1
|
Gao FT, Zhang M, Shimadate Y, Kato A, Li YX, Jia YM, Yu CY. Enantiomeric C-6 fluorinated swainsonine derivatives as highly selective and potent inhibitors of α-mannosidase and α-l-rhamnosidase: Design, synthesis and structure-activity relationship study. Eur J Med Chem 2025; 282:117031. [PMID: 39556895 DOI: 10.1016/j.ejmech.2024.117031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/03/2024] [Accepted: 11/03/2024] [Indexed: 11/20/2024]
Abstract
Six C-6 fluorinated d-swainsonine derivatives and their enantiomers have been designed based on initial docking calculations, and synthesized from enantiomeric ribose-derived aldehydes, respectively. Glycosidase inhibition assay of these derivatives with d-swainsonine (1) and l-swainsonine (ent-1) as contrasts found that the C-6 fluorinated d-swainsonine derivatives with C-8 configurations as R (α) showed specific and potent inhibitions of jack bean α-mannosidase (model enzyme of Golgi α-mannosidase II); whereas their enantiomers with C-8 configurations as S (β) were powerful and selective α-l-rhamnosidase inhibitors. Molecular docking calculations found the C-6 fluorinatedd-swainsonine derivatives 21, 24 and 25 with highly coincident binding conformations with d-swainsonine (1) in their interactions with the active site of α-mannosidase (PDB ID: 1HWW). Reliability of the docking results were confirmed by Molecular Dynamics (MD) simulation. Additionally, solid interactions with residues Gln-392 and Tyr-393 in the active site of α-l-rhamnosidase (PDB ID: 3W5N) were proved to be vital for potent α-l-rhamnosidase inhibitions of the l-swainsonine derivatives. The role of C-6 fluorines in swainsonine derivatives well demonstrated the "mimic effect" of fluorine to hydrogen by minimal influence on the binding conformations and effective compensation for any possible lost interactions. This work contributes to a comprehensive understanding of the structure-activity relationship (SAR) of the fluorinated swainsonines and ever reported branched swainsonines, and has laid good foundation for development of more potent α-mannosidase and α-l-rhamnosidase inhibitors.
Collapse
Affiliation(s)
- Feng-Teng Gao
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ming Zhang
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuna Shimadate
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Atsushi Kato
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan.
| | - Yi-Xian Li
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yue-Mei Jia
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chu-Yi Yu
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
Liotta LJ, Antoine J, Brammer Basta LA, Campbell AS, Cole GY, Demick Brazile KA, Dogal Gardner NM, Fitzgerald ME, Francois JEK, French BM, Garafola SL, Giannetti CA, Granatosky EA, Harney AM, Hummel JT, Joyce AP, Keylor MH, Khubchandani JA, Korzeniecki C, Lieberman DC, Litterio JM, Maiorano MO, Marshall JF, McCarthy KA, Mendes Vieira A, Miller RM, Morrison ER, Moura SP, Neumann DF, Oliveira AF, Pace NJ, Plouffe JX, Pomfret MN, Reardon KN, Sheller-Miller SM, Smith MJ, Sullivan JL, Sweeney SW, Tougas KL. Efficient synthesis for each of the eight stereoisomers of the iminosugars lentiginosine and 1,4-dideoxy-1,4-imino-D-arabinitol (DAB). Carbohydr Res 2024; 545:109280. [PMID: 39326205 DOI: 10.1016/j.carres.2024.109280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/06/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024]
Abstract
Herein, we describe the efficient, diastereoselective syntheses of the iminosugars 1,4-dideoxy-1,4-imino-D-arabinitol (DAB) 1b, lentiginosine 3a, and the seven stereoisomers of each of these iminosugars starting from 4-benzoyl-6-deoxy-6-iodoglycopyranosides 47 with yields ranging from 38 % to 68 % for the DAB and isomers 1a-1h and from 44 % to 89 % for the lentiginosine and isomers 3a-3h. We also report the syntheses of the eight stereoisomers of the 4-benzoyl-6-deoxy-6-iodoglycopyranosides 47 from commercially available sugars. Key to the iminosugar syntheses is a single multistep reaction that converts the 4-benzoyl-6-deoxy-6-iodoglycopyranosides 47 to a vinyl pyrrolidine through a one-pot zinc mediated reductive elimination, followed by a reductive amination and finally an intramolecular nucleophilic substitution. Strategic selection of the amine utilized in the reductive amination and the functionalization of the intermediate carbon-carbon double bond provides access to a vast array of iminosugars.
