1
|
Ghani MU, Shi J, Du Y, Zhong L, Cui H. A comprehensive review on the dynamics of protein kinase CK2 in cancer development and optimizing therapeutic strategies. Int J Biol Macromol 2024; 280:135814. [PMID: 39306165 DOI: 10.1016/j.ijbiomac.2024.135814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 10/13/2024]
Abstract
Protein kinase 2 (CK2) is an enzyme ubiquitously present and exhibits extensive kinase activity. It has been strongly linked to tumor progression through the abnormal phosphorylation of key proteins. Research has consistently demonstrated that CK2 is deregulated in various cancer types, with enhanced protein expression and nuclear distribution in tumor cells. CK2 plays a crucial role in a complex network that promotes cell infiltration, migration, proliferation, apoptosis, and cancer progression through multiple pathways, including PI3K/AKT, JAK2/STAT3, ATF4/CDKN1, and HSP90/Cdc37. In addition to its role in cancer growth, there is mounting evidence that CK2 may also affect the immunological dynamics of cancer by altering immune cell functions within the tumor microenvironment, thus facilitating tumor immune evasion. Recent research has increasingly focused on CK2, recognizing it as a therapeutic objective for oncological interventions. This review will critically examine the structure and signaling pathways of CK2, highlighting the significance of further research aimed at enhancing our understanding of the CK2 machinery. Finally, we conclude by refining therapeutic options, notably transitioning from non-pharmacological techniques to strategic CK2 inhibitor use. This development shortens the path to the desired outcome, establishing a pioneering standard in cancer therapy.
Collapse
Affiliation(s)
- Muhammad Usman Ghani
- Medical Research Institute, Southwest University, Chongqing 400715, China; State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Junbo Shi
- Medical Research Institute, Southwest University, Chongqing 400715, China; State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Yi Du
- Medical Research Institute, Southwest University, Chongqing 400715, China; State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Liping Zhong
- State Key Laboratory of Targeting Oncology, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Hongjuan Cui
- Medical Research Institute, Southwest University, Chongqing 400715, China; State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China; Jinfeng Laboratory, Chongqing 401329, China.
| |
Collapse
|
2
|
Lavogina D, Krõlov MK, Vellama H, Modhukur V, Di Nisio V, Lust H, Eskla KL, Salumets A, Jaal J. Inhibition of epigenetic and cell cycle-related targets in glioblastoma cell lines reveals that onametostat reduces proliferation and viability in both normoxic and hypoxic conditions. Sci Rep 2024; 14:4303. [PMID: 38383756 PMCID: PMC10881536 DOI: 10.1038/s41598-024-54707-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 02/15/2024] [Indexed: 02/23/2024] Open
Abstract
The choice of targeted therapies for treatment of glioblastoma patients is currently limited, and most glioblastoma patients die from the disease recurrence. Thus, systematic studies in simplified model systems are required to pinpoint the choice of targets for further exploration in clinical settings. Here, we report screening of 5 compounds targeting epigenetic writers or erasers and 6 compounds targeting cell cycle-regulating protein kinases against 3 glioblastoma cell lines following incubation under normoxic or hypoxic conditions. The viability/proliferation assay indicated that PRMT5 inhibitor onametostat was endowed with high potency under both normoxic and hypoxic conditions in cell lines that are strongly MGMT-positive (T98-G), weakly MGMT-positive (U-251 MG), or MGMT-negative (U-87 MG). In U-251 MG and U-87 MG cells, onametostat also affected the spheroid formation at concentrations lower than the currently used chemotherapeutic drug lomustine. In T98-G cell line, treatment with onametostat led to dramatic changes in the transcriptome profile by inducing the cell cycle arrest, suppressing RNA splicing, and down-regulating several major glioblastoma cell survival pathways. Further validation by immunostaining in three cell lines confirmed that onametostat affects cell cycle and causes reduction in nucleolar protein levels. In this way, inhibition of epigenetic targets might represent a viable strategy for glioblastoma treatment even in the case of decreased chemo- and radiation sensitivity, although further studies in clinically more relevant models are required.
Collapse
Affiliation(s)
- Darja Lavogina
- Institute of Clinical Medicine, University of Tartu, L. Puusepa 8, 50406, Tartu, Estonia.
- Chair of Bioorganic Chemistry, Institute of Chemistry, University of Tartu, Tartu, Estonia.
- Competence Centre on Health Technologies, Tartu, Estonia.
| | - Mattias Kaspar Krõlov
- Chair of Bioorganic Chemistry, Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Hans Vellama
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
- Centre of Excellence for Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Vijayachitra Modhukur
- Competence Centre on Health Technologies, Tartu, Estonia
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Valentina Di Nisio
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Huddinge, Stockholm, Sweden
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Helen Lust
- Institute of Clinical Medicine, University of Tartu, L. Puusepa 8, 50406, Tartu, Estonia
| | - Kattri-Liis Eskla
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
- Centre of Excellence for Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Andres Salumets
- Competence Centre on Health Technologies, Tartu, Estonia
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Huddinge, Stockholm, Sweden
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Jana Jaal
- Institute of Clinical Medicine, University of Tartu, L. Puusepa 8, 50406, Tartu, Estonia.
- Department of Radiotherapy and Oncological Therapy, Tartu University Hospital, Tartu, Estonia.
