium salt.
Collapse
Affiliation(s)
- Jodie L Hann
- Department of Chemistry, University of Bath, Bath, BA2 7AY, United Kingdom
| | - Catherine L Lyall
- Research Facilities, University of Bath, Bath, BA2 7AY, United Kingdom
| | | | - Chiara Faverio
- Department of Chemistry, University of Bath, Bath, BA2 7AY, United Kingdom
| | - G Dan Pantoş
- Department of Chemistry, University of Bath, Bath, BA2 7AY, United Kingdom
| | - Simon E Lewis
- Department of Chemistry, University of Bath, Bath, BA2 7AY, United Kingdom
- Institute of Sustainability and Climate Change, University of Bath, Bath, BA2 7AY, United Kingdom
| |
Collapse
|
2
|
La Monica G, Alamia F, Bono A, Lauria A, Martorana A. Scaffold-Hopping Strategies in Aurone Optimization: A Comprehensive Review of Synthetic Procedures and Biological Activities of Nitrogen and Sulfur Analogues. Molecules 2024; 29:2813. [PMID: 38930878 PMCID: PMC11206683 DOI: 10.3390/molecules29122813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/04/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Aurones, particular polyphenolic compounds belonging to the class of minor flavonoids and overlooked for a long time, have gained significative attention in medicinal chemistry in recent years. Indeed, considering their unique and outstanding biological properties, they stand out as an intriguing reservoir of new potential lead compounds in the drug discovery context. Nevertheless, several physicochemical, pharmacokinetic, and pharmacodynamic (P3) issues hinder their progression in more advanced phases of the drug discovery pipeline, making lead optimization campaigns necessary. In this context, scaffold hopping has proven to be a valuable approach in the optimization of natural products. This review provides a comprehensive and updated picture of the scaffold-hopping approaches directed at the optimization of natural and synthetic aurones. In the literature analysis, a particular focus is given to nitrogen and sulfur analogues. For each class presented, general synthetic procedures are summarized, highlighting the key advantages and potential issues. Furthermore, the biological activities of the most representative scaffold-hopped compounds are presented, emphasizing the improvements achieved and the potential for further optimization compared to the aurone class.
Collapse
Affiliation(s)
| | | | | | | | - Annamaria Martorana
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Ed. 17, I-90128 Palermo, Italy; (G.L.M.); (F.A.); (A.B.); (A.L.)
| |
Collapse
|
3
|
Leite DI, Campaniço A, Costa PAG, Correa IA, da Costa LJ, Bastos MM, Moreira R, Lopes F, Jordaan A, Warner DF, Boechat N. New azaaurone derivatives as potential multitarget agents in HIV-TB coinfection. Arch Pharm (Weinheim) 2024; 357:e2300560. [PMID: 38032154 DOI: 10.1002/ardp.202300560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 12/01/2023]
Abstract
Tuberculosis (TB) disease, caused by Mycobacterium tuberculosis (Mtb) is the leading cause of death among people with human immunodeficiency virus (HIV) infection. No dual-target drug is currently being used to simultaneously treat both infections. This work aimed to obtain new multitarget HIV-TB agents, with the goal of optimizing treatments and preventing this coinfection. These compounds incorporate the structural features of azaaurones as anti-Mtb and zidovudine (AZT) as the antiretroviral moiety. The azaaurone scaffold displayed submicromolar activities against Mtb, and AZT is a potent antiretroviral drug. Six derivatives were synthetically generated, and five were evaluated against both infective agents. Evaluations of anti-HIV activity were carried out in HIV-1-infected MT-4 cells and on endogenous HIV-1 reverse transcriptase (RT) activity. The H37Rv strain was used for anti-Mtb assessments. Most compounds displayed potent antitubercular and moderate anti-HIV activity. (E)-12 exhibited a promising multitarget profile with an MIC90 of 2.82 µM and an IC50 of 1.98 µM in HIV-1-infected T lymphocyte cells, with an 84% inhibition of RT activity. Therefore, (E)-12 could be the first promising compound from a family of multitarget agents used to treat HIV-TB coinfection. In addition, the compound could offer a prototype for the development of new strategies in scientific research to treat this global health issue.
