1
|
Faizan M, Kumar R, Mazumder A, Salahuddin, Kukreti N, Kumar A, Chaitanya MVNL. The medicinal chemistry of piperazines: A review. Chem Biol Drug Des 2024; 103:e14537. [PMID: 38888058 DOI: 10.1111/cbdd.14537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/15/2024] [Indexed: 06/20/2024]
Abstract
The versatile basic structure of piperazine allows for the development and production of newer bioactive molecules that can be used to treat a wide range of diseases. Piperazine derivatives are unique and can easily be modified for the desired pharmacological activity. The two opposing nitrogen atoms in a six-membered piperazine ring offer a large polar surface area, relative structural rigidity, and more acceptors and donors of hydrogen bonds. These properties frequently result in greater water solubility, oral bioavailability, and ADME characteristics, as well as improved target affinity and specificity. Various synthetic protocols have been reported for piperazine and its derivatives. In this review, we focused on recently published synthetic protocols for the synthesis of the piperazine and its derivatives. The structure-activity relationship concerning different biological activities of various piperazine-containing drugs has also been highlighted to provide a good understanding to researchers for future research on piperazines.
Collapse
Affiliation(s)
- Md Faizan
- Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, India
| | - Rajnish Kumar
- Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, India
| | - Avijit Mazumder
- Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, India
| | - Salahuddin
- Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, India
| | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun, India
| | - Arvind Kumar
- Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida, India
| | - M V N L Chaitanya
- School of Pharmaceutical Science, Lovely Professional University, Phagwara, India
| |
Collapse
|
2
|
Jarzyński S, Rapacz A, Dziubina A, Pękala E, Popiół J, Piska K, Wojtulewski S, Rudolf B. Mechanochemical synthesis and anticonvulsant activity of 3-aminopyrrolidine-2,5-dione derivatives. Biomed Pharmacother 2023; 168:115749. [PMID: 37879208 DOI: 10.1016/j.biopha.2023.115749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/14/2023] [Accepted: 10/17/2023] [Indexed: 10/27/2023] Open
Abstract
A series of 3-aminopyrrolidine-2,5-dione derivatives was synthesized and tested for anticonvulsant activity. Succinimide derivatives were obtained from a simple solvent-based reaction and a mechanochemical aza-Michael reaction of maleimide or its N-substituted derivatives with selected amines. The structure of the compounds was confirmed by spectroscopic methods (NMR, FT-IR, HPLC, ESI-MS, EA and XRD for four compounds). The cytotoxic activity of the succinimide derivatives was evaluated using HepG2 cells for hepatocytotoxicity and SH-SY5Y cells for neurocytotoxicity. None of the studied compounds showed hepatocytotoxicity and two showed neurocytotoxicity. Initial anticonvulsant screening was performed in mice using the psychomotor seizure test (6 Hz, 32 mA). The selected compounds were evaluated in the following acute models of epilepsy: the maximal electroshock test, psychomotor seizure test (6 Hz, 44 mA), subcutaneous pentylenetetrazole seizure test, and acute neurotoxicity (rotarod test). The most active compound 3-((4-chlorophenyl)amino)pyrrolidine-2,5-dione revealed antiseizure activity in all seizure models (including pharmacoresistant seizures) and showed better median effective doses (ED50) and protective index values than the reference compound, ethosuximide. Furthermore, 3-(benzylamino)pyrrolidine-2,5-dione and 3-(phenylamino)pyrrolidine-2,5-dione exhibited antiseizure activity in the 6 Hz and MES tests, and 3-(butylamino)-1-phenylpyrrolidine-2,5-dione and 3-(benzylamino)-1-phenylpyrrolidine-2,5-dione exhibited antiseizure activity in the 6 Hz test. All active compounds demonstrated low in vivo neurotoxicity in the rotarod test and yielded favourable protective indices.
Collapse
Affiliation(s)
- Szymon Jarzyński
- Faculty of Chemistry, Department of Organic Chemistry, University of Lodz, Tamka 12, 91-403 Lodz, Poland
| | - Anna Rapacz
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., 30-688 Krakow, Poland
| | - Anna Dziubina
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., 30-688 Krakow, Poland
| | - Elżbieta Pękala
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., 30-688 Krakow, Poland
| | - Justyna Popiół
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., 30-688 Krakow, Poland
| | - Kamil Piska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., 30-688 Krakow, Poland
| | - Sławomir Wojtulewski
- Department of Structural Chemistry, Faculty of Chemistry, University of Bialystok, Ciołkowskiego 1K, 15-245 Bialystok, Poland
| | - Bogna Rudolf
- Faculty of Chemistry, Department of Organic Chemistry, University of Lodz, Tamka 12, 91-403 Lodz, Poland.