| |
Collapse
|
3
|
Lavogina D, Nasirova N, Sõrmus T, Tähtjärv T, Enkvist E, Viht K, Haljasorg T, Herodes K, Jaal J, Uri A. Conjugates of adenosine mimetics and arginine-rich peptides serve as inhibitors and fluorescent probes but not as long-lifetime photoluminescent probes for protein arginine methyltransferases. J Pept Sci 2023; 29:e3456. [PMID: 36208424 DOI: 10.1002/psc.3456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022]
Abstract
The conjugates of an adenosine mimetic and oligo-l-arginine or oligo-d-arginine (ARCs) were initially designed in our research group as inhibitors and photoluminescent probes targeting basophilic protein kinases. Here, we explored a panel of ARCs and their fluorescent derivatives in biochemical assays with members of the protein arginine methyltransferase (PRMT) family, focusing specifically on PRMT1. In the binding/displacement assay with detection of fluorescence anisotropy, we found that ARCs and arginine-rich peptides could serve as high-affinity ligands for PRMT1, whereas the equilibrium dissociation constant values depended dramatically on the number of arginine residues within the compounds. The fluorescently labeled probe ARC-1081 was displaced from its complex with PRMT1 by both S-adenosyl-l-methionine (SAM) and S-adenosyl-l-homocysteine (SAH), indicating binding of the adenosine mimetic of ARCs to the SAM/SAH-binding site within PRMT1. The ARCs that had previously shown microsecond-lifetime photoluminescence in complex with protein kinases did not feature such property in complex with PRMT1, demonstrating the selectivity of the time-resolved readout format. When tested against a panel of PRMT family members in single-dose inhibition experiments, a micromolar concentration of ARC-902 was required for the inhibition of PRMT1 and PRMT7. Overall, our results suggest that the compounds containing multiple arginine residues (including the well-known cell-penetrating peptides) are likely to inhibit PRMT and thus interfere with the epigenetic modification status in complex biological systems, which should be taken into consideration during interpretation of the experimental data.
Collapse
Affiliation(s)
- Darja Lavogina
- Institute of Chemistry, University of Tartu, Tartu, Estonia.,Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Naila Nasirova
- Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Tanel Sõrmus
- Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Taavo Tähtjärv
- Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Erki Enkvist
- Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Kaido Viht
- Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Tõiv Haljasorg
- Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Koit Herodes
- Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Jana Jaal
- Institute of Clinical Medicine, University of Tartu, Tartu, Estonia.,Department of Radiotherapy and Oncological Therapy, Tartu University Hospital, Tartu, Estonia
| | - Asko Uri
- Institute of Chemistry, University of Tartu, Tartu, Estonia
| |
Collapse
|
4
|
Trembley JH, Kren BT, Afzal M, Scaria GA, Klein MA, Ahmed K. Protein kinase CK2 – diverse roles in cancer cell biology and therapeutic promise. Mol Cell Biochem 2022; 478:899-926. [PMID: 36114992 PMCID: PMC9483426 DOI: 10.1007/s11010-022-04558-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/01/2022] [Indexed: 11/29/2022]
Abstract
The association of protein kinase CK2 (formerly casein kinase II or 2) with cell growth and proliferation in cells was apparent at early stages of its investigation. A cancer-specific role for CK2 remained unclear until it was determined that CK2 was also a potent suppressor of cell death (apoptosis); the latter characteristic differentiated its function in normal versus malignant cells because dysregulation of both cell growth and cell death is a universal feature of cancer cells. Over time, it became evident that CK2 exerts its influence on a diverse range of cell functions in normal as well as in transformed cells. As such, CK2 and its substrates are localized in various compartments of the cell. The dysregulation of CK2 is documented in a wide range of malignancies; notably, by increased CK2 protein and activity levels with relatively moderate change in its RNA abundance. High levels of CK2 are associated with poor prognosis in multiple cancer types, and CK2 is a target for active research and testing for cancer therapy. Aspects of CK2 cellular roles and targeting in cancer are discussed in the present review, with focus on nuclear and mitochondrial functions and prostate, breast and head and neck malignancies.
Collapse
Affiliation(s)
- Janeen H Trembley
- Research Service, Minneapolis VA Health Care System, Minneapolis, MN, 55417, USA.
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, 55455, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA.
| | - Betsy T Kren
- Research Service, Minneapolis VA Health Care System, Minneapolis, MN, 55417, USA
| | - Muhammad Afzal
- Department of Biochemistry, Riphah International University, Islamabad, Pakistan
| | - George A Scaria
- Hematology/Oncology Section, Primary Care Service Line, Minneapolis VA Health Care System, Minneapolis, MN, 55417, USA
| | - Mark A Klein
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA
- Hematology/Oncology Section, Primary Care Service Line, Minneapolis VA Health Care System, Minneapolis, MN, 55417, USA
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Khalil Ahmed
- Research Service, Minneapolis VA Health Care System, Minneapolis, MN, 55417, USA.
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, 55455, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA.
- Department of Urology, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
5
|
Nipun VB, Amin KA. Recent Advances in Protein Kinase CK2, a Potential Therapeutic Target in Cancer. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022; 48:919-931. [DOI: 10.1134/s1068162022050144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- V. B. Nipun
- Cancer Research Center, Shantou University Medical Collage, Shantou, Guangdong, 515041, PR China
- Department of Chemistry, Faculty of Science, University of Imam Abdulrahman Bin Faisal university, P.O. Box 1982, Dammam, 31441, Saudi Arabia
| | - K. A. Amin
- Department of Chemistry, Faculty of Science, University of Imam Abdulrahman Bin Faisal university, P.O. Box 1982, Dammam, 31441, Saudi Arabia
- Basic and Applied Scientific Research Center, Imam Abdulrahman Bin Faisal university, P.O. Box 1982, Dammam, 31441, Saudi Arabia
| |
Collapse
|
6
|
Lavogina D, Lust H, Tahk MJ, Laasfeld T, Vellama H, Nasirova N, Vardja M, Eskla KL, Salumets A, Rinken A, Jaal J. Revisiting the Resazurin-Based Sensing of Cellular Viability: Widening the Application Horizon. BIOSENSORS 2022; 12:bios12040196. [PMID: 35448256 PMCID: PMC9032648 DOI: 10.3390/bios12040196] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/20/2022] [Accepted: 03/24/2022] [Indexed: 05/08/2023]
Abstract
Since 1991, the NAD(P)H-aided conversion of resazurin to fluorescent resorufin has been widely used to measure viability based on the metabolic activity in mammalian cell culture and primary cells. However, different research groups have used divergent assay protocols, scarcely reporting the systematic optimization of the assay. Here, we perform extensive studies to fine-tune the experimental protocols utilizing resazurin-based viability sensing. Specifically, we focus on (A) optimization of the assay dynamic range in individual cell lines for the correct measurement of cytostatic and cytotoxic properties of the compounds; (B) dependence of the dynamic range on the physical quantity detected (fluorescence intensity versus change of absorbance spectrum); (C) calibration of the assay for the correct interpretation of data measured in hypoxic conditions; and (D) possibilities for combining the resazurin assay with other methods including measurement of necrosis and apoptosis. We also demonstrate the enhanced precision and flexibility of the resazurin-based assay regarding the readout format and kinetic measurement mode as compared to the widely used analogous assay which utilizes tetrazolium dye MTT. The discussed assay optimization guidelines provide useful instructions for the beginners in the field and for the experienced scientists exploring new ways for measurement of cellular viability using resazurin.