Collapse
Affiliation(s)
- Debora I Leite
- Instituto de Tecnologia em Fármacos, Laboratório de Síntese de Fármacos (LASFAR), Fundação Oswaldo Cruz, Rio de Janeiro, Brasil
| | - Andre Campaniço
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
| | - Pedro A G Costa
- Programa de Pós Graduação em Farmacologia e Química Medicinal (PPGFQM), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Isadora A Correa
- Programa de Pós Graduação em Farmacologia e Química Medicinal (PPGFQM), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Luciana J da Costa
- Programa de Pós Graduação em Farmacologia e Química Medicinal (PPGFQM), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Monica M Bastos
- Instituto de Tecnologia em Fármacos, Laboratório de Síntese de Fármacos (LASFAR), Fundação Oswaldo Cruz, Rio de Janeiro, Brasil
| | - Rui Moreira
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
| | - Francisca Lopes
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
| | - Audrey Jordaan
- Molecular Mycobacteriology Research Unit, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Digby F Warner
- Molecular Mycobacteriology Research Unit, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Nubia Boechat
- Instituto de Tecnologia em Fármacos, Laboratório de Síntese de Fármacos (LASFAR), Fundação Oswaldo Cruz, Rio de Janeiro, Brasil
- Programa de Pós Graduação em Farmacologia e Química Medicinal (PPGFQM), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| |
Collapse
|
4
|
Campaniço A, Harjivan SG, Freitas E, Serafini M, Gaspar MM, Capela R, Gomes P, Jordaan A, Madureira AM, André V, Silva AB, Duarte MT, Portugal I, Perdigão J, Moreira R, Warner DF, Lopes F. Structural Optimization of Antimycobacterial Azaaurones Towards Improved Solubility and Metabolic Stability. ChemMedChem 2023; 18:e202300410. [PMID: 37845182 DOI: 10.1002/cmdc.202300410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 10/18/2023]
Abstract
While N-acetyl azaaurones have already been disclosed for their potential against tuberculosis (TB), their low metabolic stability remains an unaddressed liability. We now report a study designed to improve the metabolic stability and solubility of the azaaurone scaffold and to identify the structural requirements for antimycobacterial activity. Replacing the N-acetyl moiety for a N-carbamoyl group led to analogues with sub- and nanomolar potencies against M. tuberculosis H37Rv, as well as equipotent against drug-susceptible and drug-resistant M. tuberculosis isolates. The new N-carbamoyl azaaurones exhibited improved microsomal stability, compared to their N-acetylated counterparts, with several compounds displaying moderate to high kinetic solubility. The frequency of spontaneous resistance to azaaurones was observed to be in the range of 10-8 , a value that is comparable to current TB drugs in the market. Overall, these results reveal that azaaurones are amenable to structural modifications to improve metabolic and solubility liabilities, and highlight their potential as antimycobacterial agents.
Collapse
Affiliation(s)
- André Campaniço
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Shrika G Harjivan
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Elisabete Freitas
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Marco Serafini
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - M Manuela Gaspar
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Rita Capela
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Pedro Gomes
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Audrey Jordaan
- Molecular Mycobacteriology Research Unit, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, Rondebosch, 7701, South Africa
| | - Ana M Madureira
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Vânia André
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001, Lisboa, Portugal
- Associação do Instituto Superior Técnico para a Investigação e Desenvolvimento (IST-ID), Avenida António José de Almeida, n.° 12, 1000-043, Lisboa, Portugal
| | - Andreia B Silva
- Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - M Teresa Duarte
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001, Lisboa, Portugal
| | - Isabel Portugal
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - João Perdigão
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Rui Moreira
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Digby F Warner
- Molecular Mycobacteriology Research Unit, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, Rondebosch, 7701, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Cape Town, Rondebosch, 7701, South Africa
| | - Francisca Lopes
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| |
Collapse
|
5
|
Design, Synthesis, and Biological Evaluation of 3-Substituted-Indolin-2-One Derivatives as Potent Anti-Inflammatory Agents. Int J Mol Sci 2023; 24:ijms24032066. [PMID: 36768389 PMCID: PMC9916847 DOI: 10.3390/ijms24032066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/15/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023] Open
Abstract
This study aimed to synthesize and evaluate the anti-inflammatory activity of 3-substituted-indolin-2-one derivatives. Cell viability of 3-substituted-indolin-2-one derivatives was measured with the EZ-Cytox reagent; interleukin (IL)-6, tumor necrosis factor (TNF)-α, and inducible NOS mRNA levels were measured using Taqman qRT-PCR; pro-inflammatory cytokine IL-6 and TNF-α levels were determined using ELISA kits; the phosphorylation of Akt, JNK, ERK, p38, p65, and IκB protein levels were measured by immunoblotting. Among the nineteen 3-substituted-indolin-2-one derivatives synthesized, 3-(3-hydroxyphenyl)-indolin-2-one showed the highest anti-inflammatory activity, inhibiting the nitric oxide production related to inflammation, suppressing the production of TNF-α and IL-6 in a concentration-dependent manner and mRNA expression. Moreover, 3-(3-hydroxyphenyl)-indolin-2-one significantly inhibited lipopolysaccharide (LPS)-induced signal pathways such as the Akt, MAPK, and NF-κB signaling pathways. Our findings revealed that a 3-substituted-indolin-2-one derivative, 3-(3-hydroxyphenyl)-indolin-2-one, possesses excellent anti-inflammatory activity and can be considered for future research.
