1
|
Sievers J, Voget R, Lu F, Garchitorena KM, Ng YLD, Chau CH, Steinebach C, Figg WD, Krönke J, Gütschow M. Revisiting the antiangiogenic mechanisms of fluorinated thalidomide derivatives. Bioorg Med Chem Lett 2024; 110:129858. [PMID: 38917956 DOI: 10.1016/j.bmcl.2024.129858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 06/27/2024]
Abstract
Introduction of fluorine into bioactive molecules has attracted much attention in drug development. For example, tetrafluorination of the phthalimide moiety of immunomodulatory drugs (IMiDs) has a strong beneficial effect on the ability to inhibit angiogenesis. The neomorphic activity of E3 ligase complexes is induced by the binding of IMiDs to cereblon. We investigated that a set of eight thalidomide analogs, comprising non- and tetrafluorinated counterparts, did not induce the degradation of neomorphic substrates (IKZF3, GSPT1, CK1α, SALL4). Hence, the antiangiogenic activity of fluorinated IMiDs was not triggered by neosubstrate degradation features. A fluorine scanning of non-traditional IMiDs of the benzamido glutarimide chemotype was performed. By measuring the endothelial cell tube formation, no angiogenesis inhibitors were identified, confirming the narrow structure-activity window of IMiD-induced antiangiogenesis.
Collapse
Affiliation(s)
- Johannes Sievers
- Pharmaceutical Institute, Pharmaceutical and Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Rabea Voget
- Pharmaceutical Institute, Pharmaceutical and Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Feiteng Lu
- Department of Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin Berlin, D-12203 Berlin, Germany
| | - Kathleen M Garchitorena
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yuen Lam Dora Ng
- Department of Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin Berlin, D-12203 Berlin, Germany
| | - Cindy H Chau
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Christian Steinebach
- Pharmaceutical Institute, Pharmaceutical and Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - William D Figg
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jan Krönke
- Department of Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin Berlin, D-12203 Berlin, Germany
| | - Michael Gütschow
- Pharmaceutical Institute, Pharmaceutical and Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany.
| |
Collapse
|
2
|
Steinebach C, Bricelj A, Murgai A, Sosič I, Bischof L, Ng YLD, Heim C, Maiwald S, Proj M, Voget R, Feller F, Košmrlj J, Sapozhnikova V, Schmidt A, Zuleeg MR, Lemnitzer P, Mertins P, Hansen FK, Gütschow M, Krönke J, Hartmann MD. Leveraging Ligand Affinity and Properties: Discovery of Novel Benzamide-Type Cereblon Binders for the Design of PROTACs. J Med Chem 2023; 66:14513-14543. [PMID: 37902300 PMCID: PMC10641816 DOI: 10.1021/acs.jmedchem.3c00851] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/11/2023] [Accepted: 10/05/2023] [Indexed: 10/31/2023]
Abstract
Immunomodulatory imide drugs (IMiDs) such as thalidomide, pomalidomide, and lenalidomide are the most common cereblon (CRBN) recruiters in proteolysis-targeting chimera (PROTAC) design. However, these CRBN ligands induce the degradation of IMiD neosubstrates and are inherently unstable, degrading hydrolytically under moderate conditions. In this work, we simultaneously optimized physiochemical properties, stability, on-target affinity, and off-target neosubstrate modulation features to develop novel nonphthalimide CRBN binders. These efforts led to the discovery of conformationally locked benzamide-type derivatives that replicate the interactions of the natural CRBN degron, exhibit enhanced chemical stability, and display a favorable selectivity profile in terms of neosubstrate recruitment. The utility of the most potent ligands was demonstrated by their transformation into potent degraders of BRD4 and HDAC6 that outperform previously described reference PROTACs. Together with their significantly decreased neomorphic ligase activity on IKZF1/3 and SALL4, these ligands provide opportunities for the design of highly selective and potent chemically inert proximity-inducing compounds.