Collapse
Affiliation(s)
- Darja Lavogina
- Institute of Clinical Medicine, University of Tartu, 50406 Tartu, Estonia; (H.L.); (A.S.); (J.J.)
- Institute of Chemistry, University of Tartu, 50411 Tartu, Estonia; (M.-J.T.); (T.L.); (N.N.); (A.R.)
- Competence Centre on Health Technologies, 50411 Tartu, Estonia
- Correspondence: ; Tel.: +372-737-5296
| | - Helen Lust
- Institute of Clinical Medicine, University of Tartu, 50406 Tartu, Estonia; (H.L.); (A.S.); (J.J.)
| | - Maris-Johanna Tahk
- Institute of Chemistry, University of Tartu, 50411 Tartu, Estonia; (M.-J.T.); (T.L.); (N.N.); (A.R.)
| | - Tõnis Laasfeld
- Institute of Chemistry, University of Tartu, 50411 Tartu, Estonia; (M.-J.T.); (T.L.); (N.N.); (A.R.)
- Department of Computer Science, University of Tartu, 51009 Tartu, Estonia
| | - Hans Vellama
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia; (H.V.); (K.-L.E.)
- Centre of Excellence for Genomics and Translational Medicine, University of Tartu, 51010 Tartu, Estonia
| | - Naila Nasirova
- Institute of Chemistry, University of Tartu, 50411 Tartu, Estonia; (M.-J.T.); (T.L.); (N.N.); (A.R.)
| | - Markus Vardja
- Department of Radiotherapy and Oncological Therapy, Tartu University Hospital, 50406 Tartu, Estonia;
| | - Kattri-Liis Eskla
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia; (H.V.); (K.-L.E.)
- Centre of Excellence for Genomics and Translational Medicine, University of Tartu, 51010 Tartu, Estonia
| | - Andres Salumets
- Institute of Clinical Medicine, University of Tartu, 50406 Tartu, Estonia; (H.L.); (A.S.); (J.J.)
- Competence Centre on Health Technologies, 50411 Tartu, Estonia
- Division of Obstetrics and Gynaecology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, 14186 Stockholm, Sweden
| | - Ago Rinken
- Institute of Chemistry, University of Tartu, 50411 Tartu, Estonia; (M.-J.T.); (T.L.); (N.N.); (A.R.)
| | - Jana Jaal
- Institute of Clinical Medicine, University of Tartu, 50406 Tartu, Estonia; (H.L.); (A.S.); (J.J.)
- Department of Radiotherapy and Oncological Therapy, Tartu University Hospital, 50406 Tartu, Estonia;
| |
Collapse
|
7
|
Birus R, El-Awaad E, Ballentin L, Alchab F, Aichele D, Ettouati L, Götz C, Le Borgne M, Jose J. 4,5,7-Trisubstituted indeno[1,2-b]indole inhibits CK2 activity in tumor cells equivalent to CX-4945 and shows strong anti-migratory effects. FEBS Open Bio 2021; 12:394-411. [PMID: 34873879 PMCID: PMC8804612 DOI: 10.1002/2211-5463.13346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/22/2021] [Accepted: 12/06/2021] [Indexed: 11/07/2022] Open
Abstract
Highly pleiotropic and constitutively active protein kinase CK2 is a key target in cancer therapy, but only one small-molecule inhibitor has reached clinical trials-CX-4945. In this study, we present the indeno[1,2-b]indole derivative 5-isopropyl-4-methoxy-7-methyl-5,6,7,8-tetrahydroindeno[1,2-b]indole-9,10-dione (5a-2) that decreased the intracellular CK2 activity in A431, A549, and LNCaP tumor cell lines analogous to CX-4945 (> 75% inhibition at 20 µm) and similarly blocked CK2-specific Akt phosphorylation in LNCaP cells. Cellular uptake analysis demonstrated higher intracellular concentrations of 5a-2 (408.3 nm) compared with CX-4945 (119.3 nm). This finding clarifies the comparable effects of both compounds on the intracellular CK2 activity despite their different inhibitory potency in vitro [IC50 = 25 nm (5a-2) and 3.7 nm (CX-4945)]. Examination of the effects of both CK2 inhibitors on cancer cells using live-cell imaging revealed notable differences. Whereas CX-4945 showed a stronger pro-apoptotic effect on tumor cells, 5a-2 was more effective in inhibiting tumor cell migration. Our results showed that 49% of intracellular CX-4945 was localized in the nuclear fraction, whereas 71% of 5a-2 was detectable in the cytoplasm. The different subcellular distribution, and thus the site of CK2 inhibition, provides a possible explanation for the different cellular effects. Our study indicates that investigating CK2 inhibition-mediated cellular effects in relation to the subcellular sites of CK2 inhibition may help to improve our understanding of the preferential roles of CK2 within different cancer cell compartments.