Collapse
Affiliation(s)
- Louis J Liotta
- Department of Chemistry, Stonehill College, 320 Washington Street, Easton, MA, 02357, USA.
| | - Jessica Antoine
- Department of Chemistry, Stonehill College, 320 Washington Street, Easton, MA, 02357, USA
| | | | - Andrew S Campbell
- Department of Chemistry, Stonehill College, 320 Washington Street, Easton, MA, 02357, USA
| | - Gabrielle Y Cole
- Department of Chemistry, Stonehill College, 320 Washington Street, Easton, MA, 02357, USA
| | | | | | - Megan E Fitzgerald
- Department of Chemistry, Stonehill College, 320 Washington Street, Easton, MA, 02357, USA
| | - Jean E K Francois
- Department of Chemistry, Stonehill College, 320 Washington Street, Easton, MA, 02357, USA
| | - Brian M French
- Department of Chemistry, Stonehill College, 320 Washington Street, Easton, MA, 02357, USA
| | - Sara L Garafola
- Department of Chemistry, Stonehill College, 320 Washington Street, Easton, MA, 02357, USA
| | - Catherine A Giannetti
- Department of Chemistry, Stonehill College, 320 Washington Street, Easton, MA, 02357, USA
| | - Eve A Granatosky
- Department of Chemistry, Stonehill College, 320 Washington Street, Easton, MA, 02357, USA
| | - Alycen M Harney
- Department of Chemistry, Stonehill College, 320 Washington Street, Easton, MA, 02357, USA
| | - James T Hummel
- Department of Chemistry, Stonehill College, 320 Washington Street, Easton, MA, 02357, USA
| | - Andrew P Joyce
- Department of Chemistry, Stonehill College, 320 Washington Street, Easton, MA, 02357, USA
| | - Mitchell H Keylor
- Department of Chemistry, Stonehill College, 320 Washington Street, Easton, MA, 02357, USA
| | - Jasmine A Khubchandani
- Department of Chemistry, Stonehill College, 320 Washington Street, Easton, MA, 02357, USA
| | - Claudia Korzeniecki
- Department of Chemistry, Stonehill College, 320 Washington Street, Easton, MA, 02357, USA
| | - Diana C Lieberman
- Department of Chemistry, Stonehill College, 320 Washington Street, Easton, MA, 02357, USA
| | - Joshua M Litterio
- Department of Chemistry, Stonehill College, 320 Washington Street, Easton, MA, 02357, USA
| | - Madison O Maiorano
- Department of Chemistry, Stonehill College, 320 Washington Street, Easton, MA, 02357, USA
| | - Jessica F Marshall
- Department of Chemistry, Stonehill College, 320 Washington Street, Easton, MA, 02357, USA
| | - Kelly A McCarthy
- Department of Chemistry, Stonehill College, 320 Washington Street, Easton, MA, 02357, USA
| | - Andreia Mendes Vieira
- Department of Chemistry, Stonehill College, 320 Washington Street, Easton, MA, 02357, USA
| | - Ruby M Miller
- Department of Chemistry, Stonehill College, 320 Washington Street, Easton, MA, 02357, USA
| | - Emily R Morrison
- Department of Chemistry, Stonehill College, 320 Washington Street, Easton, MA, 02357, USA
| | - Steven P Moura
- Department of Chemistry, Stonehill College, 320 Washington Street, Easton, MA, 02357, USA
| | - Dillon F Neumann
- Department of Chemistry, Stonehill College, 320 Washington Street, Easton, MA, 02357, USA
| | - Aliza F Oliveira
- Department of Chemistry, Stonehill College, 320 Washington Street, Easton, MA, 02357, USA
| | - Nicholas J Pace