Collapse
Affiliation(s)
| | - Aleša Bricelj
- Faculty
of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Arunima Murgai
- Department
of Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin
Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, D-12203 Berlin, Germany
| | - Izidor Sosič
- Faculty
of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Luca Bischof
- Max
Planck Institute for Biology Tübingen, D-72076 Tübingen, Germany
| | - Yuen Lam Dora Ng
- Department
of Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin
Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, D-12203 Berlin, Germany
| | - Christopher Heim
- Max
Planck Institute for Biology Tübingen, D-72076 Tübingen, Germany
| | - Samuel Maiwald
- Max
Planck Institute for Biology Tübingen, D-72076 Tübingen, Germany
| | - Matic Proj
- Faculty
of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Rabea Voget
- Pharmaceutical
Institute, University of Bonn, D-53121 Bonn, Germany
| | - Felix Feller
- Pharmaceutical
Institute, University of Bonn, D-53121 Bonn, Germany
| | - Janez Košmrlj
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, SI 1000 Ljubljana, Slovenia
| | - Valeriia Sapozhnikova
- Department
of Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin
Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, D-12203 Berlin, Germany
- Max
Delbrück
Center for Molecular Medicine, D-13125 Berlin, Germany
- German
Cancer Consortium (DKTK), Partner Site Berlin, DKFZ, D-69120 Heidelberg, Germany
| | - Annika Schmidt
- Department
of Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin
Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, D-12203 Berlin, Germany
| | - Maximilian Rudolf Zuleeg
- Department
of Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin
Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, D-12203 Berlin, Germany
| | - Patricia Lemnitzer
- Department
of Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin
Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, D-12203 Berlin, Germany
| | - Philipp Mertins
- Max
Delbrück
Center for Molecular Medicine, D-13125 Berlin, Germany
- Berlin
Institute of Health, D-10178 Berlin, Germany
| | - Finn K. Hansen
- Pharmaceutical
Institute, University of Bonn, D-53121 Bonn, Germany
| | - Michael Gütschow
- Pharmaceutical
Institute, University of Bonn, D-53121 Bonn, Germany
| | - Jan Krönke
- Department
of Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin
Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, D-12203 Berlin, Germany
- German
Cancer Consortium (DKTK), Partner Site Berlin, DKFZ, D-69120 Heidelberg, Germany
| | - Marcus D. Hartmann
- Max
Planck Institute for Biology Tübingen, D-72076 Tübingen, Germany
- Interfaculty
Institute of Biochemistry, University of
Tübingen, D-72076 Tübingen, Germany
| |
Collapse
|
3
|
Wang L, Zheng Y, Zhou X, Wang H, Yan Q, Wang W, Chen F. Synthesis of α-Aryl Nitriles via Nucleophilic Substitution of α-Cyanohydrin Methanesulfonates with Malonates. CHINESE J ORG CHEM 2023. [DOI: 10.6023/cjoc202208029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
4
|
Sosič I, Bricelj A, Steinebach C. E3 ligase ligand chemistries: from building blocks to protein degraders. Chem Soc Rev 2022; 51:3487-3534. [PMID: 35393989 DOI: 10.1039/d2cs00148a] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In recent years, proteolysis-targeting chimeras (PROTACs), capable of achieving targeted protein degradation, have proven their great therapeutic potential and usefulness as molecular biology tools. These heterobifunctional compounds are comprised of a protein-targeting ligand, an appropriate linker, and a ligand binding to the E3 ligase of choice. A successful PROTAC induces the formation of a ternary complex, leading to the E3 ligase-mediated ubiquitination of the targeted protein and its proteasomal degradation. In over 20 years since the concept was first demonstrated, the field has grown substantially, mainly due to the advancements in the discovery of non-peptidic E3 ligase ligands. Development of small-molecule E3 binders with favourable physicochemical profiles aided the design of PROTACs, which are known for breaking the rules of established guidelines for discovering small molecules. Synthetic accessibility of the ligands and numerous successful applications led to the prevalent use of cereblon and von Hippel-Lindau as the hijacked E3 ligase. However, the pool of over 600 human E3 ligases is full of untapped potential, which is why expanding the artillery of E3 ligands could contribute to broadening the scope of targeted protein degradation. In this comprehensive review, we focus on the chemistry aspect of the PROTAC design process by providing an overview of liganded E3 ligases, their chemistries, appropriate derivatisation, and synthetic approaches towards their incorporation into heterobifunctional degraders. By covering syntheses of both established and underexploited E3 ligases, this review can serve as a chemistry blueprint for PROTAC researchers during their future ventures into the complex field of targeted protein degradation.