| |
Collapse
|
3
|
Li Petri G, Raimondi MV, Spanò V, Holl R, Barraja P, Montalbano A. Pyrrolidine in Drug Discovery: A Versatile Scaffold for Novel Biologically Active Compounds. Top Curr Chem (Cham) 2021; 379:34. [PMID: 34373963 PMCID: PMC8352847 DOI: 10.1007/s41061-021-00347-5] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 07/25/2021] [Indexed: 01/24/2023]
Abstract
The five-membered pyrrolidine ring is one of the nitrogen heterocycles used widely by medicinal chemists to obtain compounds for the treatment of human diseases. The great interest in this saturated scaffold is enhanced by (1) the possibility to efficiently explore the pharmacophore space due to sp3-hybridization, (2) the contribution to the stereochemistry of the molecule, (3) and the increased three-dimensional (3D) coverage due to the non-planarity of the ring-a phenomenon called "pseudorotation". In this review, we report bioactive molecules with target selectivity characterized by the pyrrolidine ring and its derivatives, including pyrrolizines, pyrrolidine-2-one, pyrrolidine-2,5-diones and prolinol described in the literature from 2015 to date. After a comparison of the physicochemical parameters of pyrrolidine with the parent aromatic pyrrole and cyclopentane, we investigate the influence of steric factors on biological activity, also describing the structure-activity relationship (SAR) of the studied compounds. To aid the reader's approach to reading the manuscript, we have planned the review on the basis of the synthetic strategies used: (1) ring construction from different cyclic or acyclic precursors, reporting the synthesis and the reaction conditions, or (2) functionalization of preformed pyrrolidine rings, e.g., proline derivatives. Since one of the most significant features of the pyrrolidine ring is the stereogenicity of carbons, we highlight how the different stereoisomers and the spatial orientation of substituents can lead to a different biological profile of drug candidates, due to the different binding mode to enantioselective proteins. We believe that this work can guide medicinal chemists to the best approach in the design of new pyrrolidine compounds with different biological profiles.
Collapse
Affiliation(s)
- Giovanna Li Petri
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Maria Valeria Raimondi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy.
| | - Virginia Spanò
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Ralph Holl
- Department of Chemistry, Institute of Organic Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146, Hamburg, Germany
| | - Paola Barraja
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Alessandra Montalbano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy
| |
Collapse
|
4
|
Zhao Z, Yue J, Ji X, Nian M, Kang K, Qiao H, Zheng X. Research progress in biological activities of succinimide derivatives. Bioorg Chem 2020; 108:104557. [PMID: 33376010 DOI: 10.1016/j.bioorg.2020.104557] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/03/2020] [Accepted: 12/10/2020] [Indexed: 12/11/2022]
Abstract
Succinimides are well recognized heterocyclic compounds in drug discovery which produce diverse therapeutically related applications in pharmacological practices. Researches in medicinal chemistry field have isolated and synthesized succinimide derivatives with multiple medicinal properties including anticonvulsant, anti-inflammatory, antitumor and antimicrobial agents, 5-HT receptor ligands and enzyme inhibitors. Simultaneously, SAR (Structure-Activity Relationship) analysis has been gradually possessed, along with a great deal of derivatives have been derived for potential targets. In this article, we comprehensively summarize the biological activities and SAR for succinimide derivatives, along with the featuring bioactive molecules reported in patents, wishing to provide an overall retrospect and prospect on the succinimide analogues.
Collapse
Affiliation(s)
- Zefeng Zhao
- College of Acupuncture & Massage, Shaanxi University of Chinese Medicine, Xixian New Area, Shaanxi Province 712046, PR China; Shaanxi Key Laboratory of Acupuncture & Medicine, Xixian New Area, Shaanxi Province 712046, PR China; School of Pharmacy, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Biomedicine Key Laboratory of Shaanxi Province, Northwest University, 229 Taibai Road, Xi'an 710069, PR China
| | - Jiangxin Yue
- Shaanxi Key Laboratory of Acupuncture & Medicine, Xixian New Area, Shaanxi Province 712046, PR China
| | - Xiaotong Ji
- Shaanxi Key Laboratory of Acupuncture & Medicine, Xixian New Area, Shaanxi Province 712046, PR China
| | - Meng Nian
- Shaanxi Key Laboratory of Acupuncture & Medicine, Xixian New Area, Shaanxi Province 712046, PR China
| | - Kaiwen Kang
- Shaanxi Key Laboratory of Acupuncture & Medicine, Xixian New Area, Shaanxi Province 712046, PR China
| | - Haifa Qiao
- College of Acupuncture & Massage, Shaanxi University of Chinese Medicine, Xixian New Area, Shaanxi Province 712046, PR China; Shaanxi Key Laboratory of Acupuncture & Medicine, Xixian New Area, Shaanxi Province 712046, PR China.
