1
|
Fedorowicz J, Sączewski J. Advances in the Synthesis of Biologically Active Quaternary Ammonium Compounds. Int J Mol Sci 2024; 25:4649. [PMID: 38731869 PMCID: PMC11083083 DOI: 10.3390/ijms25094649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/14/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
This review provides a comprehensive overview of recent advancements in the design and synthesis of biologically active quaternary ammonium compounds (QACs). The covered scope extends beyond commonly reviewed antimicrobial derivatives to include synthetic agents with antifungal, anticancer, and antiviral properties. Additionally, this review highlights examples of quaternary ammonium compounds exhibiting activity against protozoa and herbicidal effects, as well as analgesic and anesthetic derivatives. The article also embraces the quaternary-ammonium-containing cholinesterase inhibitors and muscle relaxants. QACs, marked by their inherent permanent charge, also find widespread usage across diverse domains such as fabric softeners, hair conditioners, detergents, and disinfectants. The effectiveness of QACs hinges greatly on finding the right equilibrium between hydrophilicity and lipophilicity. The ideal length of the alkyl chain varies according to the unique structure of each QAC and its biological settings. It is expected that this review will provide comprehensive data for medicinal and industrial chemists to design and develop novel QAC-based products.
Collapse
Affiliation(s)
- Joanna Fedorowicz
- Department of Chemical Technology of Drugs, Faculty of Pharmacy, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland
| | - Jarosław Sączewski
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland;
| |
Collapse
|
2
|
Dallanoce C, Richter K, Stokes C, Papotto C, Andleeb H, Thakur GA, Kerr A, Grau V, Papke RL. New Alpha9 nAChR Ligands Based on a 5-(Quinuclidin-3-ylmethyl)-1,2,4-oxadiazole Scaffold. ACS Chem Neurosci 2024; 15:827-843. [PMID: 38335726 PMCID: PMC11274740 DOI: 10.1021/acschemneuro.3c00720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024] Open
Abstract
Several lines of evidence have indicated that nicotinic acetylcholine receptors (nAChR) that contain α9 subunits, probably in combination with α10 subunits, may be valuable targets for the management of pain associated with inflammatory diseases through a cholinergic anti-inflammatory system (CAS), which has also been associated with α7 nAChR. Both α7- and α9-containing neuronal nAChR can be pharmacologically distinguished from the high-affinity nicotinic receptors of the brain by their sensitivity to α-bungarotoxin, but in other ways, they have quite distinct pharmacological profiles. The early association of α7 with CAS led to the development of numerous new ligands, variously characterized as α7 agonists, partial agonists, or silent agonists that desensitized α7 receptors without activation. Subsequent reinvestigation of one such family of α7 ligands based on an N,N-diethyl-N'-phenylpiperazine scaffold led to the identification of potent agonists and antagonists for α9. In this paper, we characterize the α9/α10 activity of a series of compounds based on a 5-(quinuclidin-3-ylmethyl)-1,2,4-oxadiazole (QMO) scaffold and identify two new potent ligands of α9, QMO-28, an agonist, and QMO-17, an antagonist. We separated the stereoisomers of these compounds to identify the most potent agonist and discovered that only the 3R isomer of QMO-17 was an α9 antagonist, permitting an in silico model of α9 antagonism to be developed. The α9 activity of these compounds was confirmed to be potentially useful for CAS management of inflammatory pain in cell-based assays of cytokine release.