Collapse
Affiliation(s)
- Robin Birus
- Institute of Pharmaceutical and Medicinal Chemistry, Westfälische Wilhelms-Universtität Münster, Germany
| | - Ehab El-Awaad
- Institute of Pharmaceutical and Medicinal Chemistry, Westfälische Wilhelms-Universtität Münster, Germany.,Department of Pharmacology, Faculty of Medicine, Assiut University, Egypt
| | - Laurens Ballentin
- Institute of Pharmaceutical and Medicinal Chemistry, Westfälische Wilhelms-Universtität Münster, Germany
| | - Faten Alchab
- EEA 4446 Bioactive Molecules and Medicinal Chemistry, Faculté de Pharmacie-ISPB, SFR Santé Lyon-Est CNRS UMS3453-INSERM US7, Université Claude Bernard Lyon 1, Université de Lyon, France.,Faculty of Pharmacy, Manara University, Latakia, Syria
| | - Dagmar Aichele
- Institute of Pharmaceutical and Medicinal Chemistry, Westfälische Wilhelms-Universtität Münster, Germany
| | - Laurent Ettouati
- CNRS UMR 5246 Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS), Faculté de Pharmacie, ISPB, Université Lyon 1, Université de Lyon, France
| | - Claudia Götz
- Medical Biochemistry and Molecular Biology, Saarland University, Germany
| | - Marc Le Borgne
- Small Molecules for Biological Targets Team, Centre de recherche en cancérologie de Lyon, Centre Léon Bérard, CNRS 5286, INSERM 1052, Université Claude Bernard Lyon 1, Université de Lyon, France
| | - Joachim Jose
- Institute of Pharmaceutical and Medicinal Chemistry, Westfälische Wilhelms-Universtität Münster, Germany
| |
Collapse
|
8
|
Lavogina D, Laasfeld T, Vardja M, Lust H, Jaal J. Viability fingerprint of glioblastoma cell lines: roles of mitotic, proliferative, and epigenetic targets. Sci Rep 2021; 11:20338. [PMID: 34645858 PMCID: PMC8514540 DOI: 10.1038/s41598-021-99630-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/24/2021] [Indexed: 01/03/2023] Open
Abstract
Despite the use of multimodal treatment combinations, the prognosis of glioblastoma (GB) is still poor. To prevent rapid tumor recurrence, targeted strategies for the treatment of GB are widely sought. Here, we compared the efficacy of focused modulation of a set of signaling pathways in two GB cell lines, U-251 MG and T98-G, using a panel of thirteen compounds targeting cell cycle progression, proliferation, epigenetic modifications, and DNA repair mechanism. In parallel, we tested combinations of these compounds with temozolomide and lomustine, the standard chemotherapy agents used in GB treatment. Two major trends were found: within individual compounds, the lowest IC50 values were exhibited by the Aurora kinase inhibitors, whereas in the case of mixtures, the addition of DNA methyltransferase 1 inhibitor azacytidine to lomustine proved the most beneficial. The efficacy of cell cycle-targeting compounds was further augmented by combination with radiation therapy using two different treatment regimes. The potency of azacytidine and lomustine mixtures was validated using a unique assay pipeline that utilizes automated imaging and machine learning-based data analysis algorithm for assessment of cell number and DNA damage extent. Based on our results, the combination of azacytidine and lomustine should be tested in GB clinical trials.
Collapse
Affiliation(s)
- Darja Lavogina
- grid.10939.320000 0001 0943 7661Institute of Clinical Medicine, University of Tartu, L. Puusepa 8, 50406 Tartu, Estonia ,grid.10939.320000 0001 0943 7661Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Tõnis Laasfeld
- grid.10939.320000 0001 0943 7661Institute of Chemistry, University of Tartu, Tartu, Estonia ,grid.10939.320000 0001 0943 7661Department of Computer Science, University of Tartu, Tartu, Estonia
| | - Markus Vardja
- grid.412269.a0000 0001 0585 7044Department of Radiotherapy and Oncological Therapy, Tartu University Hospital, Tartu, Estonia
| | - Helen Lust
- grid.10939.320000 0001 0943 7661Institute of Clinical Medicine, University of Tartu, L. Puusepa 8, 50406 Tartu, Estonia
| | - Jana Jaal
- grid.10939.320000 0001 0943 7661Institute of Clinical Medicine, University of Tartu, L. Puusepa 8, 50406 Tartu, Estonia ,grid.412269.a0000 0001 0585 7044Department of Radiotherapy and Oncological Therapy, Tartu University Hospital, Tartu, Estonia
| |
Collapse
|
9
|
Chiva-Blanch G, Peña E, Cubedo J, García-Arguinzonis M, Pané A, Gil PA, Perez A, Ortega E, Padró T, Badimon L. Molecular mapping of platelet hyperreactivity in diabetes: the stress proteins complex HSPA8/Hsp90/CSK2α and platelet aggregation in diabetic and normal platelets. Transl Res 2021; 235:1-14. [PMID: 33887528 DOI: 10.1016/j.trsl.2021.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 11/15/2022]
Abstract
The molecular understanding of the pathophysiological changes elicited by diabetes in platelets may help in further elucidating the involvement of this pseudo-cell in the increased risk of developing cardiovascular disease and thrombosis in diabetic subjects. We aimed to investigate the differential characteristics of platelets from diabetic patients and nondiabetic controls to unveil the molecular mechanisms behind the increased platelet reactivity in diabetes. We compared platelets from diabetic and control subjects by 2 dimensional-electrophoresis followed by mass spectrometry. Changes in selected differential proteins were validated by immunoprecipitation assays and western blot. Platelet aggregation was measured by light transmittance aggregometry induced by collagen and ADP, and dynamic coagulation analysis of whole blood was measured by thromboelastometry. We observed significant differences in proteins related to platelet aggregation, cell migration, and cell homeostasis. Subjects with diabetes showed higher platelet aggregation and thrombogenicity and higher contents of the stress-related protein complex HSPA8/Hsp90/CSK2α than nondiabetic subjects. Changes in the chaperones HSPA8 and Hsp90, and in CSK2α protein contents correlated with changes in platelet aggregation and blood coagulation activity. In conclusion, the complex HSPA8/Hsp90/CSK2α is involved in diabetes-related platelet hyperreactivity. The role of the HSPA8/Hsp90/CSK2α complex may become a molecular target for the development of future preventive and therapeutic strategies for platelet dysfunction associated with diabetes and its complications.