Collapse
|
6
|
Economical, efficient, and environmentally friendly synthesis strategy of O-Alkylation strategy based on phenolphthalein reactions with electrophiles: Characterization, DFT study, and molecular docking. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133424] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
7
|
Lazinski LM, Royal G, Robin M, Maresca M, Haudecoeur R. Bioactive Aurones, Indanones, and Other Hemiindigoid Scaffolds: Medicinal Chemistry and Photopharmacology Perspectives. J Med Chem 2022; 65:12594-12625. [PMID: 36126323 DOI: 10.1021/acs.jmedchem.2c01150] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hemiindigoids comprise a range of natural and synthetic scaffolds that share the same aromatic hydrocarbon backbone as well as promising biological and optical properties. The encouraging therapeutic potential of these scaffolds has been unraveled by many studies over the past years and uncovered representants with inspiring pharmacophoric features such as the acetylcholinesterase inhibitor donezepil and the tubulin polymerization inhibitor indanocine. In this review, we summarize the last advances in the medicinal potential of hemiindigoids, with a special attention to molecular design, structure-activity relationship, ligand-target interactions, and mechanistic explanations covering their effects. As their strong fluorogenic potential and photoswitch behavior recently started to be highlighted and explored in biology, giving rise to the development of novel fluorescent probes and photopharmacological agents, we also discuss these properties in a medicinal chemistry perspective.
Collapse
Affiliation(s)
- Leticia M Lazinski
- Université Grenoble Alpes, CNRS 5063, DPM, 38000 Grenoble, France.,Université Grenoble Alpes, CNRS 5250, DCM, 38000 Grenoble, France
| | - Guy Royal
- Université Grenoble Alpes, CNRS 5250, DCM, 38000 Grenoble, France
| | - Maxime Robin
- Mediterranean Institute of Marine and Terrestrial Biodiversity and Ecology (IMBE), Aix Marseille Université, 27 Boulevard Jean Moulin, 13385 Marseille, France
| | - Marc Maresca
- Aix Marseille Université, CNRS, Centrale Marseille, iSm2, 13397 Marseille, France
| | | |
Collapse
|
8
|
Chowdhury MG, Das R, Vyas H, Sasane T, Mori O, Kamble S, Patel S, Shard A. A Comprehensive Account of Synthesis and Biological Activities of α‐lidene‐ Benzocycloalkanones and Benzoheterocycles. ChemistrySelect 2022. [DOI: 10.1002/slct.202201468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Moumita Ghosh Chowdhury
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research- Ahmedabad Gandhinagar Gujarat 380054 India
| | - Rudradip Das
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research- Ahmedabad Gandhinagar Gujarat 380054 India
| | - Het Vyas
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research- Ahmedabad Gandhinagar Gujarat 380054 India
| | - Tejal Sasane
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research- Ahmedabad Gandhinagar Gujarat 380054 India
| | - Omprakash Mori
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research- Ahmedabad Gandhinagar Gujarat 380054 India
| | - Sayali Kamble
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research- Ahmedabad Gandhinagar Gujarat 380054 India
| | - Sagarkumar Patel
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research- Ahmedabad Gandhinagar Gujarat 380054 India
| | - Amit Shard
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research- Ahmedabad Gandhinagar Gujarat 380054 India
| |
Collapse
|
9
|
Mughal H, Bell EC, Mughal K, Derbyshire ER, Freundlich JS. Random Forest Model Predictions Afford Dual-Stage Antimalarial Agents. ACS Infect Dis 2022; 8:1553-1562. [PMID: 35894649 PMCID: PMC9987178 DOI: 10.1021/acsinfecdis.2c00189] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The need for novel antimalarials is apparent given the continuing disease burden worldwide, despite significant drug discovery advances from the bench to the bedside. In particular, small-molecule agents with potent efficacy against both the liver and blood stages of Plasmodium parasite infection are critical for clinical settings as they would simultaneously prevent and treat malaria with a reduced selection pressure for resistance. While experimental screens for such dual-stage inhibitors have been conducted, the time and cost of these efforts limit their scope. Here, we have focused on leveraging machine learning approaches to discover novel antimalarials with such properties. A random forest modeling approach was taken to predict small molecules with in vitro efficacy versus liver-stage Plasmodium berghei parasites and a lack of human liver cell cytotoxicity. Empirical validation of the model was achieved with the realization of hits with liver-stage efficacy after prospective scoring of a commercial diversity library and consideration of structural diversity. A subset of these hits also demonstrated promising blood-stage Plasmodium falciparum efficacy. These 18 validated dual-stage antimalarials represent novel starting points for drug discovery and mechanism of action studies with significant potential for seeding a new generation of therapies.