Collapse
Affiliation(s)
- Clelia Dallanoce
- Department of Pharmaceutical Sciences, Medicinal Chemistry Section "Pietro Pratesi″, University of Milan, Via L. Mangiagalli 25, 20133 Milan, Italy
| | - Katrin Richter
- Department of General and Thoracic Surgery, Laboratory of Experimental Surgery, Justus-Liebig-University, German Center for Lung Research [DZL], Cardio-Pulmonary Institute [CPI], Giessen 35390, Germany
| | - Clare Stokes
- Department of Pharmacology and Therapeutics, University of Florida, PO Box 100267, Gainesville, Florida 32610 United States
| | - Claudio Papotto
- Department of Pharmaceutical Sciences, Medicinal Chemistry Section "Pietro Pratesi″, University of Milan, Via L. Mangiagalli 25, 20133 Milan, Italy
| | - Hina Andleeb
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| | - Ganesh A Thakur
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| | - Andrew Kerr
- United States Naval Research Laboratory, 6920 Washington, District of Columbia, United States
| | - Veronika Grau
- Department of General and Thoracic Surgery, Laboratory of Experimental Surgery, Justus-Liebig-University, German Center for Lung Research [DZL], Cardio-Pulmonary Institute [CPI], Giessen 35390, Germany
| | - Roger L Papke
- Department of Pharmacology and Therapeutics, University of Florida, PO Box 100267, Gainesville, Florida 32610 United States
| |
Collapse
|
3
|
Giraudo A, Pallavicini M, Bolchi C. Small molecule ligands for α9* and α7 nicotinic receptors: a survey and an update, respectively. Pharmacol Res 2023; 193:106801. [PMID: 37236412 DOI: 10.1016/j.phrs.2023.106801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023]
Abstract
The α9- and α7-containing nicotinic acetylcholine receptors (nAChRs) mediate numerous physiological and pathological processes by complex mechanisms that are currently the subject of intensive study and debate. In this regard, selective ligands serve as invaluable investigative tools and, in many cases, potential therapeutics for the treatment of various CNS disfunctions and diseases, neuropathic pain, inflammation, and cancer. However, the present scenario differs significantly between the two aforementioned nicotinic subtypes. Over the past few decades, a large number of selective α7-nAChR ligands, including full, partial and silent agonists, antagonists, and allosteric modulators, have been described and reviewed. Conversely, reports on selective α9-containing nAChR ligands are relatively scarce, also due to a more recent characterization of this receptor subtype, and hardly any focusing on small molecules. In this review, we focus on the latter, providing a comprehensive overview, while providing only an update over the last five years for α7-nAChR ligands.
Collapse
Affiliation(s)
- Alessandro Giraudo
- Department of Pharmaceutical Sciences, University of Milan, via Mangiagalli 25, I-20133 Milano, Italy
| | - Marco Pallavicini
- Department of Pharmaceutical Sciences, University of Milan, via Mangiagalli 25, I-20133 Milano, Italy
| | - Cristiano Bolchi
- Department of Pharmaceutical Sciences, University of Milan, via Mangiagalli 25, I-20133 Milano, Italy.
| |
Collapse
|
4
|
Papke RL, Quadri M, Gulsevin A. Silent agonists for α7 nicotinic acetylcholine receptors. Pharmacol Res 2023; 190:106736. [PMID: 36940890 DOI: 10.1016/j.phrs.2023.106736] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/07/2023] [Accepted: 03/14/2023] [Indexed: 03/23/2023]
Abstract
We discuss models for the activation and desensitization of α7 nicotinic acetylcholine receptors (nAChRs) and the effects of efficacious type II positive allosteric modulators (PAMs) that destabilize α7 desensitized states. Type II PAMs such as PNU-120596 can be used to distinguish inactive compounds from silent agonists, compounds that produce little or no channel activation but stabilize the non-conducting conformations associated with desensitization. We discuss the effects of α7 nAChRs in cells of the immune system and their roles in modulating inflammation and pain through what has come to be known as the cholinergic anti-inflammatory system (CAS). Cells controlling CAS do not generate ion channel currents but rather respond to α7 drugs by modulating intracellular signaling pathways analogous to the effects of metabotropic receptors. Metabotropic signaling by α7 receptors appears to be mediated by receptors in nonconducting conformations and can be accomplished by silent agonists. We discuss electrophysiological structure-activity relationships for α7 silent agonists and their use in cell-based and in vivo assays for CAS regulation. We discuss the strongly desensitizing partial agonist GTS-21 and its effectiveness in modulation of CAS. We also review the properties of the silent agonist NS6740, which is remarkably effective at maintaining α7 receptors in PAM-sensitive desensitized states. Most silent agonists bind to sites overlapping those for orthosteric agonists, but some appear to bind to allosteric sites. Finally, we discuss α9⁎ nAChRs and their potential role in CAS, and ligands that will be useful in defining and distinguishing the specific roles of α7 and α9 in CAS.
Collapse
Affiliation(s)
- Roger L Papke
- Department of Pharmacology and Therapeutics, University of Florida, PO Box 100267 Gainesville, FL 32610 USA (RLP); Olon S.p.A., Strada Rivoltana, Km 6/7 - 20053 Rodano (MI) - ITALY (MQ); Department of Chemistry, Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA, 37212 (AG).