Collapse
Affiliation(s)
- Gemma Chiva-Blanch
- Cardiovascular Program ICCC, Institut de Recerca Hospital Santa Creu i Sant Pau-IIB Sant Pau, Barcelona, Spain; Endocrinology and Nutrition Department, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Hospital Clínic, Barcelona, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| | - Esther Peña
- Cardiovascular Program ICCC, Institut de Recerca Hospital Santa Creu i Sant Pau-IIB Sant Pau, Barcelona, Spain; Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Judit Cubedo
- Cardiovascular Program ICCC, Institut de Recerca Hospital Santa Creu i Sant Pau-IIB Sant Pau, Barcelona, Spain
| | - Maisa García-Arguinzonis
- Cardiovascular Program ICCC, Institut de Recerca Hospital Santa Creu i Sant Pau-IIB Sant Pau, Barcelona, Spain
| | - Adriana Pané
- Endocrinology and Nutrition Department, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Hospital Clínic, Barcelona, Spain
| | - Pedro A Gil
- Endocrinology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Antonio Perez
- Endocrinology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Emilio Ortega
- Endocrinology and Nutrition Department, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Hospital Clínic, Barcelona, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Teresa Padró
- Cardiovascular Program ICCC, Institut de Recerca Hospital Santa Creu i Sant Pau-IIB Sant Pau, Barcelona, Spain; Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Lina Badimon
- Cardiovascular Program ICCC, Institut de Recerca Hospital Santa Creu i Sant Pau-IIB Sant Pau, Barcelona, Spain; Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| |
Collapse
|
10
|
Lindenblatt D, Applegate V, Nickelsen A, Klußmann M, Neundorf I, Götz C, Jose J, Niefind K. Molecular Plasticity of Crystalline CK2α' Leads to KN2, a Bivalent Inhibitor of Protein Kinase CK2 with Extraordinary Selectivity. J Med Chem 2021; 65:1302-1312. [PMID: 34323071 DOI: 10.1021/acs.jmedchem.1c00063] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
CK2α and CK2α' are paralogous catalytic subunits of CK2, which belongs to the eukaryotic protein kinases. CK2 promotes tumorigenesis and the spread of pathogenic viruses like SARS-CoV-2 and is thus an attractive drug target. Efforts to develop selective CK2 inhibitors binding offside the ATP site had disclosed the αD pocket in CK2α; its occupation requires large conformational adaptations of the helix αD. As shown here, the αD pocket is accessible also in CK2α', where the necessary structural plasticity can be triggered with suitable ligands even in the crystalline state. A CK2α' structure with an ATP site and an αD pocket ligand guided the design of the bivalent CK2 inhibitor KN2. It binds to CK2 with low nanomolar affinity, is cell-permeable, and suppresses the intracellular phosphorylation of typical CK2 substrates. Kinase profiling revealed a high selectivity of KN2 for CK2 and emphasizes the selectivity-promoting potential of the αD pocket.
Collapse
Affiliation(s)
- Dirk Lindenblatt
- Department für Chemie, Institut für Biochemie, Universität zu Köln, Zülpicher Str. 47, D-50674 Köln, Germany
| | - Violetta Applegate
- Department für Chemie, Institut für Biochemie, Universität zu Köln, Zülpicher Str. 47, D-50674 Köln, Germany
| | - Anna Nickelsen
- Institut für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster, PharmaCampus, Corrensstr. 48, D-48149 Münster, Germany
| | - Merlin Klußmann
- Department für Chemie, Institut für Biochemie, Universität zu Köln, Zülpicher Str. 47, D-50674 Köln, Germany
| | - Ines Neundorf
- Department für Chemie, Institut für Biochemie, Universität zu Köln, Zülpicher Str. 47, D-50674 Köln, Germany
| | - Claudia Götz
- Medizinische Biochemie und Molekularbiologie, Universität des Saarlandes, Kirrberger Str., Geb. 44, D-66421 Homburg/Saar, Germany
| | - Joachim Jose
- Institut für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster, PharmaCampus, Corrensstr. 48, D-48149 Münster, Germany
| | - Karsten Niefind
- Department für Chemie, Institut für Biochemie, Universität zu Köln, Zülpicher Str. 47, D-50674 Köln, Germany
| |
Collapse
|
11
|
Crystal Structure-Guided Design of Bisubstrate Inhibitors and Photoluminescent Probes for Protein Kinases of the PIM Family. Molecules 2021; 26:molecules26144353. [PMID: 34299628 PMCID: PMC8307404 DOI: 10.3390/molecules26144353] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/09/2021] [Accepted: 07/14/2021] [Indexed: 11/23/2022] Open
Abstract
We performed an X-ray crystallographic study of complexes of protein kinase PIM-1 with three inhibitors comprising an adenosine mimetic moiety, a linker, and a peptide-mimetic (d-Arg)6 fragment. Guided by the structural models, simplified chemical structures with a reduced number of polar groups and chiral centers were designed. The developed inhibitors retained low-nanomolar potency and possessed remarkable selectivity toward the PIM kinases. The new inhibitors were derivatized with biotin or fluorescent dye Cy5 and then applied for the detection of PIM kinases in biochemical solutions and in complex biological samples. The sandwich assay utilizing a PIM-2-selective detection antibody featured a low limit of quantification (44 pg of active recombinant PIM-2). Fluorescent probes were efficiently taken up by U2OS cells and showed a high extent of co-localization with PIM-1 fused with a fluorescent protein. Overall, the developed inhibitors and derivatives represent versatile chemical tools for studying PIM function in cellular systems in normal and disease physiology.
Collapse
|
12
|
El-Awaad E, Birus R, Marminon C, Bouaziz Z, Ballentin L, Aichele D, Le Borgne M, Jose J. Broad-Spectrum Anticancer Activity and Pharmacokinetic Properties of a Prenyloxy-Substituted Indeno[1,2- b]indole Derivative, Discovered as CK2 Inhibitor. Pharmaceuticals (Basel) 2021; 14:ph14060542. [PMID: 34198928 PMCID: PMC8226678 DOI: 10.3390/ph14060542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/28/2021] [Accepted: 06/02/2021] [Indexed: 12/27/2022] Open
Abstract
Protein kinase CK2 is involved in regulating cellular processes, such as cell cycle, proliferation, migration, and apoptosis, making it an attractive anticancer target. We previously described a prenyloxy-substituted indeno[1,2-b]indole (5-isopropyl-4-(3-methylbut-2-enyloxy)-5,6,7,8-tetrahydroindeno[1,2-b]indole-9,10-dione (4p)) as a very potent inhibitor of CK2 holoenzyme (IC50 = 25 nM). Here, we report the broad-spectrum anticancer activity of 4p and provide substantial progress on its pharmacokinetic properties. Using a cell-based CK2 activity assay and live-cell imaging of cultured A431, A549, and LNCaP cancer cell lines, cellular CK2 target engagement was shown as well as strong antiproliferative, anti-migratory and apoptosis-inducing effects of 4p. Furthermore, evidence was found for the ability of 4p to disrupt A549 spheroid cohesion. A series of LC-MS/MS experiments revealed high and rapid cellular uptake (intracellular concentration is approximately 5 µM after 1 h incubation) and low metabolic stability of 4p. These results point to the value of 4p as a potent CK2 inhibitor with promising anticancer activities and should trigger future medicinal chemistry efforts to improve the drug-like properties of this compound.