Collapse
Affiliation(s)
- Haseeb Mughal
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University – New Jersey Medical School, 185 South Orange Ave, Newark, NJ, 07103
| | - Elise C. Bell
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC 27708, USA
| | - Khadija Mughal
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University – New Jersey Medical School, 185 South Orange Ave, Newark, NJ, 07103
| | - Emily R. Derbyshire
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC 27708, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, 213 Research Drive, Durham, NC 27710, USA
| | - Joel S. Freundlich
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University – New Jersey Medical School, 185 South Orange Ave, Newark, NJ, 07103
- Department of Medicine, Center for Emerging and Re-emerging Pathogens, Rutgers University – New Jersey Medical School, Newark, NJ, 07103
| |
Collapse
|
10
|
Eymery M, Tran-Nguyen VK, Boumendjel A. Diversity-Oriented Synthesis: Amino Acetophenones as Building Blocks for the Synthesis of Natural Product Analogs. Pharmaceuticals (Basel) 2021; 14:1127. [PMID: 34832909 PMCID: PMC8619038 DOI: 10.3390/ph14111127] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/30/2021] [Accepted: 11/03/2021] [Indexed: 11/16/2022] Open
Abstract
Diversity-Oriented Synthesis (DOS) represents a strategy to obtain molecule libraries with diverse structural features starting from one common compound in limited steps of synthesis. During the last two decades, DOS has become an unmissable strategy in organic synthesis and is fully integrated in various drug discovery processes. On the other hand, natural products with multiple relevant pharmacological properties have been extensively investigated as scaffolds for ligand-based drug design. In this article, we report the amino dimethoxyacetophenones that can be easily synthesized and scaled up from the commercially available 3,5-dimethoxyaniline as valuable starting blocks for the DOS of natural product analogs. More focus is placed on the synthesis of analogs of flavones, coumarins, azocanes, chalcones, and aurones, which are frequently studied as lead compounds in drug discovery.
Collapse
Affiliation(s)
- Mathias Eymery
- Université Grenoble Alpes, INSERM, LRB, 38000 Grenoble, France;
- EMBL Grenoble, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble, France
| | - Viet-Khoa Tran-Nguyen
- Laboratoire d’Innovation Thérapeutique, Université de Strasbourg, 67400 Illkirch, France;
| | | |
Collapse
|
11
|
In Lee J. A review of the syntheses of (thio)flavones,
4‐quinolones
, (thio)aurones, and azaaurones from 2′‐substituted alkynones. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Jae In Lee
- Department of Chemistry, College of Science and Technology Duksung Women's University Seoul Republic of Korea
| |
Collapse
|
12
|
Luo D, Tong JB, Feng Y. 3D-QSAR and Molecular Docking Analysis for Natural Aurone Derivatives as Anti-Malarial Agents. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.1973519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Ding Luo
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, China
- Shaanxi Key Laboratory of Chemical Additives for Industry, Xi'an, China
| | - Jian-Bo Tong
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, China
- Shaanxi Key Laboratory of Chemical Additives for Industry, Xi'an, China
| | - Yi Feng
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, China
- Shaanxi Key Laboratory of Chemical Additives for Industry, Xi'an, China
| |
Collapse
|
13
|
Pirovano V, Brambilla E, Riva M, Leoni S, Rizzato S, Garanzini D, Abbiati G, Rossi E. Stereoselective synthesis of 2-spirocyclopropyl-indolin-3-ones through cyclopropanation of aza-aurones with tosylhydrazones. Org Biomol Chem 2021; 19:3925-3931. [PMID: 33949577 DOI: 10.1039/d1ob00076d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A simple and efficient approach for the synthesis of 2-spirocyclopropyl-indolin-3-ones is herein described. The method involves a diasteroselective cyclopropanation of aza-aurones with tosylhydrazones, selected as versatile carbene sources, and represents a remarkable synthetic alternative to get access to this class of C2-spiropseudoindoxyl scaffolds. The reactions proceed in the presence of a base and catalytic amounts of benzyl triethylammonium chloride and well-tolerate a broad range of substituents on both aza-aurones and tosylhydrazones to afford a series of C2-spirocyclopropanated derivatives in high yields. In addition, selected functional group transformations of the final products were explored demonstrating the synthetic potential of these indole-based derivatives.
Collapse
Affiliation(s)
- Valentina Pirovano
- Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Generale e Organica "A. Marchesini", Università degli Studi di Milano, Via G. Venezian 21, 20133, Milano, Italy.
| | - Elisa Brambilla
- Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Generale e Organica "A. Marchesini", Università degli Studi di Milano, Via G. Venezian 21, 20133, Milano, Italy.
| | - Marika Riva
- Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Generale e Organica "A. Marchesini", Università degli Studi di Milano, Via G. Venezian 21, 20133, Milano, Italy.
| | - Sara Leoni
- Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Generale e Organica "A. Marchesini", Università degli Studi di Milano, Via G. Venezian 21, 20133, Milano, Italy.
| | - Silvia Rizzato
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi 19, 20133, Milano, Italy
| | - Davide Garanzini
- Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Generale e Organica "A. Marchesini", Università degli Studi di Milano, Via G. Venezian 21, 20133, Milano, Italy.
| | - Giorgio Abbiati
- Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Generale e Organica "A. Marchesini", Università degli Studi di Milano, Via G. Venezian 21, 20133, Milano, Italy.
| | - Elisabetta Rossi
- Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Generale e Organica "A. Marchesini", Università degli Studi di Milano, Via G. Venezian 21, 20133, Milano, Italy.