| | - Marta Quadri
- Department of Pharmacology and Therapeutics, University of Florida, PO Box 100267 Gainesville, FL 32610 USA (RLP); Olon S.p.A., Strada Rivoltana, Km 6/7 - 20053 Rodano (MI) - ITALY (MQ); Department of Chemistry, Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA, 37212 (AG)
| | - Alican Gulsevin
- Department of Pharmacology and Therapeutics, University of Florida, PO Box 100267 Gainesville, FL 32610 USA (RLP); Olon S.p.A., Strada Rivoltana, Km 6/7 - 20053 Rodano (MI) - ITALY (MQ); Department of Chemistry, Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA, 37212 (AG)
| |
Collapse
|
5
|
Richter K, Papke RL, Stokes C, Roy DC, Espinosa ES, Wolf PMK, Hecker A, Liese J, Singh VK, Padberg W, Schlüter KD, Rohde M, McIntosh JM, Morley BJ, Horenstein NA, Grau V, Simard AR. Comparison of the Anti-inflammatory Properties of Two Nicotinic Acetylcholine Receptor Ligands, Phosphocholine and pCF3-diEPP. Front Cell Neurosci 2022; 16:779081. [PMID: 35431807 PMCID: PMC9008208 DOI: 10.3389/fncel.2022.779081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 03/10/2022] [Indexed: 12/14/2022] Open
Abstract
Activation of nicotinic acetylcholine receptors (nAChRs) expressed by innate immune cells can attenuate pro-inflammatory responses. Silent nAChR agonists, which down-modulate inflammation but have little or no ionotropic activity, are of outstanding clinical interest for the prevention and therapy of numerous inflammatory diseases. Here, we compare two silent nAChR agonists, phosphocholine, which is known to interact with nAChR subunits α7, α9, and α10, and pCF3-N,N-diethyl-N′-phenyl-piperazine (pCF3-diEPP), a previously identified α7 nAChR silent agonist, regarding their anti-inflammatory properties and their effects on ionotropic nAChR functions. The lipopolysaccharide (LPS)-induced release of interleukin (IL)-6 by primary murine macrophages was inhibited by pCF3-diEPP, while phosphocholine was ineffective presumably because of instability. In human whole blood cultures pCF3-diEPP inhibited the LPS-induced secretion of IL-6, TNF-α and IL-1β. The ATP-mediated release of IL-1β by LPS-primed human peripheral blood mononuclear leukocytes, monocytic THP-1 cells and THP-1-derived M1-like macrophages was reduced by both phosphocholine and femtomolar concentrations of pCF3-diEPP. These effects were sensitive to mecamylamine and to conopeptides RgIA4 and [V11L; V16D]ArIB, suggesting the involvement of nAChR subunits α7, α9 and/or α10. In two-electrode voltage-clamp measurements pCF3-diEPP functioned as a partial agonist and a strong desensitizer of classical human α9 and α9α10 nAChRs. Interestingly, pCF3-diEPP was more effective as an ionotropic agonist at these nAChRs than at α7 nAChR. In conclusion, phosphocholine and pCF3-diEPP are potent agonists at unconventional nAChRs expressed by monocytic and macrophage-like cells. pCF3-diEPP inhibits the LPS-induced release of pro-inflammatory cytokines, while phosphocholine is ineffective. However, both agonists signal via nAChR subunits α7, α9 and/or α10 to efficiently down-modulate the ATP-induced release of IL-1β. Compared to phosphocholine, pCF3-diEPP is expected to have better pharmacological properties. Thus, low concentrations of pCF3-diEPP may be a therapeutic option for the treatment of inflammatory diseases including trauma-induced sterile inflammation.
Collapse
Affiliation(s)
- Katrin Richter
- Department of General and Thoracic Surgery, Laboratory of Experimental Surgery, Justus-Liebig-University, German Center for Lung Research, Giessen, Germany
- *Correspondence: Katrin Richter,
| | - Roger L. Papke
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, United States
| | - Clare Stokes
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, United States
| | - Danika C. Roy
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON, Canada
| | | | - Philipp M. K. Wolf
- Department of General and Thoracic Surgery, Laboratory of Experimental Surgery, Justus-Liebig-University, German Center for Lung Research, Giessen, Germany
| | - Andreas Hecker
- Department of General and Thoracic Surgery, Laboratory of Experimental Surgery, Justus-Liebig-University, German Center for Lung Research, Giessen, Germany
| | - Juliane Liese
- Department of General and Thoracic Surgery, Laboratory of Experimental Surgery, Justus-Liebig-University, German Center for Lung Research, Giessen, Germany
| | - Vijay K. Singh
- Department of Pediatric Hematology and Oncology, Justus-Liebig-University, Giessen, Germany
| | - Winfried Padberg
- Department of General and Thoracic Surgery, Laboratory of Experimental Surgery, Justus-Liebig-University, German Center for Lung Research, Giessen, Germany
| | | | - Marius Rohde
- Department of Pediatric Hematology and Oncology, Justus-Liebig-University, Giessen, Germany
| | - J. Michael McIntosh
- Department of Biology, University of Utah, Salt Lake City, UT, United States