Collapse
Affiliation(s)
- Ehab El-Awaad
- Institut für Pharmazeutische und Medizinische Chemie, PharmaCampus, Westfälische Wilhelms-Universität Münster, Corrensstr. 48, 48149 Münster, Germany; (E.E.-A.); (R.B.); (L.B.); (D.A.)
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Robin Birus
- Institut für Pharmazeutische und Medizinische Chemie, PharmaCampus, Westfälische Wilhelms-Universität Münster, Corrensstr. 48, 48149 Münster, Germany; (E.E.-A.); (R.B.); (L.B.); (D.A.)
| | - Christelle Marminon
- Small Molecules for Biological Targets Team, Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, CNRS 5286, INSERM 1052, Université Claude Bernard Lyon 1, Univ Lyon, 69373 Lyon, France;
| | - Zouhair Bouaziz
- EA 4446 Bioactive Molecules and Medicinal Chemistry, Université Claude Bernard Lyon 1, Univ Lyon, 69373 Lyon, France;
| | - Laurens Ballentin
- Institut für Pharmazeutische und Medizinische Chemie, PharmaCampus, Westfälische Wilhelms-Universität Münster, Corrensstr. 48, 48149 Münster, Germany; (E.E.-A.); (R.B.); (L.B.); (D.A.)
| | - Dagmar Aichele
- Institut für Pharmazeutische und Medizinische Chemie, PharmaCampus, Westfälische Wilhelms-Universität Münster, Corrensstr. 48, 48149 Münster, Germany; (E.E.-A.); (R.B.); (L.B.); (D.A.)
| | - Marc Le Borgne
- Small Molecules for Biological Targets Team, Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, CNRS 5286, INSERM 1052, Université Claude Bernard Lyon 1, Univ Lyon, 69373 Lyon, France;
- Correspondence: (M.L.B.); (J.J.); Tel.: +49-251-8332200 (J.J.); Fax: +49-251-8332211 (J.J.)
| | - Joachim Jose
- Institut für Pharmazeutische und Medizinische Chemie, PharmaCampus, Westfälische Wilhelms-Universität Münster, Corrensstr. 48, 48149 Münster, Germany; (E.E.-A.); (R.B.); (L.B.); (D.A.)
- Correspondence: (M.L.B.); (J.J.); Tel.: +49-251-8332200 (J.J.); Fax: +49-251-8332211 (J.J.)
| |
Collapse
|
13
|
Schnitzler A, Niefind K. Structural basis for the design of bisubstrate inhibitors of protein kinase CK2 provided by complex structures with the substrate-competitive inhibitor heparin. Eur J Med Chem 2021; 214:113223. [PMID: 33571828 DOI: 10.1016/j.ejmech.2021.113223] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/20/2021] [Accepted: 01/20/2021] [Indexed: 12/27/2022]
Abstract
The Ser/Thr kinase CK2, a member of the superfamily of eukaryotic protein kinases, has an acidophilic substrate profile with the substrate recognition sequence S/T-D/E-X-D/E, and it is inhibited by polyanionic substances like heparin. The latter, a highly sulphated glucosamino glycan composed mainly of repeating 2-O-sulpho-α-l-idopyranuronic acid/N,O6-disulpho-α-d-glucosamine disaccharide units, is the longest known substrate-competitive CK2 inhibitor. The structural basis of CK2's preference for anionic substrates and substrate-competitive inhibitors is only vaguely known which limits the value of the substrate-binding region for the structure-based development of CK2 bisubstrate inhibitors. Here, a tetragonal and a monoclinic co-crystal structure of CK2α, the catalytic subunit of CK2, with a decameric heparin fragment are described. In the tetragonal structure, the heparin molecule binds to the polybasic stretch at the beginning of CK2α's helix αC, whereas in the monoclinic structure it occupies the central substrate-recognition region around the P+1 loop. Together, the structures rationalize the inhibitory efficacy of heparin fragments as a function of chain length. The monoclinic CK2α/heparin structure, in which the heparin fragment is particularly well defined, is the first CK2 structure with an anionic inhibitor of considerable size at the central part of the substrate-recognition site. The bound heparin fragment is so close to the binding site of ATP-competitive inhibitors that it can guide the design of linkers and pave the way to efficient CK2 bisubstrate inhibitors in the future.
Collapse
Affiliation(s)
- Alexander Schnitzler
- Universität zu Köln, Department für Chemie, Institut für Biochemie, Zülpicher Straße 47, D-50674 Köln, Germany
| | - Karsten Niefind
- Universität zu Köln, Department für Chemie, Institut für Biochemie, Zülpicher Straße 47, D-50674 Köln, Germany.
| |
Collapse
|
14
|
Wells CI, Drewry DH, Pickett JE, Tjaden A, Krämer A, Müller S, Gyenis L, Menyhart D, Litchfield DW, Knapp S, Axtman AD. Development of a potent and selective chemical probe for the pleiotropic kinase CK2. Cell Chem Biol 2021; 28:546-558.e10. [PMID: 33484635 DOI: 10.1016/j.chembiol.2020.12.013] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/30/2020] [Accepted: 12/22/2020] [Indexed: 12/18/2022]
Abstract
Building on the pyrazolopyrimidine CK2 (casein kinase 2) inhibitor scaffold, we designed a small targeted library. Through comprehensive evaluation of inhibitor selectivity, we identified inhibitor 24 (SGC-CK2-1) as a highly potent and cell-active CK2 chemical probe with exclusive selectivity for both human CK2 isoforms. Remarkably, despite years of research pointing to CK2 as a key driver in cancer, our chemical probe did not elicit a broad antiproliferative phenotype in >90% of >140 cell lines when tested in dose-response. While many publications have reported CK2 functions, CK2 biology is complex and an available high-quality chemical tool such as SGC-CK2-1 will be indispensable in deciphering the relationships between CK2 function and phenotypes.