Collapse
Affiliation(s)
- Izidor Sosič
- Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Aleša Bricelj
- Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Christian Steinebach
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| |
Collapse
|
5
|
Heim C, Maiwald S, Steinebach C, Collins MK, Strope J, Chau CH, Figg WD, Gütschow M, Hartmann MD. On the correlation of cereblon binding, fluorination and antiangiogenic properties of immunomodulatory drugs. Biochem Biophys Res Commun 2021; 534:67-72. [PMID: 33310190 PMCID: PMC7815984 DOI: 10.1016/j.bbrc.2020.11.117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 11/26/2022]
Abstract
Cereblon (CRBN), the substrate receptor of an E3 ubiquitin ligase complex, is a target of thalidomide and thalidomide-derived immunomodulatory drugs (IMiDs). The binding of these IMiDs to CRBN alters the substrate specificity of the ligase, thereby mediating multiple effects that are exploited in cancer therapy. However, to date, it is not clear which other possible targets might be involved in the efficacy of IMiDs. One especially prominent effect of a number of thalidomide analogs is their ability to inhibit angiogenesis, which is typically enhanced in fluorinated analogs. So far, the involvement of CRBN in antiangiogenic effects is under debate. Here, starting from a systematic set of thalidomide analogs and employing a quantitative in vitro CRBN-binding assay, we study the correlation of fluorination, CRBN binding and antiangiogenic effects. We clearly identify fluorination to correlate both with CRBN binding affinity and with antiangiogenic effects, but do not find a correlation between the latter two phenomena, indicating that the main target for the antiangiogenic effects of thalidomide analogs still remains to be identified.
Collapse
Affiliation(s)
- Christopher Heim
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Samuel Maiwald
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | | | - Matthew K Collins
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jonathan Strope
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Cindy H Chau
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - William D Figg
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | |
Collapse
|
6
|
Peach ML, Beedie SL, Chau CH, Collins MK, Markolovic S, Luo W, Tweedie D, Steinebach C, Greig NH, Gütschow M, Vargesson N, Nicklaus MC, Figg WD. Antiangiogenic Activity and in Silico Cereblon Binding Analysis of Novel Thalidomide Analogs. Molecules 2020; 25:E5683. [PMID: 33276504 PMCID: PMC7730988 DOI: 10.3390/molecules25235683] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 12/14/2022] Open
Abstract
Due to its antiangiogenic and anti-immunomodulatory activity, thalidomide continues to be of clinical interest despite its teratogenic actions, and efforts to synthesize safer, clinically active thalidomide analogs are continually underway. In this study, a cohort of 27 chemically diverse thalidomide analogs was evaluated for antiangiogenic activity in an ex vivo rat aorta ring assay. The protein cereblon has been identified as the target for thalidomide, and in silico pharmacophore analysis and molecular docking with a crystal structure of human cereblon were used to investigate the cereblon binding abilities of the thalidomide analogs. The results suggest that not all antiangiogenic thalidomide analogs can bind cereblon, and multiple targets and mechanisms of action may be involved.