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, United States
- Department of Psychiatry, University of Utah, Salt Lake City, UT, United States
| | - Barbara J. Morley
- Center for Sensory Neuroscience, Boys Town National Research Hospital, Omaha, NE, United States
| | | | - Veronika Grau
- Department of General and Thoracic Surgery, Laboratory of Experimental Surgery, Justus-Liebig-University, German Center for Lung Research, Giessen, Germany
| | - Alain R. Simard
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON, Canada
- Department of Biology, Laurentian University, Sudbury, ON, Canada
- Northern Ontario School of Medicine, Sudbury, ON, Canada
| |
Collapse
|
6
|
The Mechanisms Mediated by α7 Acetylcholine Nicotinic Receptors May Contribute to Peripheral Nerve Regeneration. Molecules 2021; 26:molecules26247668. [PMID: 34946750 PMCID: PMC8709212 DOI: 10.3390/molecules26247668] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 01/25/2023] Open
Abstract
Due to the microenvironment created by Schwann cell (SC) activity, peripheral nerve fibers are able to regenerate. Inflammation is the first response to nerve damage and the removal of cellular and myelin debris is essential in preventing the persistence of the local inflammation that may negatively affect nerve regeneration. Acetylcholine (ACh) is one of the neurotransmitters involved in the modulation of inflammation through the activity of its receptors, belonging to both the muscarinic and nicotinic classes. In this report, we evaluated the expression of α7 nicotinic acetylcholine receptors (nAChRs) in rat sciatic nerve, particularly in SCs, after peripheral nerve injury. α7 nAChRs are absent in sciatic nerve immediately after dissection, but their expression is significantly enhanced in SCs after 24 h in cultured sciatic nerve segments or in the presence of the proinflammatory neuropeptide Bradykinin (BK). Moreover, we found that activation of α7 nAChRs with the selective partial agonist ICH3 causes a decreased expression of c-Jun and an upregulation of uPA, MMP2 and MMP9 activity. In addition, ICH3 treatment inhibits IL-6 transcript level expression as well as the cytokine release. These results suggest that ACh, probably released from regenerating axons or by SC themselves, may actively promote through α7 nAChRs activation an anti-inflammatory microenvironment that contributes to better improving the peripheral nerve regeneration.
Collapse
|
7
|
Zana A, Galbiati A. Synthesis and Reactivity of 3‐Halo‐4,5‐dihydroisoxazoles: An Overview. ChemistrySelect 2021. [DOI: 10.1002/slct.202101779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Aureliano Zana
- Department of Pharmaceutical Sciences Università degli Studi di Milano Via Mangiagalli 25 20133 Milano Italy
- Philochem AG Libernstrasse 3 8112 Otelfingen (ZH) Switzerland
| | - Andrea Galbiati
- Department of Pharmaceutical Sciences Università degli Studi di Milano Via Mangiagalli 25 20133 Milano Italy
- Philochem AG Libernstrasse 3 8112 Otelfingen (ZH) Switzerland
| |
Collapse
|
8
|
Abstract
The α7-type nicotinic acetylcholine receptor is one of the most unique and interesting of all the members of the cys-loop superfamily of ligand-gated ion channels. Since it was first identified initially as a binding site for α-bungarotoxin in mammalian brain and later as a functional homomeric receptor with relatively high calcium permeability, it has been pursued as a potential therapeutic target for numerous indications, from Alzheimer disease to asthma. In this review, we discuss the history and state of the art for targeting α7 receptors, beginning with subtype-selective agonists and the basic pharmacophore for the selective activation of α7 receptors. A key feature of α7 receptors is their rapid desensitization by standard "orthosteric" agonist, and we discuss insights into the conformational landscape of α7 receptors that has been gained by the development of ligands binding to allosteric sites. Some of these sites are targeted by positive allosteric modulators that have a wide range of effects on the activation profile of the receptors. Other sites are targeted by direct allosteric agonist or antagonists. We include a perspective on the potential importance of α7 receptors for metabotropic as well as ionotropic signaling. We outline the challenges that exist for future development of drugs to target this important receptor and approaches that may be considered to address those challenges. SIGNIFICANCE STATEMENT: The α7-type nicotinic acetylcholine receptor (nAChR) is acknowledged as a potentially important therapeutic target with functional properties associated with both ionotropic and metabotropic signaling. The functional properties of α7 nAChR can be regulated in diverse ways with the variety of orthosteric and allosteric ligands described in this review.