Collapse
Affiliation(s)
- Carrow I Wells
- Structural Genomics Consortium (SGC), UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill (UNC-CH), Chapel Hill, NC 27599, USA; Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, UNC-CH, Chapel Hill, NC 27599, USA
| | - David H Drewry
- Structural Genomics Consortium (SGC), UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill (UNC-CH), Chapel Hill, NC 27599, USA; Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, UNC-CH, Chapel Hill, NC 27599, USA
| | - Julie E Pickett
- Structural Genomics Consortium (SGC), UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill (UNC-CH), Chapel Hill, NC 27599, USA; Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, UNC-CH, Chapel Hill, NC 27599, USA
| | - Amelie Tjaden
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany; Structural Genomics Consortium, Buchman Institute for Life Sciences, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Andreas Krämer
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany; Structural Genomics Consortium, Buchman Institute for Life Sciences, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Susanne Müller
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany; Structural Genomics Consortium, Buchman Institute for Life Sciences, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Laszlo Gyenis
- Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - Daniel Menyhart
- Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - David W Litchfield
- Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada; Department of Oncology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - Stefan Knapp
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany; Structural Genomics Consortium, Buchman Institute for Life Sciences, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Alison D Axtman
- Structural Genomics Consortium (SGC), UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill (UNC-CH), Chapel Hill, NC 27599, USA; Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, UNC-CH, Chapel Hill, NC 27599, USA.
| |
Collapse
|
15
|
Protein kinase CK2 inhibition as a pharmacological strategy. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 124:23-46. [PMID: 33632467 DOI: 10.1016/bs.apcsb.2020.09.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
CK2 is a constitutively active Ser/Thr protein kinase which phosphorylates hundreds of substrates. Since they are primarily related to survival and proliferation pathways, the best-known pathological roles of CK2 are in cancer, where its targeting is currently being considered as a possible therapy. However, CK2 activity has been found instrumental in many other human pathologies, and its inhibition will expectably be extended to different purposes in the near future. Here, after a description of CK2 features and implications in diseases, we analyze the different inhibitors and strategies available to target CK2, and update the results so far obtained by their in vivo application.
Collapse
|
16
|
Lindenblatt D, Nickelsen A, Applegate VM, Jose J, Niefind K. Structural and Mechanistic Basis of the Inhibitory Potency of Selected 2-Aminothiazole Compounds on Protein Kinase CK2. J Med Chem 2020; 63:7766-7772. [DOI: 10.1021/acs.jmedchem.0c00587] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Dirk Lindenblatt
- Department für Chemie, Institut für Biochemie, Universität zu Köln, Zülpicher Str. 47, D-50674 Köln, Germany
| | - Anna Nickelsen
- Institut für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster, PharmaCampus, Corrensstr. 48, D-48149 Münster, Germany
| | - Violetta M. Applegate
- Department für Chemie, Institut für Biochemie, Universität zu Köln, Zülpicher Str. 47, D-50674 Köln, Germany
| | - Joachim Jose
- Institut für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster, PharmaCampus, Corrensstr. 48, D-48149 Münster, Germany
| | - Karsten Niefind
- Department für Chemie, Institut für Biochemie, Universität zu Köln, Zülpicher Str. 47, D-50674 Köln, Germany
| |
Collapse
|
17
|
Pietsch M, Viht K, Schnitzler A, Ekambaram R, Steinkrüger M, Enkvist E, Nienberg C, Nickelsen A, Lauwers M, Jose J, Uri A, Niefind K. Unexpected CK2β-antagonistic functionality of bisubstrate inhibitors targeting protein kinase CK2. Bioorg Chem 2020; 96:103608. [PMID: 32058103 DOI: 10.1016/j.bioorg.2020.103608] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/11/2019] [Accepted: 01/20/2020] [Indexed: 01/17/2023]
Abstract
Protein kinase CK2, a heterotetrameric holoenzyme composed of two catalytic chains (CK2α) attached to a homodimer of regulatory subunits (CK2β), is a target for drug development for cancer therapy. Here, we describe the tetraiodobenzimidazole derivative ARC-3140, a bisubstrate inhibitor addressing the ATP site and the substrate-binding site of CK2 with extraordinary affinity (Ki = 84 pM). In a crystal structure of ARC-3140 in complex with CK2α, three copies of the inhibitor are visible, one of them at the CK2β interface of CK2α. Subsequent interaction studies based on microscale thermophoresis and fluorescence anisotropy changes revealed a significant impact of ARC-3140 and of its tetrabromo equivalent ARC-1502 on the CK2α/CK2β interaction. A structural inspection revealed that ARC-3140, unlike CK2β antagonists described so far, interferes with both sub-interfaces of the bipartite CK2α/CK2β interaction. Thus, ARC-3140 is a lead for the further development of highly effective compounds perturbating the quaternary structure of the CK2α2β2 holoenzyme.
Collapse
Affiliation(s)
- Markus Pietsch
- Institut II für Pharmakologie, Zentrum für Pharmakologie, Medizinische Fakultät, Universität zu Köln, Gleueler Str. 24, D-50931 Köln, Germany
| | - Kaido Viht
- Institute of Chemistry, University of Tartu, 14A Ravila St., 50411 Tartu, Estonia
| | - Alexander Schnitzler
- Institut für Biochemie, Department für Chemie, Universität zu Köln, Zülpicher Str. 47, D-50674 Köln, Germany
| | - Ramesh Ekambaram
- Institute of Chemistry, University of Tartu, 14A Ravila St., 50411 Tartu, Estonia
| | - Michaela Steinkrüger
- Institut II für Pharmakologie, Zentrum für Pharmakologie, Medizinische Fakultät, Universität zu Köln, Gleueler Str. 24, D-50931 Köln, Germany
| | - Erki Enkvist
- Institute of Chemistry, University of Tartu, 14A Ravila St., 50411 Tartu, Estonia
| | - Christian Nienberg
- Institut für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster, PharmaCampus, Corrensstr. 48, D-48149 Münster, Germany
| | - Anna Nickelsen
- Institut für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster, PharmaCampus, Corrensstr. 48, D-48149 Münster, Germany
| | - Miriam Lauwers
- Institut II für Pharmakologie, Zentrum für Pharmakologie, Medizinische Fakultät, Universität zu Köln, Gleueler Str. 24, D-50931 Köln, Germany
| | - Joachim Jose
- Institut für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster, PharmaCampus, Corrensstr. 48, D-48149 Münster, Germany
| | - Asko Uri
- Institute of Chemistry, University of Tartu, 14A Ravila St., 50411 Tartu, Estonia.