Collapse
Affiliation(s)
- Megan L. Peach
- Basic Science Program, Chemical Biology Laboratory, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD 21701, USA;
| | - Shaunna L. Beedie
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA; (S.L.B.); (C.H.C.); (M.K.C.); (S.M.)
- School of Medicine, Medical Sciences & Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK;
| | - Cindy H. Chau
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA; (S.L.B.); (C.H.C.); (M.K.C.); (S.M.)
| | - Matthew K. Collins
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA; (S.L.B.); (C.H.C.); (M.K.C.); (S.M.)
| | - Suzana Markolovic
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA; (S.L.B.); (C.H.C.); (M.K.C.); (S.M.)
| | - Weiming Luo
- Drug Design & Development Section, Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD 21224, USA; (W.L.); (D.T.); (N.H.G.)
| | - David Tweedie
- Drug Design & Development Section, Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD 21224, USA; (W.L.); (D.T.); (N.H.G.)
| | - Christian Steinebach
- Pharmaceutical Institute, University of Bonn, 53121 Bonn, Germany; (C.S.); (M.G.)
| | - Nigel H. Greig
- Drug Design & Development Section, Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD 21224, USA; (W.L.); (D.T.); (N.H.G.)
| | - Michael Gütschow
- Pharmaceutical Institute, University of Bonn, 53121 Bonn, Germany; (C.S.); (M.G.)
| | - Neil Vargesson
- School of Medicine, Medical Sciences & Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK;
| | - Marc C. Nicklaus
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD 21701, USA;
| | - William D. Figg
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA; (S.L.B.); (C.H.C.); (M.K.C.); (S.M.)
| |
Collapse
|
7
|
Shafiq N, Arshad U, Zarren G, Parveen S, Javed I, Ashraf A. A Comprehensive Review: Bio-Potential of Barbituric Acid and its Analogues. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824666200110094457] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In our present work, we emphasized on the potential of barbituric acid (1) derivatives
as drugs like anti-bacterial, hypnotic, sedative, anti-microbial and antifungal
agents. As naturally occurring, barbituric acid (1) is inactive but in the derivative form, it
has a large number of medicinal uses and nowadays, it has a great demand in the pharmaceutical
industry. Barbituric acid has a wide range of applications in the synthesis of a diverse
class of compounds like heterocyclic, carbocyclic, synthetic alkaloids, and due to its
broad-spectrum applications, barbituric acid acquired the position of building blocks in
synthetic chemistry. Through the history of humanity, a number of bioactive agents have
been applied to cure the disease related to hypnotics and sedatives, while the exact efficacy
of these agents was found to be limited. Till now, review articles on barbituric acid
only express their specific aspect but in present review article, all aspects are discussed in detail to provide a
platform to readers and researchers so that they could obtain all information and background knowledge from a
single point.