Collapse
Affiliation(s)
- Roger L Papke
- Departments of Pharmacology and Therapeutics (R.L.P) and Chemistry (N.A.H.), University of Florida, Gainesville, FL
| | - Nicole A Horenstein
- Departments of Pharmacology and Therapeutics (R.L.P) and Chemistry (N.A.H.), University of Florida, Gainesville, FL
| |
Collapse
|
9
|
Pismataro MC, Horenstein NA, Stokes C, Quadri M, De Amici M, Papke RL, Dallanoce C. Design, synthesis, and electrophysiological evaluation of NS6740 derivatives: Exploration of the structure-activity relationship for alpha7 nicotinic acetylcholine receptor silent activation. Eur J Med Chem 2020; 205:112669. [PMID: 32810771 DOI: 10.1016/j.ejmech.2020.112669] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 11/15/2022]
Abstract
The α7 nicotinic acetylcholine receptor (nAChR) silent agonists, able to induce receptor desensitization and promote the α7 metabotropic function, are emerging as new promising therapeutic anti-inflammatory agents. Herein, we report the structure-activity relationship investigation of the archetypal silent agonist NS6740 (1,4-diazabicyclo[3.2.2]nonan-4-yl(5-(3-(trifluoromethyl)-phenyl)-furan-2-yl)methanone) (1) to elucidate the ligand-receptor interactions responsible for the α7 silent activation. In this study, NS6740 fragments 11-16 and analogs 17-32 were designed, synthesized, and assayed on human α7 nAChRs expressed in Xenopus laevis oocytes with two-electrode voltage clamping experiments. All together the structural portions of NS6740 were critical to engender its peculiar activity profile. The diazabicyclic nucleus was essential but not sufficient for inducing α7 silent activation. The central hydrogen-bond acceptor core and the aromatic moiety were crucial for promoting prolonged α7 receptor binding and sustained desensitization. Compounds 13 and 17 were efficacious partial agonists. Compounds 12, 21, 23-26, and 30 strongly desensitized α7 nAChR and therefore may be of interest for additional investigation of inflammation responses. We gained key structural information useful for further silent agonist development.
Collapse
Affiliation(s)
- Maria Chiara Pismataro
- Department of Pharmaceutical Sciences, Medicinal Chemistry Section "Pietro Pratesi", University of Milan, Via L. Mangiagalli 25, 20133, Milan, Italy; Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, FL 32611-7200, USA; Department of Pharmacology and Therapeutics, University of Florida, P.O. Box 100267, Gainesville, FL 32610-0267, USA
| | - Nicole A Horenstein
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, FL 32611-7200, USA
| | - Clare Stokes
- Department of Pharmacology and Therapeutics, University of Florida, P.O. Box 100267, Gainesville, FL 32610-0267, USA
| | - Marta Quadri
- Department of Pharmaceutical Sciences, Medicinal Chemistry Section "Pietro Pratesi", University of Milan, Via L. Mangiagalli 25, 20133, Milan, Italy; Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, FL 32611-7200, USA; Department of Pharmacology and Therapeutics, University of Florida, P.O. Box 100267, Gainesville, FL 32610-0267, USA
| | - Marco De Amici
- Department of Pharmaceutical Sciences, Medicinal Chemistry Section "Pietro Pratesi", University of Milan, Via L. Mangiagalli 25, 20133, Milan, Italy
| | - Roger L Papke
- Department of Pharmacology and Therapeutics, University of Florida, P.O. Box 100267, Gainesville, FL 32610-0267, USA
| | - Clelia Dallanoce
- Department of Pharmaceutical Sciences, Medicinal Chemistry Section "Pietro Pratesi", University of Milan, Via L. Mangiagalli 25, 20133, Milan, Italy.
| |
Collapse
|
10
|
Scabia G, Cancello R, Dallanoce C, Berger S, Matera C, Dattilo A, Zulian A, Barone I, Ceccarini G, Santini F, De Amici M, Di Blasio AM, Maffei M. ICH3, a selective alpha7 nicotinic acetylcholine receptor agonist, modulates adipocyte inflammation associated with obesity. J Endocrinol Invest 2020; 43:983-993. [PMID: 31965518 DOI: 10.1007/s40618-020-01182-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 01/08/2020] [Indexed: 02/06/2023]
Abstract
PURPOSE The alpha7 nicotinic acetylcholine receptor (α7nAChR), involved in the modulation of inflammation and insulin sensitivity, is downregulated in white adipose tissue (WAT) of obese patients. This study aims to test the ability of a selective synthetic α7nAChR agonist, the spirocyclic Δ2-isoxazoline derivative (R)-(-)-ICH3 (ICH3), to counteract acute inflammation and obesity-associated modifications in WAT. METHODS We employed the LPS-septic shock murine model, human primary adipocytes and diet-induced obese (DIO) mice. Inflammatory factor expression was assessed by ELISA and quantitative real-time PCR. Flow cytometry was employed to define WAT inflammatory infiltrate. Insulin signaling was monitored by quantification of AKT phosphorylation. RESULTS In the septic shock model, ICH3 revealed antipyretic action and reduced the surge of circulating cytokines. In vitro, ICH3 stimulation (10 µM) preserved viability of human adipocytes, decreased IL-6 mRNA (P < 0.05) and blunted LPS-induced peak of TNFα (P < 0.05) and IL-6 (P < 0.01). Chronic administration of ICH3 to DIO mice was associated with lower numbers of CD8+ T cells (P < 0.05) and to changed WAT expression of inflammatory factors (Hp, P < 0.05; CD301/MGL1, P < 0.01; Arg-1, P < 0.05). As compared to untreated, ICH3 DIO mice exhibited improved insulin signaling in the skeletal muscle (P < 0.01) mirrored by an improved response to glucose load (ipGTT: P < 0.05 at 120 min). CONCLUSIONS We proved that ICH3 is an anti-inflammatory drug, able to reduce inflammatory cytokines in human adipocytes and to blunt the effects of obesity on WAT inflammatory profile, on glucose tolerance and on tissue insulin sensitivity.