- Department of Chemistry, Stonehill College, 320 Washington Street, Easton, MA, 02357, USA
| | - Jodie X Plouffe
- Department of Chemistry, Stonehill College, 320 Washington Street, Easton, MA, 02357, USA
| | - Meredith N Pomfret
- Department of Chemistry, Stonehill College, 320 Washington Street, Easton, MA, 02357, USA
| | - Katelyn N Reardon
- Department of Chemistry, Stonehill College, 320 Washington Street, Easton, MA, 02357, USA
| | | | - Michael J Smith
- Department of Chemistry, Stonehill College, 320 Washington Street, Easton, MA, 02357, USA
| | - Jessica L Sullivan
- Department of Chemistry, Stonehill College, 320 Washington Street, Easton, MA, 02357, USA
| | - Samantha W Sweeney
- Department of Chemistry, Stonehill College, 320 Washington Street, Easton, MA, 02357, USA
| | - Kerstin L Tougas
- Department of Chemistry, Stonehill College, 320 Washington Street, Easton, MA, 02357, USA
| |
Collapse
|
3
|
Kalník M, Gabko P, Kóňa J, Šesták S, Moncoľ J, Bella M. (5S)-5-Benzylswainsonines as potent and selective inhibitors of Golgi α-mannosidase II: synthesis, enzyme evaluation and molecular modelling. Bioorg Chem 2024; 150:107578. [PMID: 38955002 DOI: 10.1016/j.bioorg.2024.107578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024]
Abstract
Development of novel anti-cancer therapeutics based on Golgi α-mannosidase II (GMII) inhibition is considerably impeded by an undesired co-inhibition of lysosomal α-mannosidase leading to severe side-effects. In this contribution, we describe a fully stereoselective synthesis of (5S)-5-[4-(halo)benzyl]swainsonines as highly potent and selective inhibitors of GMII. The synthesis starts from a previously reported aldehyde readily available from l-ribose, and the key features include an intramolecular reductive amination with substrate-controlled stereoselectivity and a late-stage derivatisation of the benzyl group via ipso-substitution. These novel swainsonine analogues were found to be nanomolar inhibitors of the Golgi-type α-mannosidase AMAN-2 (Ki = 23-75 nM) with excellent selectivity (selectivity index = 205-870) over the lysosomal-type Jack bean α-mannosidase. Finally, molecular docking and pKa calculations were performed to provide more insight into the structure of the inhibitor:enzyme complexes, and a pair interaction energy analysis (FMO-PIEDA) was carried out to rationalise the observed potency and selectivity of the inhibitors.
Collapse
Affiliation(s)
- Martin Kalník
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, SK-845 38 Bratislava, Slovakia
| | - Peter Gabko
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, SK-845 38 Bratislava, Slovakia
| | - Juraj Kóňa
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, SK-845 38 Bratislava, Slovakia; Medical Vision, Civic Research Association, Záhradnícka 4837/55, SK-82108 Bratislava, Slovakia
| | - Sergej Šesták
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, SK-845 38 Bratislava, Slovakia
| | - Ján Moncoľ
- Department of Inorganic Chemistry, Faculty of Chemical and Food Technology, Radlinského 9, SK-812 37 Bratislava, Slovakia
| | - Maroš Bella
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, SK-845 38 Bratislava, Slovakia.
