1
|
Li WJ, Chen JY, Zhu HX, Li YM, Xu Y. Synthesis of Asp-based lactam cyclic peptides using an amide-bonded diaminodiacid to prevent aspartimide formation. Org Biomol Chem 2024; 22:3584-3588. [PMID: 38623862 DOI: 10.1039/d4ob00472h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Asp-based lactam cyclic peptides are considered promising drug candidates. However, using Fmoc solid-phase peptide synthesis (Fmoc-SPPS) for these peptides also causes aspartimide formation, resulting in low yields or even failure to obtain the target peptides. Here, we developed a diaminodiacid containing an amide bond as a β-carboxyl-protecting group for Asp to avoid aspartimide formation. The practicality of this diaminodiacid has been illustrated by the synthesis of lactam cyclic peptide cyclo[Lys9,Asp13] KIIIA7-14 and 1Y.
Collapse
Affiliation(s)
- Wen-Jie Li
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China.
| | - Jun-You Chen
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China.
| | - Hui-Xia Zhu
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China.
| | - Yi-Ming Li
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China.
| | - Yang Xu
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
2
|
Buyanova M, Pei D. Targeting intracellular protein-protein interactions with macrocyclic peptides. Trends Pharmacol Sci 2022; 43:234-248. [PMID: 34911657 PMCID: PMC8840965 DOI: 10.1016/j.tips.2021.11.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/23/2021] [Accepted: 11/09/2021] [Indexed: 01/07/2023]
Abstract
Intracellular protein-protein interactions (PPIs) are challenging targets for traditional drug modalities. Macrocyclic peptides (MPs) prove highly effective PPI inhibitors in vitro and can be rapidly discovered against PPI targets by rational design or screening combinatorial libraries but are generally impermeable to the cell membrane. Recent advances in MP science and technology are allowing for the development of 'drug-like' MPs that potently and specifically modulate intracellular PPI targets in cell culture and animal models. In this review, we highlight recent progress in generating cell-permeable MPs that enter the mammalian cell by passive diffusion, endocytosis followed by endosomal escape, or as-yet unknown mechanisms.
Collapse
Affiliation(s)
- Marina Buyanova
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
| | - Dehua Pei
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
3
|
Moazzam A, Stanojlovic V, Hinterholzer A, Holzner C, Roschger C, Zierer A, Wiederstein M, Schubert M, Cabrele C. Backbone distortions in lactam-bridged helical peptides. J Pept Sci 2022; 28:e3400. [PMID: 34984761 PMCID: PMC9285742 DOI: 10.1002/psc.3400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/14/2021] [Accepted: 12/14/2021] [Indexed: 11/11/2022]
Abstract
Side‐chain‐to‐side‐chain cyclization is frequently used to stabilize the α‐helical conformation of short peptides. In a previous study, we incorporated a lactam bridge between the side chains of Lys‐i and Asp‐i+4 in the nonapeptide 1Y, cyclo‐(2,6)‐(Ac‐VKRLQDLQY‐NH2), an artificial ligand of the inhibitor of DNA binding and cell differentiation (ID) protein with antiproliferative activity on cancer cells. Herein, we show that only the cyclized five‐residue segment adopts a helical turn whereas the C‐terminal residues remain flexible. Moreover, we present nine 1Y analogs arising from different combinations of hydrophobic residues (leucine, isoleucine, norleucine, valine, and tyrosine) at positions 1, 4, 7, and 9. All cyclopeptides except one build a lactam‐bridged helical turn; however, residue‐4 reveals less helix character than the neighboring Arg‐3 and Gln‐5, especially with residue‐4 being isoleucine, valine, and tyrosine. Surprisingly, only two cyclopeptides exhibit helix propagation until the C‐terminus, whereas the others share a remarkable outward tilting of the backbone carbonyl of the lactam‐bridged Asp‐6 (>40° deviation from the orientation parallel to the helix axis), which prevents the formation of the H‐bond between Arg‐3 CO and residue‐7 NH: As a result, the propagation of the helix beyond the lactam‐bridged sequence becomes unfavorable. We conclude that, depending on the amino‐acid sequence, the lactam bridge between Lys‐i and Asp‐i+4 can stabilize a helical turn but deviations from the ideal helix geometry are possible: Indeed, besides the outward tilting of the backbone carbonyls, the residues per turn increased from 3.6 (typical of a regular α‐helix) to 4.2, suggesting a partial helix unwinding.