Collapse
Affiliation(s)
- G Scabia
- CNR Institute of Clinical Physiology, Pisa, Italy
- Obesity and Lipodystrophy Center at Endocrinology Unit, University Hospital of Pisa, Pisa, Italy
| | - R Cancello
- Laboratorio di Ricerche Sull'Obesità, Istituto Auxologico Italiano, IRCCS, Milan, Italy
| | - C Dallanoce
- Department of Pharmaceuticals Sciences, University of Milano, Milan, Italy
| | - S Berger
- Obesity and Lipodystrophy Center at Endocrinology Unit, University Hospital of Pisa, Pisa, Italy
- Dulbecco Telethon Institute, Pisa, Italy
| | - C Matera
- Department of Pharmaceuticals Sciences, University of Milano, Milan, Italy
| | - A Dattilo
- Obesity and Lipodystrophy Center at Endocrinology Unit, University Hospital of Pisa, Pisa, Italy
- Life Science Institute, Scuola Superiore Sant'Anna, Pisa, Italy
| | - A Zulian
- Laboratorio di Ricerche Sull'Obesità, Istituto Auxologico Italiano, IRCCS, Milan, Italy
| | - I Barone
- Obesity and Lipodystrophy Center at Endocrinology Unit, University Hospital of Pisa, Pisa, Italy
| | - G Ceccarini
- Obesity and Lipodystrophy Center at Endocrinology Unit, University Hospital of Pisa, Pisa, Italy
| | - F Santini
- Obesity and Lipodystrophy Center at Endocrinology Unit, University Hospital of Pisa, Pisa, Italy
| | - M De Amici
- Department of Pharmaceuticals Sciences, University of Milano, Milan, Italy
| | - A M Di Blasio
- Laboratorio di Ricerche di Biologia Molecolare, Istituto Auxologico Italiano, IRCCS, Milan, Italy.
| | - M Maffei
- CNR Institute of Clinical Physiology, Pisa, Italy.
- Obesity and Lipodystrophy Center at Endocrinology Unit, University Hospital of Pisa, Pisa, Italy.
| |
Collapse
|
11
|
Camacho-Hernandez GA, Stokes C, Duggan BM, Kaczanowska K, Brandao-Araiza S, Doan L, Papke RL, Taylor P. Synthesis, Pharmacological Characterization, and Structure-Activity Relationships of Noncanonical Selective Agonists for α7 nAChRs. J Med Chem 2019; 62:10376-10390. [PMID: 31675224 DOI: 10.1021/acs.jmedchem.9b01467] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A lack of selectivity of classical agonists for the nicotinic acetylcholine receptors (nAChR) has prompted us to identify and develop a distinct scaffold of α7 nAChR-selective ligands. Noncanonical 2,4,6-substituted pyrimidine analogues were framed around compound 40 for a structure-activity relationship study. The new lead compounds activate selectively the α7 nAChRs with EC50's between 30 and 140 nM in a PNU-120596-dependent, cell-based calcium influx assay. After characterizing the expanded lead landscape, we ranked the compounds for rapid activation using Xenopus oocytes expressing human α7 nAChR with a two-electrode voltage clamp. This approach enabled us to define the molecular determinants governing rapid activation, agonist potency, and desensitization of α7 nAChRs after exposure to pyrimidine analogues, thereby distinguishing this subclass of noncanonical agonists from previously defined types of agonists (agonists, partial agonists, silent agonists, and ago-PAMs). By NMR, we analyzed pKa values for ionization of lead candidates, demonstrating distinctive modes of interaction for this landscape of ligands.