| |
Collapse
|
4
|
Yuasa H, Morino N, Wagatsuma T, Munekane M, Ueda S, Matsunaga M, Uchida Y, Katayama T, Katoh T, Kambe T. ZNT5-6 and ZNT7 play an integral role in protein N-glycosylation by supplying Zn 2+ to Golgi α-mannosidase II. J Biol Chem 2024; 300:107378. [PMID: 38762179 PMCID: PMC11209640 DOI: 10.1016/j.jbc.2024.107378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/20/2024] [Accepted: 05/07/2024] [Indexed: 05/20/2024] Open
Abstract
The stepwise addition of monosaccharides to N-glycans attached to client proteins to generate a repertoire of mature proteins involves a concerted action of many glycosidases and glycosyltransferases. Here, we report that Golgi α-mannosidase II (GMII), a pivotal enzyme catalyzing the first step in the conversion of hybrid- to complex-type N-glycans, is activated by Zn2+ supplied by the early secretory compartment-resident ZNT5-ZNT6 heterodimers (ZNT5-6) and ZNT7 homodimers (ZNT7). Loss of ZNT5-6 and ZNT7 function results in marked accumulation of hybrid-type and complex/hybrid glycans with concomitant reduction of complex- and high-mannose-type glycans. In cells lacking the ZNT5-6 and ZNT7 functions, the GMII activity is substantially decreased. In contrast, the activity of its homolog, lysosomal mannosidase (LAMAN), is not decreased. Moreover, we show that the growth of pancreatic cancer MIA PaCa-2 cells lacking ZNT5-6 and ZNT7 is significantly decreased in a nude mouse xenograft model. Our results indicate the integral roles of ZNT5-6 and ZNT7 in N-glycosylation and highlight their potential as novel target proteins for cancer therapy.
Collapse
Affiliation(s)
- Hana Yuasa
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Naho Morino
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Takumi Wagatsuma
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Masayuki Munekane
- Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Sachiko Ueda
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Mayu Matsunaga
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Yasuo Uchida
- Department of Molecular Systems Pharmaceutics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima City, Japan
| | - Takane Katayama
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Toshihiko Katoh
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Taiho Kambe
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan.
| |
Collapse
|
5
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2017-2018. MASS SPECTROMETRY REVIEWS 2023; 42:227-431. [PMID: 34719822 DOI: 10.1002/mas.21721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2018. Also included are papers that describe methods appropriate to glycan and glycoprotein analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, new methods, matrices, derivatization, MALDI imaging, fragmentation and the use of arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Most of the applications are presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and highlights the impact that MALDI imaging is having across a range of diciplines. MALDI is still an ideal technique for carbohydrate analysis and advancements in the technique and the range of applications continue steady progress.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
| |
Collapse
|
6
|
Kalník M, Šesták S, Kóňa J, Bella M, Poláková M. Synthesis, α-mannosidase inhibition studies and molecular modeling of 1,4-imino-ᴅ-lyxitols and their C-5-altered N-arylalkyl derivatives. Beilstein J Org Chem 2023; 19:282-293. [PMID: 36925565 PMCID: PMC10012049 DOI: 10.3762/bjoc.19.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/22/2023] [Indexed: 03/08/2023] Open
Abstract
A synthesis of 1,4-imino-ᴅ-lyxitols and their N-arylalkyl derivatives altered at C-5 is reported. Their inhibitory activity and selectivity toward four GH38 α-mannosidases (two Golgi types: GMIIb from Drosophila melanogaster and AMAN-2 from Caenorhabditis elegans, and two lysosomal types: LManII from Drosophila melanogaster and JBMan from Canavalia ensiformis) were investigated. 6-Deoxy-DIM was found to be the most potent inhibitor of AMAN-2 (K i = 0.19 μM), whose amino acid sequence and 3D structure of the active site are almost identical to the human α-mannosidase II (GMII). Although 6-deoxy-DIM was 3.5 times more potent toward AMAN-2 than DIM, their selectivity profiles were almost the same. N-Arylalkylation of 6-deoxy-DIM resulted only in a partial improvement as the selectivity was enhanced at the expense of potency. Structural and physicochemical properties of the corresponding inhibitor:enzyme complexes were analyzed by molecular modeling.