| | - Karsten Niefind
- Institut für Biochemie, Department für Chemie, Universität zu Köln, Zülpicher Str. 47, D-50674 Köln, Germany.
| |
Collapse
|
18
|
Lavogina D, Samuel K, Lavrits A, Meltsov A, Sõritsa D, Kadastik Ü, Peters M, Rinken A, Salumets A. Chemosensitivity and chemoresistance in endometriosis – differences for ectopic versus eutopic cells. Reprod Biomed Online 2019; 39:556-568. [DOI: 10.1016/j.rbmo.2019.05.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 05/22/2019] [Accepted: 05/28/2019] [Indexed: 01/19/2023]
|
19
|
Abstract
Thrombus formation is dependent on the interaction of platelets, leukocytes and endothelial cells as well as proteins of the coagulation cascade. This interaction is tightly controlled by phospho-regulated pathways involving protein kinase CK2. A growing number of studies have demonstrated an important role of this kinase in the regulation of primary and secondary hemostasis. Inhibition of CK2 downregulates the expression of important adhesion molecules on platelets and endothelial cells, such as glycoprotein (GP)IIb/IIIa, P-selectin, von Willebrand factor and vascular cell adhesion molecule. Moreover, the reduced CK2-dependent phosphorylation of different coagulation factors prevents the conversion of fibrinogen to fibrin. Targeting these mechanisms may open the door for the development of novel anti-thrombotic therapies.
Collapse
Affiliation(s)
- Emmanuel Ampofo
- a Institute for Clinical & Experimental Surgery , Saarland University , Homburg/Saar , Germany
| | - Beate M Schmitt
- a Institute for Clinical & Experimental Surgery , Saarland University , Homburg/Saar , Germany
| | - Matthias W Laschke
- a Institute for Clinical & Experimental Surgery , Saarland University , Homburg/Saar , Germany
| | - Michael D Menger
- a Institute for Clinical & Experimental Surgery , Saarland University , Homburg/Saar , Germany
| |
Collapse
|
20
|
Thiazole- and selenazole-comprising high-affinity inhibitors possess bright microsecond-scale photoluminescence in complex with protein kinase CK2. Bioorg Med Chem 2018; 26:5062-5068. [PMID: 30217463 DOI: 10.1016/j.bmc.2018.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/30/2018] [Accepted: 09/03/2018] [Indexed: 12/14/2022]
Abstract
A previously disclosed protein kinase (PK) CK2-selective inhibitor 4-(2-amino-1,3-thiazol-5-yl)benzoic acid (ATB) and its selenium-containing counterpart (ASB) revealed remarkable room temperature phosphorescence when bound to the ATP pocket of the protein kinase CK2. Conjugation of these fragments with a mimic of CK2 substrate peptide resulted in bisubstrate inhibitors with increased affinity towards the kinase. Attachment of the fluorescent acceptor dye 5-TAMRA to the conjugates led to significant enhancement of intensity of long-lifetime (microsecond-scale) photoluminescence of both sulfur- and selenium-containing compounds. The developed photoluminescent probes make possible selective determination of the concentration of CK2 in cell lysates and characterization of CK2 inhibitors by means of time-gated measurement of photoluminescence.
Collapse
|
21
|
Dissection of Protein Kinase Pathways in Live Cells Using Photoluminescent Probes: Surveillance or Interrogation? CHEMOSENSORS 2018. [DOI: 10.3390/chemosensors6020019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
22
|
Montenarh M, Götz C. Ecto-protein kinase CK2, the neglected form of CK2. Biomed Rep 2018; 8:307-313. [PMID: 29556379 DOI: 10.3892/br.2018.1069] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 02/12/2018] [Indexed: 01/21/2023] Open
Abstract
Ecto-protein kinases, including protein kinase CK2 (former name, casein kinase 2), have been the focus of research for more than 30 years. At the beginning of the ecto-kinase research their identification was performed with substrates and inhibitors whose specificity under the current knowledge was rather limited. Since all currently known ecto-kinases, including ecto-CK2, have intracellular counterparts, one has to exclude that an ecto-localization originates from intracellular counterparts after cell damage. Protein kinase CK2 is involved in cellular key processes such as cell cycle progression, inhibition of apoptosis, DNA damage repair, differentiation and many other processes. CK2 is composed of two catalytic CK2α or CK2α' subunits and two non-catalytic CK2β subunits. Progress in the ecto-kinase and in particular ecto-CK2 studies was made with the use of transfected tagged CK2 subunits, which allowed to follow their individual transport and localization on the cell surface after transfection. Furthermore, immunofluorescence studies with antibodies against CK2 subunits as well as affinity chromatography with a binding partner of CK2 subunits have improved ecto-kinase research. The use of new and more specific inhibitors as well as of substrates, which do not cross the plasma membrane, have further improved the specificity for ecto-CK2. From the various substrates of ecto-CK2, it can be concluded that ecto-CK2 plays a role in Alzheimer disease, cell adhesion, platelet aggregation, immune response and cellular signalling. New tools and techniques, to study ecto-CK2 activity, are required to identify new substrates and thereby new functional implications for ecto-CK2.
Collapse
Affiliation(s)
- Mathias Montenarh
- Medical Biochemistry and Molecular Biology, Saarland University, D-66424 Homburg, Germany
| | - Claudia Götz
- Medical Biochemistry and Molecular Biology, Saarland University, D-66424 Homburg, Germany
| |
Collapse
|