Collapse
Affiliation(s)
- Gisela Andrea Camacho-Hernandez
- Department of Pharmacology, Skaggs School of Pharmacy & Pharmaceutical Sciences , University of California-San Diego , La Jolla , California 92093-0751 , United States
| | - Clare Stokes
- Department of Pharmacology & Therapeutics , University of Florida , P.O. Box 100267, Gainesville , Florida 32610-0267 , United States
| | - Brendan M Duggan
- Department of Pharmacology, Skaggs School of Pharmacy & Pharmaceutical Sciences , University of California-San Diego , La Jolla , California 92093-0751 , United States
| | - Katarzyna Kaczanowska
- Department of Pharmacology, Skaggs School of Pharmacy & Pharmaceutical Sciences , University of California-San Diego , La Jolla , California 92093-0751 , United States
| | - Stefania Brandao-Araiza
- Department of Pharmacology, Skaggs School of Pharmacy & Pharmaceutical Sciences , University of California-San Diego , La Jolla , California 92093-0751 , United States
| | - Lisa Doan
- Department of Pharmacology, Skaggs School of Pharmacy & Pharmaceutical Sciences , University of California-San Diego , La Jolla , California 92093-0751 , United States
| | - Roger L Papke
- Department of Pharmacology & Therapeutics , University of Florida , P.O. Box 100267, Gainesville , Florida 32610-0267 , United States
| | - Palmer Taylor
- Department of Pharmacology & Therapeutics , University of Florida , P.O. Box 100267, Gainesville , Florida 32610-0267 , United States
| |
Collapse
|
12
|
Synthesis, biological evaluation and structure-activity relationships of self-assembled and solubilization properties of amphiphilic quaternary ammonium derivatives of quinuclidine. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.10.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
13
|
Quadri M, Bagdas D, Toma W, Stokes C, Horenstein NA, Damaj MI, Papke RL. The Antinociceptive and Anti-Inflammatory Properties of the α7 nAChR Weak Partial Agonist p-CF 3 N, N-diethyl- N'-phenylpiperazine. J Pharmacol Exp Ther 2018; 367:203-214. [PMID: 30111636 PMCID: PMC7593094 DOI: 10.1124/jpet.118.249904] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 08/13/2018] [Indexed: 12/13/2022] Open
Abstract
Chronic pain and inflammatory diseases can be regulated by complex mechanisms involving α7 nicotinic acetylcholine receptors (nAChRs), making this subtype a promising drug target for anti-inflammatory therapies. Recent evidence suggests that suchtreatment of inflammatory pain may rely on metabotropic-like rather than ionotropic activation of the α7 receptor subtype in non-neuronal cells. We previously identified para-trifluoromethyl (p-CF3) N,N-diethyl-N'-phenylpiperazinium (diEPP) iodide to be among the compounds classified as silent agonists, which are very weak α7 partial agonists that are able to induce positive allosteric modulator (PAM)-sensitive desensitization. Such drugs have been shown to selectively promote α7 ionotropic-independent functions. Therefore, we here further investigated the electrophysiological profile of p-CF3 diEPP and its in vivo antinociceptive activity using Xenopus oocytes expressing α7, α4β2, or α3β4 nAChRs. The evoked currents confirmed p-CF3 diEPP to be α7-selective with a maximal agonism 5% that of acetylcholine (ACh). Coapplication of p-CF3 diEPP with the type II PAM 4-naphthalene-1-yl-3a,4,5,9b-tetrahydro-3-H-cyclopenta[c]quinoline-8-sulfonic acid amide (TQS) produced desensitization that could be converted to PAM-potentiated currents, which at a negative holding potential were up to 13-fold greater than ACh controls. Voltage-dependence experiments indicated that channel block may limit both control ACh and TQS-potentiated responses. Although no p-CF3 diEPP agonist activity was detected for the heteromeric nAChRs, it was a noncompetitive antagonist of these receptors. The compound displayed remarkable antihyperalgesic and antiedema effects in in vivo assays. The antinociceptive activity was dose and time dependent. The anti-inflammatory components were sensitive to the α7-selective antagonist methyllycaconitine, which supports the idea that these effects are mediated by the α7 nAChR.