Collapse
Affiliation(s)
- Martin Kalník
- Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovakia
| | - Sergej Šesták
- Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovakia
| | - Juraj Kóňa
- Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovakia.,Medical Vision, Civic Research Association, Záhradnícka 4837/55, 82108 Bratislava, Slovakia
| | - Maroš Bella
- Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovakia
| | - Monika Poláková
- Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovakia
| |
Collapse
|
7
|
Kóňa J, Šesták S, Wilson IBH, Poláková M. 1,4-Dideoxy-1,4-imino-D- and L-lyxitol-based inhibitors bind to Golgi α-mannosidase II in different protonation forms. Org Biomol Chem 2022; 20:8932-8943. [PMID: 36322142 PMCID: PMC7614232 DOI: 10.1039/d2ob01545e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The development of effective inhibitors of Golgi α-mannosidase II (GMII, E.C.3.2.1.114) with minimal off-target effects on phylogenetically-related lysosomal α-mannosidase (LMan, E.C.3.2.1.24) is a complex task due to the complicated structural and chemical properties of their active sites. The pKa values (and also protonation forms in some cases) of several ionizable amino acids, such as Asp, Glu, His or Arg of enzymes, can be changed upon the binding of the inhibitor. Moreover, GMII and LMan work under different pH conditions. The pKa calculations on large enzyme-inhibitor complexes and FMO-PIEDA energy decomposition analysis were performed on the structures of selected inhibitors obtained from docking and hybrid QM/MM calculations. Based on the calculations, the roles of the amino group incorporated in the ring of the imino-D-lyxitol inhibitors and some ionizable amino acids of Golgi-type (Asp270-Asp340-Asp341 of Drosophila melanogaster α-mannosidase dGMII) and lysosomal-type enzymes (His209-Asp267-Asp268 of Canavalia ensiformis α-mannosidase, JBMan) were explained in connection with the observed inhibitory properties. The pyrrolidine ring of the imino-D-lyxitols prefers at the active site of dGMII the neutral form while in JBMan the protonated form, whereas that of imino-L-lyxitols prefers the protonation form in both enzymes. The calculations indicate that the binding mechanism of inhibitors to the active-site of α-mannosidases is dependent on the inhibitor structure and could be used to design new selective inhibitors of GMII. A series of novel synthetic N-substituted imino-D-lyxitols were evaluated with four enzymes from the glycoside hydrolase GH38 family (two of Golgi-type, Drosophila melanogaster GMIIb and Caenorhabditis elegans AMAN-2, and two of lysosomal-type, Drosophila melanogaster LManII and Canavalia ensiformis JBMan, enzymes). The most potent structures [N-9-amidinononyl and N-2-(1-naphthyl)ethyl derivatives] inhibited GMIIb (Ki = 40 nM) and AMAN-2 (Ki = 150 nM) with a weak selectivity index (SI) toward Golgi-type enzymes of IC50(LManII)/IC50(GMIIb) = 35 or IC50(JBMan)/IC50(AMAN-2) = 86. On the other hand, weaker micromolar inhibitors, such as N-2-naphthylmethyl or 4-iodobenzyl derivatives [IC50(GMIIb) = 2.4 μM and IC50 (AMAN-2) = 7.6 μM], showed a significant SI in the range from 111 to 812.
Collapse
Affiliation(s)
- Juraj Kóňa
- Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravska cesta 9, 845 38 Bratislava, Slovakia.
- Medical Vision, Civic Research Association, Záhradnícka 4837/55, 82108 Bratislava, Slovakia
| | - Sergej Šesták
- Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravska cesta 9, 845 38 Bratislava, Slovakia.
| | - Iain B H Wilson
- Department of Chemistry, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Monika Poláková
- Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravska cesta 9, 845 38 Bratislava, Slovakia.