Collapse
Affiliation(s)
- Nusrat Shafiq
- Department of Chemistry, Government College Women University, Faisalabad-38000, Pakistan
| | - Uzma Arshad
- Department of Chemistry, Government College Women University, Faisalabad-38000, Pakistan
| | - Gul Zarren
- Department of Chemistry, Government College Women University, Faisalabad-38000, Pakistan
| | - Shagufta Parveen
- Department of Chemistry, Government College Women University, Faisalabad-38000, Pakistan
| | - Irum Javed
- Department of Biochemistry, Sardar Bahadur Khan Women’s University, Quetta, Pakistan
| | - Aisha Ashraf
- Department of Chemistry, Government College Women University, Faisalabad-38000, Pakistan
| |
Collapse
|
8
|
Machado MGM, Scarim CB, de Andrade CR, dos Santos JL, Chin CM. Synthesis and anti-inflammatory intestinal activity of new glucocorticoid derivatives. Med Chem Res 2019. [DOI: 10.1007/s00044-019-02474-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Steinebach C, Lindner S, Udeshi ND, Mani DC, Kehm H, Köpff S, Carr SA, Gütschow M, Krönke J. Homo-PROTACs for the Chemical Knockdown of Cereblon. ACS Chem Biol 2018; 13:2771-2782. [PMID: 30118587 DOI: 10.1021/acschembio.8b00693] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The immunomodulatory drugs (IMiDs) thalidomide, lenalidomide, and pomalidomide, all approved for the treatment of multiple myeloma, induce targeted ubiquitination and degradation of Ikaros (IKZF1) and Aiolos (IKZF3) via the cereblon (CRBN) E3 ubiquitin ligase. IMiD-based proteolysis-targeting chimeras (PROTACs) can efficiently recruit CRBN to a protein of interest, leading to its ubiquitination and proteasomal degradation. By linking two pomalidomide molecules, we designed homobifunctional, so-called homo-PROTACs and investigated their ability to induce self-directed ubiquitination and degradation. The homodimerized compound 15a was characterized as a highly potent and efficient CRBN degrader with only minimal effects on IKZF1 and IKZF3. The cellular selectivity of 15a for CRBN degradation was confirmed at the proteome level by quantitative mass spectrometry. Inactivation by compound 15a did not affect proliferation of different cell lines, prevented pomalidomide-induced degradation of IKZF1 and IKZF3, and antagonized the effects of pomalidomide on multiple myeloma cells. Homobifunctional CRBN degraders will be useful tools for future biomedical investigations of CRBN-related signaling and may help to further elucidate the molecular mechanism of thalidomide analogues.
Collapse
Affiliation(s)
- Christian Steinebach
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Stefanie Lindner
- Department of Internal Medicine III, University Hospital Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Namrata D. Udeshi
- Proteomics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Deepak C. Mani
- Proteomics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Hannes Kehm
- Department of Internal Medicine III, University Hospital Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Simon Köpff
- Department of Internal Medicine III, University Hospital Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Steven A. Carr
- Proteomics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Michael Gütschow
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Jan Krönke
- Department of Internal Medicine III, University Hospital Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| |
Collapse
|
10
|
Steinebach C, Ambrożak A, Dosa S, Beedie SL, Strope JD, Schnakenburg G, Figg WD, Gütschow M. Synthesis, Structural Characterization, and Antiangiogenic Activity of Polyfluorinated Benzamides. ChemMedChem 2018; 13:2080-2089. [PMID: 30134015 DOI: 10.1002/cmdc.201800263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/17/2018] [Indexed: 11/09/2022]
Abstract
The introduction of fluorine into bioactive molecules is a matter of importance in medicinal chemistry. In this study, representatives of various chemical entities of fluoroaromatic compounds were synthesized. Depending on the reaction conditions, either tetrafluorophthalimides or ammonium tetrafluorophthalamates are accessible from tetrafluorophthalic anhydride and primary amines. Tetrafluorophthalamic acids undergo thermal decarboxylation to yield tetrafluorobenzamides. These could be successfully converted upon treatment with primary amines, in the course of an aromatic nucleophilic substitution, to 2,3,5-trifluorobenzamides with respective amino substituents at the 4-position. The five structure types were characterized by means of spectroscopic and crystallographic methods. The synthesized compounds were evaluated as inhibitors of angiogenesis by measuring microvessel outgrowth in a rat aortic ring assay. The biological activity was maintained throughout these different polyfluorinated chemotypes.
Collapse
Affiliation(s)
- Christian Steinebach
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Agnieszka Ambrożak
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Stefan Dosa
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Shaunna L Beedie
- Molecular Pharmacology Section, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Jonathan D Strope
- Molecular Pharmacology Section, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Gregor Schnakenburg
- Institute of Inorganic Chemistry, University of Bonn, Gerhard-Domagk-Strasse 1, 53121, Bonn, Germany
| | - William D Figg
- Molecular Pharmacology Section, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Michael Gütschow
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| |
Collapse
|