Collapse
Affiliation(s)
- Marta Quadri
- Departments of Pharmacology and Therapeutics (M.Q., C.S., R.L.P.) and Chemistry (M.Q., N.A.H.), University of Florida, Gainesville, Florida; and Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia (D.B., W.T., M.I.D.)
| | - Deniz Bagdas
- Departments of Pharmacology and Therapeutics (M.Q., C.S., R.L.P.) and Chemistry (M.Q., N.A.H.), University of Florida, Gainesville, Florida; and Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia (D.B., W.T., M.I.D.)
| | - Wisam Toma
- Departments of Pharmacology and Therapeutics (M.Q., C.S., R.L.P.) and Chemistry (M.Q., N.A.H.), University of Florida, Gainesville, Florida; and Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia (D.B., W.T., M.I.D.)
| | - Clare Stokes
- Departments of Pharmacology and Therapeutics (M.Q., C.S., R.L.P.) and Chemistry (M.Q., N.A.H.), University of Florida, Gainesville, Florida; and Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia (D.B., W.T., M.I.D.)
| | - Nicole A Horenstein
- Departments of Pharmacology and Therapeutics (M.Q., C.S., R.L.P.) and Chemistry (M.Q., N.A.H.), University of Florida, Gainesville, Florida; and Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia (D.B., W.T., M.I.D.)
| | - M Imad Damaj
- Departments of Pharmacology and Therapeutics (M.Q., C.S., R.L.P.) and Chemistry (M.Q., N.A.H.), University of Florida, Gainesville, Florida; and Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia (D.B., W.T., M.I.D.)
| | - Roger L Papke
- Departments of Pharmacology and Therapeutics (M.Q., C.S., R.L.P.) and Chemistry (M.Q., N.A.H.), University of Florida, Gainesville, Florida; and Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia (D.B., W.T., M.I.D.)
| |
Collapse
|
14
|
Novel 5-(quinuclidin-3-ylmethyl)-1,2,4-oxadiazoles to investigate the activation of the α7 nicotinic acetylcholine receptor subtype: Synthesis and electrophysiological evaluation. Eur J Med Chem 2018; 160:207-228. [PMID: 30342362 DOI: 10.1016/j.ejmech.2018.10.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/28/2018] [Accepted: 10/08/2018] [Indexed: 01/17/2023]
Abstract
α7 nicotinic acetylcholine receptors (nAChRs) are relevant therapeutic targets for a variety of disorders including neurodegeneration, cognitive impairment, and inflammation. Although traditionally identified as an ionotropic receptor, the α7 subtype showed metabotropic-like functions, mainly linked to the modulation of immune responses. In the present work, we investigated the structure-activity relationships in a set of novel α7 ligands incorporating the 5-(quinuclidin-3-ylmethyl)-1,2,4-oxadiazole scaffold, i.e. derivatives 21a-34a and 21b-34b, aiming to identify the structural requirements able to preferentially trigger one of the two activation modes of this receptor subtype. The new compounds were characterized as partial and silent α7 nAChR agonists in electrophysiological assays, which allowed to assess the contribution of the different groups towards the final pharmacological profile. Overall, modifications of the selected structural backbone mainly afforded partial agonists, among them tertiary bases 27a-33a, whereas additional hydrogen-bond acceptor groups in permanently charged ligands, such as 29b and 31b, favored a silent desensitizing profile at the α7 nAChR.
Collapse
|
15
|
Plaza M, Parisotto S, Valdés C. Heterocyclization and Spirocyclization Processes Based on Domino Reactions of N
-Tosylhydrazones and Boronic Acids Involving Intramolecular Allylborylations of Nitriles. Chemistry 2018; 24:14836-14843. [DOI: 10.1002/chem.201803309] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Indexed: 02/03/2023]
Affiliation(s)
- Manuel Plaza
- Departamento de Química Orgánica e Inorgánica; Instituto Universitario de Química Organometálica “Enrique Moles”; Universidad de Oviedo; c/ Julián Clavería 8. Oviedo 33006 Spain
| | - Stefano Parisotto
- Departamento de Química Orgánica e Inorgánica; Instituto Universitario de Química Organometálica “Enrique Moles”; Universidad de Oviedo; c/ Julián Clavería 8. Oviedo 33006 Spain
| | - Carlos Valdés
- Departamento de Química Orgánica e Inorgánica; Instituto Universitario de Química Organometálica “Enrique Moles”; Universidad de Oviedo; c/ Julián Clavería 8. Oviedo 33006 Spain
| |
Collapse
|
16
|
Matera C, Dondio G, Braida D, Ponzoni L, De Amici M, Sala M, Dallanoce C. In vivo and in vitro ADMET profiling and in vivo pharmacodynamic investigations of a selective α7 nicotinic acetylcholine receptor agonist with a spirocyclic Δ 2 -isoxazoline molecular skeleton. Eur J Pharmacol 2018; 820:265-273. [DOI: 10.1016/j.ejphar.2017.12.047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 12/19/2017] [Accepted: 12/20/2017] [Indexed: 10/18/2022]
|