| |
Collapse
|
14
|
Yang D, Taylor ZE, Handy S, Li S, Liu J, Stabenow J, Zalduondo L, Jonsson CB, Altman E, Kong Y. Identification of Anti-tuberculosis Compounds From Aurone Analogs. Front Microbiol 2020; 11:1004. [PMID: 32508798 PMCID: PMC7251074 DOI: 10.3389/fmicb.2020.01004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/24/2020] [Indexed: 11/25/2022] Open
Abstract
The emergence of multidrug-resistant Mycobacterium tuberculosis (Mtb) strains has made tuberculosis (TB) control more difficult. Aurone derivatives have demonstrated promising anti-bacterial activities, but their effects against Mtb have not been thoroughly determined. In this study, we aimed to develop anti-TB compounds from aurone analogs. We used a fluorescent protein tdTomato labeled Mtb CDC1551 strain to screen 146 synthesized aurone derivatives for effective anti-TB compounds. The 9504, 9505, 9501, 9510, AA2A, and AA8 aurones inhibited the growth of Mtb with minimal inhibitory concentrations of 6.25, 12.5, 25, 25, 25, and 50 μM, respectively. We also examined cytotoxicities of the six leads against the human liver cell line HepG2, the primate kidney cell line Vero and human monocyte THP-1 derived macrophages. Three of the aurone leads (9504, 9501, and 9510) showed low cytotoxic effects on all three cell lines and high Mtb inhibitory efficacy (selectivity index > 10). Aurone 9504, 9501, AA2A, or AA8 significantly reduced the Mtb load in the lungs of infected mice after a 12-days treatment. We determined that the aurone leads inhibit Mtb chorismate synthase, an essential enzyme for aromatic acid synthesis. Our studies demonstrate the promise of synthetic aurones as novel anti-TB therapeutics.
Collapse
Affiliation(s)
- Dong Yang
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Zachary E Taylor
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, TN, United States.,Tennessee Center for Botanical Medicine Research, Middle Tennessee State University, Murfreesboro, TN, United States
| | - Scott Handy
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, TN, United States.,Tennessee Center for Botanical Medicine Research, Middle Tennessee State University, Murfreesboro, TN, United States
| | - Shaoji Li
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Jiawang Liu
- Medicinal Chemistry Core, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Jennifer Stabenow
- Regional Biocontainment Laboratory, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Lillian Zalduondo
- Regional Biocontainment Laboratory, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Colleen B Jonsson
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States.,Regional Biocontainment Laboratory, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Elliot Altman
- Tennessee Center for Botanical Medicine Research, Middle Tennessee State University, Murfreesboro, TN, United States.,Department of Biology, Middle Tennessee State University, Murfreesboro, TN, United States
| | - Ying Kong
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
15
|
Hadni H, Elhallaoui M. 3D-QSAR, docking and ADMET properties of aurone analogues as antimalarial agents. Heliyon 2020; 6:e03580. [PMID: 32322700 PMCID: PMC7168746 DOI: 10.1016/j.heliyon.2020.e03580] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/27/2020] [Accepted: 03/09/2020] [Indexed: 01/26/2023] Open
Abstract
The development of multi-resistant strains of plasmodium parasite has become a global problem, therefore, the discovery of new antimalarial agents is the only available solution. In order to improve and propose new compounds with antimalarial activity, the three-dimensional quantitative structure-activity relationship (3D-QSAR) and molecular docking studies were carried on aurone analogues acting as Qo site inhibitors in cytochrome b. The 3D-QSAR model was established in this study based on the Comparative Molecular Field Analysis (CoMFA) and the Comparative Molecular Similarity Indices Analysis (CoMSIA). The good predictability was obtained using the CoMFA model (Q2 = 0.5; R2 = 0.97;R pred 2 = 0.72) and the best CoMSIA model (Q2 = 0.526; R2 = 0.915;R pred 2 = 0.765). The predictive capacity of the developed model was evaluated through external validation using a test set compound and an applicability domain technique. In this study, the Steric, electrostatic and hydrogen bond acceptor fields played a key role in antimalarial activity. The results of the molecular docking revealed theoretically the importance of the residues his183 and his82 in the active site of the heme bL, this result was validated by a new assessment method. Based on the previous results, we designed several new potent Cytochrome b inhibitors and their inhibitory activities were predicted by the best model. Furthermore, these new inhibitors were analyzed for their ADMET properties and drug likeness. These results would be of great help in leading optimization for new drug discovery that can solve the problem of multiple drug resistance.