| |
Collapse
|
8
|
Vardé M, Marino C, Repetto E, Varela OJ. Enantioselective Synthesis of 2,3,4,5‐Tetra(hydroxyalkyl)pyrrolidines through 1,3‐Dipolar Cycloadditions. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Mariana Vardé
- Universidad de Buenos Aires Facultad de Ciencias Exactas y Naturales Organic chemistry ARGENTINA
| | - Carla Marino
- Universidad de Buenos Aires Facultad de Ciencias Exactas y Naturales Organic chemistry ARGENTINA
| | - Evangelina Repetto
- Universidad de Buenos Aires Facultad de Ciencias Exactas y Naturales Organic chemistry ARGENTINA
| | - Oscar Jose Varela
- Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires Organic Chemistry Pabellon 2, Ciudad Universitaria 1428 Buenos Aires ARGENTINA
| |
Collapse
|
9
|
Chen WA, Chen YH, Hsieh CY, Hung PF, Chen CW, Chen CH, Lin JL, Cheng TJR, Hsu TL, Wu YT, Shen CN, Cheng WC. Harnessing natural-product-inspired combinatorial chemistry and computation-guided synthesis to develop N-glycan modulators as anticancer agents. Chem Sci 2022; 13:6233-6243. [PMID: 35733906 PMCID: PMC9159088 DOI: 10.1039/d1sc05894k] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 04/18/2022] [Indexed: 11/25/2022] Open
Abstract
Modulation of N-glycosylation using human Golgi α-mannosidase II (α-hGMII) inhibitors is a potential anticancer approach, but the clinical utility of current α-hGMII inhibitors is limited by their co-inhibition of human lysosomal α-mannosidase (α-hLM), resulting in abnormal storage of oligomannoses. We describe the synthesis and screening of a small library of novel bicyclic iminosugar-based scaffolds, prepared via natural product-inspired combinatorial chemistry (NPICC), which resulted in the identification of a primary α-hGMII inhibitor with 13.5-fold selectivity over α-hLM. Derivatization of this primary inhibitor using computation-guided synthesis (CGS) yielded an advanced α-hGMII inhibitor with nanomolar potency and 106-fold selectivity over α-hLM. In vitro studies demonstrated its N-glycan modulation and inhibitory effect on hepatocellular carcinoma (HCC) cells. In vivo studies confirmed its encouraging anti-HCC activity, without evidence of oligomannose accumulation. An integrated strategy of Natural-Product-Inspired Combinatorial Chemistry (NPICC) and Computation-Guided Synthesis is used to develop an α-hGMII inhibitor with 106-fold selectivity over α-hLM, with inhibitory effect on hepatocellular carcinoma.![]()
Collapse
Affiliation(s)
- Wei-An Chen
- Genomics Research Center, Academia Sinica 128, Section 2, Academia Road Taipei 11529 Taiwan
| | - Yu-Hsin Chen
- Genomics Research Center, Academia Sinica 128, Section 2, Academia Road Taipei 11529 Taiwan
| | - Chiao-Yun Hsieh
- Genomics Research Center, Academia Sinica 128, Section 2, Academia Road Taipei 11529 Taiwan
| | - Pi-Fang Hung
- Genomics Research Center, Academia Sinica 128, Section 2, Academia Road Taipei 11529 Taiwan
| | - Chiao-Wen Chen
- Genomics Research Center, Academia Sinica 128, Section 2, Academia Road Taipei 11529 Taiwan
| | - Chien-Hung Chen
- Genomics Research Center, Academia Sinica 128, Section 2, Academia Road Taipei 11529 Taiwan
| | - Jung-Lee Lin
- Genomics Research Center, Academia Sinica 128, Section 2, Academia Road Taipei 11529 Taiwan
| | - Ting-Jen R Cheng
- Genomics Research Center, Academia Sinica 128, Section 2, Academia Road Taipei 11529 Taiwan
| | - Tsui-Ling Hsu
- Genomics Research Center, Academia Sinica 128, Section 2, Academia Road Taipei 11529 Taiwan
| | - Ying-Ta Wu
- Genomics Research Center, Academia Sinica 128, Section 2, Academia Road Taipei 11529 Taiwan
| | - Chia-Ning Shen
- Genomics Research Center, Academia Sinica 128, Section 2, Academia Road Taipei 11529 Taiwan
| | - Wei-Chieh Cheng
- Genomics Research Center, Academia Sinica 128, Section 2, Academia Road Taipei 11529 Taiwan .,Department of Chemistry, National Cheng-Kung University 1, University Road Tainan 701 Taiwan.,Department of Applied Chemistry, National Chiayi University 300, Xuefu Rd, East Dist. Chiayi 600 Taiwan.,Department of Medicinal and Applied Chemistry, Kaohsiung Medical University 100 Shih-Chuan 1st Rd Kaohsiung 807 Taiwan
| |
Collapse
|
10
|
Trajkovic M, Pavlovic M, Bihelovic F, Ferjancic Z, Saicic RN. Total Synthesis of ( + )-Swainsonine, (–)- Swainsonine, ( + )-8- epi- Swainsonine and ( + )- Dideoxy-Imino-Lyxitol by an Organocatalyzed Aldolization/Reductive Amination Sequence. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221091672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
A tactical combination of either ( S)- or ( R)-proline catalyzed aldol reaction followed by intramolecular reductive amination enabled the synthesis of a chiral pyrrolidine derivative with 3 contiguous stereocenters in only 2 synthetic steps, starting from achiral precursors. This product, obtainable in both enantiomeric forms, was further exploited as a common intermediate in total syntheses of the biologically active iminosugars: ( + )-swainsonine, (–)-swainsonine, ( + )-8- epi-swainsonine, and ( + )-dideoxy-imino-lyxitol.