| | - Xiaohui Zheng
- School of Pharmacy, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Biomedicine Key Laboratory of Shaanxi Province, Northwest University, 229 Taibai Road, Xi'an 710069, PR China
| |
Collapse
|
5
|
Synthesis, Anticonvulsant and Antinociceptive Activity of New Hybrid Compounds: Derivatives of 3-(3-Methylthiophen-2-yl)-pyrrolidine-2,5-dione. Int J Mol Sci 2020; 21:ijms21165750. [PMID: 32796594 PMCID: PMC7461116 DOI: 10.3390/ijms21165750] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 12/19/2022] Open
Abstract
The present study aimed to design and synthesize a new series of hybrid compounds with pyrrolidine-2,5-dione and thiophene rings in the structure as potential anticonvulsant and antinociceptive agents. For this purpose, we obtained a series of new compounds and evaluated their anticonvulsant activity in animal models of epilepsy (maximal electroshock (MES), psychomotor (6 Hz), and subcutaneous pentylenetetrazole (scPTZ) seizure tests). To determine the mechanism of action of the most active anticonvulsant compounds (3, 4, 6, 9), their influence on the voltage-gated sodium and calcium channels as well as GABA transporter (GAT) was assessed. The most promising compound 3-(3-methylthiophen-2-yl)-1-(3-morpholinopropyl)pyrrolidine-2,5-dione hydrochloride (4) showed higher ED50 value than those of the reference drugs: valproic acid (VPA) and ethosuximide (ETX) (62.14 mg/kg vs. 252.7 mg/kg (VPA) in the MES test, and 75.59 mg/kg vs. 130.6 mg/kg (VPA) and 221.7 mg/kg (ETX) in the 6 Hz test, respectively). Moreover, in vitro studies of compound 4 showed moderate but balanced inhibition of the neuronal voltage-sensitive sodium (site 2) and L-type calcium channels. Additionally, the antinociceptive activity of the most active compounds (3, 4, 6, 9) was also evaluated in the hot plate test and writhing tests, and their hepatotoxic properties in HepG2 cells were also investigated. To determine the possible mechanism of the analgesic effect of compounds 3, 6, and 9, the affinity for the TRPV1 receptor was investigated.
Collapse
|
6
|
Zaręba P, Gryzło B, Malawska K, Sałat K, Höfner GC, Nowaczyk A, Fijałkowski Ł, Rapacz A, Podkowa A, Furgała A, Żmudzki P, Wanner KT, Malawska B, Kulig K. Novel mouse GABA uptake inhibitors with enhanced inhibitory activity toward mGAT3/4 and their effect on pain threshold in mice. Eur J Med Chem 2020; 188:111920. [DOI: 10.1016/j.ejmech.2019.111920] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 11/16/2019] [Accepted: 11/27/2019] [Indexed: 12/12/2022]
|
7
|
Kothayer H, Ibrahim SM, Soltan MK, Rezq S, Mahmoud SS. Synthesis, in vivo and in silico evaluation of novel 2,3-dihydroquinazolin-4(1H)-one derivatives as potential anticonvulsant agents. Drug Dev Res 2018; 80:343-352. [PMID: 30565722 DOI: 10.1002/ddr.21506] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 11/02/2018] [Accepted: 11/27/2018] [Indexed: 12/18/2022]
Abstract
In light of the pharmacophoric structural requirements for achieving anticonvulsant activity, a series of N-(1-methyl-4-oxo-2-un/substituted-1,2-dihydroquinazolin-3[4H]-yl)benzamide (4a-g) and N-(1-methyl-4-oxo-2-un/substituted-1,2-dihydroquinazolin-3[4H]-yl)-2-phenylacetamide (4h-n) derivatives were synthesized in two steps starting from the reaction of N-methyl isatoic anhydride with the appropriate hydrazide and followed by condensation with the appropriate aldehyde. The anticonvulsant activities of the synthesized compounds were evaluated according to the anticonvulsant drug development (ADD) programme protocol. Among the synthesized compounds, 4n showed promising activity in both the maximal electroshock (MES) and pentylenetetrazole (PTZ) tests with median effective dose (ED50 ) values of 40.7 and 6 mg/kg, respectively. The six most promising derivatives, 4b, 4a, 4c, 4f, 4j, and 4i, showed very low ED50 values in the PTZ test (3.1, 4.96, 8.68, 9.89, 12, and 13.53 mg/kg, respectively). All the tested compounds showed no to low neurotoxicity in the rotarod test with a wide therapeutic index. Docking studies of compound 4n suggested that GABAA binding could be the mechanism of action of these derivatives. The in silico drug likeliness parameters indicated that none of the designed compounds violate Lipinski's rule of five and that they are able to cross the blood-brain barrier. Hit, Lead & Candidate Discovery.
Collapse
Affiliation(s)
- Hend Kothayer
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Samy M Ibrahim
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Moustafa K Soltan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt.,Oman Pharmacy Institute, Ministry of Health, Muscat, Sultanate of Oman
| | - Samar Rezq
- Department of Pharmacology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Shireen S Mahmoud
- Department of Pharmacology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|