Collapse
Affiliation(s)
- Hanine Hadni
- Engineering Materials, Modeling and Environmental Laboratory, Faculty of Sciences Dhar El mahraz, Sidi Mohammed Ben Abdellah University, B.P. 1796, Atlas, Fes, Morocco
| | | |
Collapse
|
16
|
Synthesis and Anticancer Cytotoxicity of Azaaurones Overcoming Multidrug Resistance. Molecules 2020; 25:molecules25030764. [PMID: 32050702 PMCID: PMC7038029 DOI: 10.3390/molecules25030764] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/06/2020] [Accepted: 02/08/2020] [Indexed: 12/22/2022] Open
Abstract
The resistance of tumors against anticancer drugs is a major impediment for chemotherapy. Tumors often develop multidrug resistance as a result of the cellular efflux of chemotherapeutic agents by ABC transporters such as P-glycoprotein (ABCB1/P-gp), Multidrug Resistance Protein 1 (ABCC1/MRP1), or Breast Cancer Resistance Protein (ABCG2/BCRP). By screening a chemolibrary comprising 140 compounds, we identified a set of naturally occurring aurones inducing higher cytotoxicity against P-gp-overexpressing multidrug-resistant (MDR) cells versus sensitive (parental, non-P-gp-overexpressing) cells. Follow-up studies conducted with the P-gp inhibitor tariquidar indicated that the MDR-selective toxicity of azaaurones is not mediated by P-gp. Azaaurone analogs possessing pronounced effects were then designed and synthesized. The knowledge gained from structure–activity relationships will pave the way for the design of a new class of anticancer drugs selectively targeting multidrug-resistant cancer cells.
Collapse
|
17
|
Hadni H, Elhallaoui M. 2D and 3D-QSAR, molecular docking and ADMET properties in silico studies of azaaurones as antimalarial agents. NEW J CHEM 2020. [DOI: 10.1039/c9nj05767f] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Malaria persists as the most infectious vector-borne disease in the world.
Collapse
Affiliation(s)
- Hanine Hadni
- Engineering Materials
- Modeling and Environmental Laboratory
- Faculty of Sciences Dhar El mahraz
- Sidi Mohammed Ben Abdellah University
- Atlas
| | - Menana Elhallaoui
- Engineering Materials
- Modeling and Environmental Laboratory
- Faculty of Sciences Dhar El mahraz
- Sidi Mohammed Ben Abdellah University
- Atlas
| |
Collapse
|
18
|
Velezheva VS, Babii OL, Khodak AA, Alekseeva EA, Nelyubina YV, Godovikov IA, Peregudov AS, Majorov KB, Nikonenko BV. Novel base-initiated cascade reactions of hemiindigos to produce dipolar γ-carbolines and indole-fused pentacycles. RSC Adv 2019; 9:41402-41408. [PMID: 35541627 PMCID: PMC9076487 DOI: 10.1039/c9ra07807j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/04/2019] [Indexed: 12/03/2022] Open
Abstract
Novel continuous-flow cascade reactions are developed for producing 1,4-diaryl-disubstituted dipolar γ-carbolines 2 that contain a carboxylate group and their two pentacyclic precursors 6, 7 from hemiindigos 1. The nucleophilic and pro-electrophilic chemistry described is new to the hemiindigos 1, and it led to the discovery of antimycobacterial scaffold characteristic of rimino-type pentacycles 6, 7 and potent drug clofazimine. The new scaffold like clofazimine appears to be useful in developing lead agents active against drug-resistant/dormant TB. Based on hemiindigos we developed novel reactions for producing γ-carbolines and their precursors that appeared to be active against MTB.![]()
Collapse
Affiliation(s)
- V S Velezheva
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences Vavilova St. 28 119991 GSP-1, Moscow Russia
| | - O L Babii
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences Vavilova St. 28 119991 GSP-1, Moscow Russia
| | - A A Khodak
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences Vavilova St. 28 119991 GSP-1, Moscow Russia
| | - E A Alekseeva
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences Vavilova St. 28 119991 GSP-1, Moscow Russia
| | - Yu V Nelyubina
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences Vavilova St. 28 119991 GSP-1, Moscow Russia
| | - I A Godovikov
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences Vavilova St. 28 119991 GSP-1, Moscow Russia
| | - A S Peregudov
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences Vavilova St. 28 119991 GSP-1, Moscow Russia
| | - K B Majorov
- Laboratory for Immunogenetics, Central Institute for Tuberculosis Moscow Russia
| | - B V Nikonenko
- Laboratory for Immunogenetics, Central Institute for Tuberculosis Moscow Russia
| |
Collapse
|
19
|
Perković I, Raić-Malić S, Fontinha D, Prudêncio M, Pessanha de Carvalho L, Held J, Tandarić T, Vianello R, Zorc B, Rajić Z. Harmicines - harmine and cinnamic acid hybrids as novel antiplasmodial hits. Eur J Med Chem 2019; 187:111927. [PMID: 31812035 DOI: 10.1016/j.ejmech.2019.111927] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 11/28/2019] [Accepted: 11/28/2019] [Indexed: 12/31/2022]
Abstract
Harmicines constitute novel hybrid compounds that combine two agents with reported antiplasmodial properties, namely β-carboline harmine and a cinnamic acid derivative (CAD). Cu(I) catalyzed azide-alkyne cycloaddition was employed for the preparation of three classes of hybrid molecules: N-harmicines 6a-i, O-harmicines 7a-i and N,O-bis-harmicines 8a-g,i. In vitro antiplasmodial activities of harmicines against the erythrocytic stage of Plasmodium falciparum (chloroquine-sensitive Pf3D7 and chloroquine-resistant PfDd2 strains) and hepatic stage of P. berghei, as well as cytotoxicity against human liver hepatocellular carcinoma cell line (HepG2), were evaluated. Remarkably, most of the compounds exerted significant activities against both stages of the Plasmodium life cycle. The conjugation of various CADs to harmine resulted in the increased antiplasmodial activity relative to harmine. In general, O-harmicines 7 exhibited the highest activity against the erythrocytic stage of both P. falciparum strains, whereas N,O-bis harmicines 8 showed the most pronounced activity against P. berghei hepatic stages. For the latter compound, molecular dynamics simulations confirmed binding within the ATP binding site of PfHsp90, while the weaker binders, namely 6b and harmine, were found to be positioned away from this structural element. In addition, decomposition of the computed binding free energies into contributions from individual residues suggested guidelines for further derivatization of harmine towards more efficient compounds. Cytotoxicity screening revealed N-harmicines 6 as the least, and O-harmicines 7 as the most toxic compounds. Harmicines 6g, 8b and 6d exerted the most selective action towards Plasmodium over human cells, respectively. These results establish harmicines as hits for future optimisation and development of novel antiplasmodial agents.