Collapse
Affiliation(s)
- Ali Moazzam
- Department of Biosciences, Paris Lodron University of Salzburg, Salzburg, Austria.,Current address: School of Chemistry, College of Science, University of Tehran, Tehran
| | - Vesna Stanojlovic
- Department of Biosciences, Paris Lodron University of Salzburg, Salzburg, Austria
| | - Arthur Hinterholzer
- Department of Biosciences, Paris Lodron University of Salzburg, Salzburg, Austria
| | - Christoph Holzner
- Department of Biosciences, Paris Lodron University of Salzburg, Salzburg, Austria
| | - Cornelia Roschger
- Department for Cardiac-, Vascular- and Thoracic Surgery, Johannes Kepler University Linz and Kepler University Hospital GmbH, Linz, Austria
| | - Andreas Zierer
- Department for Cardiac-, Vascular- and Thoracic Surgery, Johannes Kepler University Linz and Kepler University Hospital GmbH, Linz, Austria
| | - Markus Wiederstein
- Department of Biosciences, Paris Lodron University of Salzburg, Salzburg, Austria
| | - Mario Schubert
- Department of Biosciences, Paris Lodron University of Salzburg, Salzburg, Austria
| | - Chiara Cabrele
- Department of Biosciences, Paris Lodron University of Salzburg, Salzburg, Austria
| |
Collapse
|
4
|
Koch MS, Czemmel S, Lennartz F, Beyeler S, Rajaraman S, Przystal JM, Govindarajan P, Canjuga D, Neumann M, Rizzu P, Zwirner S, Hoetker MS, Zender L, Walter B, Tatagiba M, Raineteau O, Heutink P, Nahnsen S, Tabatabai G. Experimental glioma with high bHLH expression harbor increased replicative stress and are sensitive toward ATR inhibition. Neurooncol Adv 2020; 2:vdaa115. [PMID: 33134924 PMCID: PMC7592426 DOI: 10.1093/noajnl/vdaa115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background The overexpression of (basic)helix-loop-helix ((b)HLH) transcription factors (TFs) is frequent in malignant glioma. We investigated molecular effects upon disruption of the (b)HLH network by a dominant-negative variant of the E47 protein (dnE47). Our goal was to identify novel molecular subgroup-specific therapeutic strategies. Methods Glioma cell lines LN229, LNZ308, and GS-2/GS-9 were lentivirally transduced. Functional characterization included immunocytochemistry, immunoblots, cytotoxic, and clonogenic survival assays in vitro, and latency until neurological symptoms in vivo. Results of cap analysis gene expression and RNA-sequencing were further validated by immunoblot, flow cytometry, and functional assays in vitro. Results The induction of dnE47-RFP led to cytoplasmic sequestration of (b)HLH TFs and antiglioma activity in vitro and in vivo. Downstream molecular events, ie, alterations in transcription start site usage and in the transcriptome revealed enrichment of cancer-relevant pathways, particularly of the DNA damage response (DDR) pathway. Pharmacologic validation of this result using ataxia telangiectasia and Rad3 related (ATR) inhibition led to a significantly enhanced early and late apoptotic effect compared with temozolomide alone. Conclusions Gliomas overexpressing (b)HLH TFs are sensitive toward inhibition of the ATR kinase. The combination of ATR inhibition plus temozolomide or radiation therapy in this molecular subgroup are warranted.
Collapse
Affiliation(s)
- Marilin Sophia Koch
- Department of Neurology and Interdisciplinary Neuro-Oncology, Hertie Institute for Clinical Brain Research, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Stefan Czemmel
- Quantitative Biology Center (QBiC), Eberhard Karls University Tübingen, Tübingen, Germany
| | - Felix Lennartz
- Department of Neurology and Interdisciplinary Neuro-Oncology, Hertie Institute for Clinical Brain Research, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Sarah Beyeler
- Department of Neurology and Interdisciplinary Neuro-Oncology, Hertie Institute for Clinical Brain Research, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany.,German Translational Cancer Consortium (DKTK), DKFZ partner site Tübingen, Tübingen, Germany
| | - Srinath Rajaraman
- Department of Neurology and Interdisciplinary Neuro-Oncology, Hertie Institute for Clinical Brain Research, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Justyna Magdalena Przystal
- Department of Neurology and Interdisciplinary Neuro-Oncology, Hertie Institute for Clinical Brain Research, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany.,German Translational Cancer Consortium (DKTK), DKFZ partner site Tübingen, Tübingen, Germany
| | - Parameswari Govindarajan
- Department of Neurology and Interdisciplinary Neuro-Oncology, Hertie Institute for Clinical Brain Research, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Denis Canjuga
- Department of Neurology and Interdisciplinary Neuro-Oncology, Hertie Institute for Clinical Brain Research, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Manfred Neumann
- Department of Neurology and Interdisciplinary Neuro-Oncology, Hertie Institute for Clinical Brain Research, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Patrizia Rizzu
- German Center for Neurodegenerative Diseases (DZNE), German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Stefan Zwirner
- Department of Internal Medicine VIII, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Michael Stefan Hoetker
- Department of Internal Medicine I, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Lars Zender
- Department of Internal Medicine VIII, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany.,German Translational Cancer Consortium (DKTK), DKFZ partner site Tübingen, Tübingen, Germany
| | - Bianca Walter
- Department of Neurology and Interdisciplinary Neuro-Oncology, Hertie Institute for Clinical Brain Research, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany.,German Translational Cancer Consortium (DKTK), DKFZ partner site Tübingen, Tübingen, Germany
| | - Marcos Tatagiba
- Department of Neurosurgery, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Olivier Raineteau
- University of Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| | - Peter Heutink
- German Center for Neurodegenerative Diseases (DZNE), German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Sven Nahnsen
- Quantitative Biology Center (QBiC), Eberhard Karls University Tübingen, Tübingen, Germany
| | - Ghazaleh Tabatabai
- Department of Neurology and Interdisciplinary Neuro-Oncology, Hertie Institute for Clinical Brain Research, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany.,German Translational Cancer Consortium (DKTK), DKFZ partner site Tübingen, Tübingen, Germany
| |
Collapse
|
5
|
Hosoya Y, Nojo W, Kii I, Suzuki T, Imanishi M, Ohkanda J. Identification of synthetic inhibitors for the DNA binding of intrinsically disordered circadian clock transcription factors. Chem Commun (Camb) 2020; 56:11203-11206. [PMID: 32969426 DOI: 10.1039/d0cc04861e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Essential components of the human circadian clock, BMAL1 and CLOCK, which are intrinsically disordered transcription factors, were expressed and subjected to a fluorescent in vitro binding assay using an E-box DNA fragment. Screening of a chemical library identified 5,8-quinoxalinedione (1), which was found to inhibit binding of the heterodimer BMAL1/CLOCK to E-box at low micromolar concentrations.