Collapse
Affiliation(s)
- Milos Trajkovic
- University of Belgrade - Faculty of Chemistry, Belgrade, Serbia
| | - Milos Pavlovic
- University of Belgrade - Faculty of Chemistry, Belgrade, Serbia
| | - Filip Bihelovic
- University of Belgrade - Faculty of Chemistry, Belgrade, Serbia
| | | | - Radomir N Saicic
- University of Belgrade - Faculty of Chemistry, Belgrade, Serbia
- Serbian Academy of Sciences and Arts, Belgrade, Serbia
| |
Collapse
|
11
|
Klunda T, Hricovíni M, Šesták S, Kóňa J, Poláková M. Selective Golgi α-mannosidase II inhibitors: N-alkyl substituted pyrrolidines with a basic functional group. NEW J CHEM 2021. [DOI: 10.1039/d1nj01176f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Enzymatic assays, molecular modeling and NMR studies of novel 1,4-dideoxy-1,4-imino-l-lyxitols provided new information on the GH38 family enzyme inhibitors and their selectivity.
Collapse
Affiliation(s)
- Tomáš Klunda
- Institute of Chemistry
- Center for Glycomics
- Slovak Academy of Sciences
- SK-845 38 Bratislava
- Slovakia
| | - Michal Hricovíni
- Institute of Chemistry
- Center for Glycomics
- Slovak Academy of Sciences
- SK-845 38 Bratislava
- Slovakia
| | - Sergej Šesták
- Institute of Chemistry
- Center for Glycomics
- Slovak Academy of Sciences
- SK-845 38 Bratislava
- Slovakia
| | - Juraj Kóňa
- Institute of Chemistry
- Center for Glycomics
- Slovak Academy of Sciences
- SK-845 38 Bratislava
- Slovakia
| | - Monika Poláková
- Institute of Chemistry
- Center for Glycomics
- Slovak Academy of Sciences
- SK-845 38 Bratislava
- Slovakia
| |
Collapse
|
12
|
Kalník M, Zajičková M, Kóňa J, Šesták S, Moncoľ J, Koóš M, Bella M. Synthesis of hydroxymethyl analogues of mannostatin A and their evaluation as inhibitors of GH38 α-mannosidases. NEW J CHEM 2021. [DOI: 10.1039/d1nj02351a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Analogues of mannostatin A were synthesised and evaluated as inhibitors of GH38 α-mannosidases. Different regioselectivity of aziridine opening with sodium methanethiolate was observed and investigated by quantum mechanics calculations.