Collapse
Affiliation(s)
- Ivana Perković
- University of Zagreb Faculty of Pharmacy and Biochemistry, A. Kovačića 1, 10000, Zagreb, Croatia.
| | - Silvana Raić-Malić
- University of Zagreb Faculty of Chemical Engineering and Technology, Marulićev trg 19, 10000, Zagreb, Croatia
| | - Diana Fontinha
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| | - Miguel Prudêncio
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| | | | - Jana Held
- University of Tübingen, Institute of Tropical Medicine, Wilhelmstraße 27, 72074, Tübingen, Germany
| | - Tana Tandarić
- Rudjer Bošković Institute, Division of Organic Chemistry and Biochemistry, 10 000, Zagreb, Croatia
| | - Robert Vianello
- Rudjer Bošković Institute, Division of Organic Chemistry and Biochemistry, 10 000, Zagreb, Croatia
| | - Branka Zorc
- University of Zagreb Faculty of Pharmacy and Biochemistry, A. Kovačića 1, 10000, Zagreb, Croatia
| | - Zrinka Rajić
- University of Zagreb Faculty of Pharmacy and Biochemistry, A. Kovačića 1, 10000, Zagreb, Croatia.
| |
Collapse
|
20
|
Campaniço A, Carrasco MP, Njoroge M, Seldon R, Chibale K, Perdigão J, Portugal I, Warner DF, Moreira R, Lopes F. Azaaurones as Potent Antimycobacterial Agents Active against MDR- and XDR-TB. ChemMedChem 2019; 14:1537-1546. [PMID: 31294529 DOI: 10.1002/cmdc.201900289] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 06/19/2019] [Indexed: 12/31/2022]
Abstract
Herein we report the screening of a small library of aurones and their isosteric counterparts, azaaurones and N-acetylazaaurones, against Mycobacterium tuberculosis. Aurones were found to be inactive at 20 μm, whereas azaaurones and N-acetylazaaurones emerged as the most potent compounds, with nine derivatives displaying MIC99 values ranging from 0.4 to 2.0 μm. In addition, several N-acetylazaaurones were found to be active against multidrug-resistant (MDR) and extensively drug-resistant (XDR) clinical M. tuberculosis isolates. The antimycobacterial mechanism of action of these compounds remains to be determined; however, a preliminary mechanistic study confirmed that they do not inhibit the mycobacterial cytochrome bc1 complex. Additionally, microsomal metabolic stability and metabolite identification studies revealed that N-acetylazaaurones are deacetylated to their azaaurone counterparts. Overall, these results demonstrate that azaaurones and their N-acetyl counterparts represent a new entry in the toolbox of chemotypes capable of inhibiting M. tuberculosis growth.