Collapse
Affiliation(s)
- Yusuke Hosoya
- Academic Assembly, Institute of Agriculture, Shinshu University, 8304 Minami-Minowa, Kami-Ina, Nagano 399-4598, Japan.
| | - Wataru Nojo
- Department of Chemistry, Faculty of Science, Hokkaido University, N10 W8, North-Ward, Sapporo 060-0810, Japan
| | - Isao Kii
- Academic Assembly, Institute of Agriculture, Shinshu University, 8304 Minami-Minowa, Kami-Ina, Nagano 399-4598, Japan.
| | - Takanori Suzuki
- Department of Chemistry, Faculty of Science, Hokkaido University, N10 W8, North-Ward, Sapporo 060-0810, Japan
| | - Miki Imanishi
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Junko Ohkanda
- Academic Assembly, Institute of Agriculture, Shinshu University, 8304 Minami-Minowa, Kami-Ina, Nagano 399-4598, Japan.
| |
Collapse
|
6
|
Valeur E, Jimonet P. New Modalities, Technologies, and Partnerships in Probe and Lead Generation: Enabling a Mode-of-Action Centric Paradigm. J Med Chem 2018; 61:9004-9029. [DOI: 10.1021/acs.jmedchem.8b00378] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Eric Valeur
- Medicinal Chemistry, Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal 431 83, Sweden
| | - Patrick Jimonet
- External Innovation Drug Discovery, Global Business Development & Licensing, Sanofi, 13 quai Jules Guesde, 94400 Vitry-sur-Seine, France
| |
Collapse
|
7
|
Roschger C, Verwanger T, Krammer B, Cabrele C. Reduction of cancer cell viability by synergistic combination of photodynamic treatment with the inhibition of the Id protein family. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 178:521-529. [PMID: 29245122 DOI: 10.1016/j.jphotobiol.2017.11.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/25/2017] [Accepted: 11/29/2017] [Indexed: 12/15/2022]
Abstract
The inhibitor of DNA binding and cell differentiation (Id) proteins are dominant negative regulators of the helix-loop-helix transcription factor family and play a key role during development as well as in vascular disorders and cancer. In fact, impairing the Id-protein activity in cancer cells reduces cell growth and even chemoresistance. Recently, we have shown that a synthetic Id-protein ligand (1Y) consisting of a cyclic nonapeptide can reduce the viability of the two breast cancer cell lines MCF-7 and T47D and of the bladder cancer cells T24 to about 50% at concentrations ≥100μM. Moreover, the cyclopeptide displays both proapoptotic and antiproliferative effects on MCF-7 cells. Herein, we show that the cyclopeptide does not induce cell death at the dose of 5μΜ, but it still inhibits MCF-7 and T24 cell proliferation, which correlates with an increased protein level of the cell-cycle regulator p27Kip1. Furthermore, 1Y-pretreated MCF-7, T47D, and T24 cells are more susceptible than untreated cells to the phototoxic effects of the three photosensitizers meta-tetra(hydroxyphenyl)chlorin, porfimer sodium, and hypericin, which are applied in photodynamic therapy (PDT). The combination of the Id-protein ligand with each of the light-activated photosensitizers shows synergistic effects on the reduction of cell viability. In conclusion, an Id-protein ligand with moderate cancer cell killing activity at concentrations ≥100μM can be applied at a 20-fold lower and barely toxic dose to raise the sensitivity of cancer cells towards phototoxicity associated with photodynamic treatment. This suggests the potential benefit of targeting the Id proteins in combined drug approaches for cancer therapy.
Collapse
Affiliation(s)
- Cornelia Roschger
- Department of Molecular Biology, University of Salzburg, Billrothstrasse 11, 5020 Salzburg, Austria
| | - Thomas Verwanger
- Department of Molecular Biology, University of Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
| | - Barbara Krammer
- Department of Molecular Biology, University of Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
| | - Chiara Cabrele
- Department of Molecular Biology, University of Salzburg, Billrothstrasse 11, 5020 Salzburg, Austria.
| |
Collapse
|