Collapse
Affiliation(s)
- André Campaniço
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Marta P Carrasco
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Mathew Njoroge
- Division of Clinical Pharmacology, Department of Medicine, Drug Discovery and Development Centre (H3D), University of Cape Town, Observatory, 7925, South Africa
| | - Ronnett Seldon
- Department of Chemistry, South African Medical Research Council Drug Discovery and Development Research Unit, University of Cape Town, Rondebosch, 7701, South Africa
| | - Kelly Chibale
- Department of Chemistry, University of Cape Town, Rondebosch, 7701, South Africa.,Department of Chemistry, South African Medical Research Council Drug Discovery and Development Research Unit, University of Cape Town, Rondebosch, 7701, South Africa.,Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, 7701, South Africa
| | - João Perdigão
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Isabel Portugal
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Digby F Warner
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, 7701, South Africa.,Department of Pathology, SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, University of Cape Town, Rondebosch, 7701, South Africa.,Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Rondebosch, 7701, South Africa
| | - Rui Moreira
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Francisca Lopes
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| |
Collapse
|
21
|
Zhang M, Li T, Qian M, Li K, Qin Y, Zhao T, Yang LQ. Synthesis and Biological Activities of 1-Azaaurone Derivatives. J Heterocycl Chem 2018. [DOI: 10.1002/jhet.3190] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Min Zhang
- School of Chemistry and Chemical Engineering; Jiangsu University; Zhenjiang 212013 Jiangsu China
| | - Ting Li
- School of Chemistry and Chemical Engineering; Jiangsu University; Zhenjiang 212013 Jiangsu China
| | - Min Qian
- School of Chemistry and Chemical Engineering; Jiangsu University; Zhenjiang 212013 Jiangsu China
| | - Kailu Li
- School of Chemistry and Chemical Engineering; Jiangsu University; Zhenjiang 212013 Jiangsu China
| | - Yukun Qin
- School of Chemistry and Chemical Engineering; Jiangsu University; Zhenjiang 212013 Jiangsu China
| | - Ting Zhao
- School of Chemistry and Chemical Engineering; Jiangsu University; Zhenjiang 212013 Jiangsu China
| | - Liu-Qing Yang
- School of Chemistry and Chemical Engineering; Jiangsu University; Zhenjiang 212013 Jiangsu China
| |
Collapse
|
22
|
Singh K, Okombo J, Brunschwig C, Ndubi F, Barnard L, Wilkinson C, Njogu PM, Njoroge M, Laing L, Machado M, Prudêncio M, Reader J, Botha M, Nondaba S, Birkholtz LM, Lauterbach S, Churchyard A, Coetzer TL, Burrows JN, Yeates C, Denti P, Wiesner L, Egan TJ, Wittlin S, Chibale K. Antimalarial Pyrido[1,2-a]benzimidazoles: Lead Optimization, Parasite Life Cycle Stage Profile, Mechanistic Evaluation, Killing Kinetics, and in Vivo Oral Efficacy in a Mouse Model. J Med Chem 2017; 60:1432-1448. [DOI: 10.1021/acs.jmedchem.6b01641] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Kawaljit Singh
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
- South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry
and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - John Okombo
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Christel Brunschwig
- Department of Medicine, Division of Clinical Pharmacology, University of Cape Town, Observatory, 7925, South Africa
| | - Ferdinand Ndubi
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Linley Barnard
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Chad Wilkinson
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Peter M. Njogu
- Department of Pharmaceutical Chemistry, University of Nairobi, P.O. Box 19676, Nairobi, 00202, Kenya
| | - Mathew Njoroge
- Department of Medicine, Division of Clinical Pharmacology, University of Cape Town, Observatory, 7925, South Africa
| | - Lizahn Laing
- Department of Medicine, Division of Clinical Pharmacology, University of Cape Town, Observatory, 7925, South Africa
| | - Marta Machado
- Instituto de Medicina Molecular, Faculdade
de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Miguel Prudêncio
- Instituto de Medicina Molecular, Faculdade
de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Janette Reader
- Department of Biochemistry, Institute for Sustainable
Malaria Control, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| | - Mariette Botha
- Department of Biochemistry, Institute for Sustainable
Malaria Control, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| | - Sindisiwe Nondaba
- Department of Biochemistry, Institute for Sustainable
Malaria Control, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| | - Lyn-Marie Birkholtz
- Department of Biochemistry, Institute for Sustainable
Malaria Control, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| | - Sonja Lauterbach
- Wits Research Institute for Malaria, Faculty
of Health Sciences, University of the Witwatersrand and National Health Laboratory Service, Johannesburg 2193, South Africa
| | - Alisje Churchyard
- Wits Research Institute for Malaria, Faculty
of Health Sciences, University of the Witwatersrand and National Health Laboratory Service, Johannesburg 2193, South Africa
| | - Theresa L. Coetzer
- Wits Research Institute for Malaria, Faculty
of Health Sciences, University of the Witwatersrand and National Health Laboratory Service, Johannesburg 2193, South Africa
| | - Jeremy N. Burrows
- Medicines for Malaria Venture, ICC, Route de Pré-Bois 20, P.O. Box 1826, 1215 Geneva, Switzerland
| | - Clive Yeates
- Inpharma Consultancy, 6 Dudley Hill Close, Welwyn, Hertfordshire AL60QQ, U.K
| | - Paolo Denti
- Department of Medicine, Division of Clinical Pharmacology, University of Cape Town, Observatory, 7925, South Africa
| | - Lubbe Wiesner
- Department of Medicine, Division of Clinical Pharmacology, University of Cape Town, Observatory, 7925, South Africa
| | - Timothy J. Egan
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Sergio Wittlin
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002 Basel, Switzerland
- University of Basel, 4003 Basel, Switzerland
| | - Kelly Chibale
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
- South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry
and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| |
Collapse
|