Collapse
Affiliation(s)
- Martin Kalník
- Institute of Chemistry
- Centre for Glycomics
- Slovak Academy of Sciences
- SK-845 38 Bratislava
- Slovakia
| | - Mária Zajičková
- Institute of Chemistry
- Centre for Glycomics
- Slovak Academy of Sciences
- SK-845 38 Bratislava
- Slovakia
| | - Juraj Kóňa
- Institute of Chemistry
- Centre for Glycomics
- Slovak Academy of Sciences
- SK-845 38 Bratislava
- Slovakia
| | - Sergej Šesták
- Institute of Chemistry
- Centre for Glycomics
- Slovak Academy of Sciences
- SK-845 38 Bratislava
- Slovakia
| | - Ján Moncoľ
- Department of Inorganic Chemistry
- Faculty of Chemical and Food Technology
- Radlinského 9
- SK-812 37 Bratislava
- Slovakia
| | - Miroslav Koóš
- Institute of Chemistry
- Centre for Glycomics
- Slovak Academy of Sciences
- SK-845 38 Bratislava
- Slovakia
| | - Maroš Bella
- Institute of Chemistry
- Centre for Glycomics
- Slovak Academy of Sciences
- SK-845 38 Bratislava
- Slovakia
| |
Collapse
|
13
|
Wood A, Bernhardt PV, van Altena I, Simone MI. Crystal structure of 6-azido-6-de-oxy-1,2- O-iso-propyl-idene-α-d-gluco-furan-ose. ACTA CRYSTALLOGRAPHICA SECTION E-CRYSTALLOGRAPHIC COMMUNICATIONS 2020; 76:1653-1656. [PMID: 33117583 PMCID: PMC7534240 DOI: 10.1107/s2056989020012438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/10/2020] [Indexed: 11/12/2022]
Abstract
Short syntheses to high Fsp3 index natural-product analogues such as iminosugars are of paramount importance in the investigation of their biological activities and reducing the use of protecting groups is an advantageous synthetic strategy. In this case only an isopropylidene group was employed towards the synthesis of seven-membered ring iminosugars. Short syntheses to high Fsp3 index natural-product analogues such as iminosugars are of paramount importance in the investigation of their biological activities and reducing the use of protecting groups is an advantageous synthetic strategy. An isopropylidene group was employed towards the synthesis of seven-membered ring iminosugars and the title compound, C9H15N3O5, was crystallized as an intermediate, in which the THF ring is twisted and the dioxolane ring adopts an envelope conformation: the dihedral angle between the rings is 67.50 (13)°. In the crystal, the hydroxyl groups participate in O—H⋯(O,O) and O—H⋯N hydrogen-bonding interactions, which generate chains of molecules propagating parallel to the a-axis direction. There is a notable non-classical C—H⋯O hydrogen bond, which cross-links the [100] chains into (001) sheets.
Collapse
Affiliation(s)
- Adam Wood
- Discipline of Chemistry, University of Newcastle, Callaghan, NSW 2308, Australia.,Priority Research Centre for Drug Development, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Paul V Bernhardt
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia
| | - Ian van Altena
- Discipline of Chemistry, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Michela I Simone
- Discipline of Chemistry, University of Newcastle, Callaghan, NSW 2308, Australia.,Priority Research Centre for Drug Development, University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
14
|
Široký M, Gonda J, Martinková M, Jacková D, Vilková M, Bindzár V, Kuchár J, Šesták S. Synthesis and mannosidase inhibitory profile of a small library of aminocyclitols from shikimic acid-derived scaffolds. Carbohydr Res 2020; 493:108027. [DOI: 10.1016/j.carres.2020.108027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/28/2020] [Accepted: 04/28/2020] [Indexed: 12/18/2022]
|
15
|
Li C, Guo L, Chen F, Yu W, Rao T, Ruan Y. Golgi Alpha-Mannosidase II as a Novel Biomarker Predicts Prognosis in Clear Cell Renal Cell Carcinoma. Oncol Res Treat 2020; 43:264-275. [PMID: 32403105 DOI: 10.1159/000505931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 01/11/2020] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Golgi alpha-mannosidase II (GM II) is one of the crucial enzymes in the process of N-glycan processing. The aim of our study was to examine the clinical significance of GM II in patients with clear cell renal cell carcinoma (ccRCC). METHODS Quantitative reverse transcription polymerase chain reaction analysis and immunohistochemical staining were used to analyze GM II expression in patients with ccRCC. The clinical data of 62 patients with ccRCC were collected to analyze the clinical significance of GM II. The clinical significance among GM II expression, clinicopathological staging, and histological grade of ccRCC was explored. Survival analyses were performed to identify the relevance between the expression of GM II and the overall survival of patients with ccRCC. A uni-/multivariate Cox regression model was used to detect risk factors affecting the prognosis of patients with ccRCC. Subsequently, the proliferation and migration of ccRCC cells were detected after transfecting with GM II-short hairpin RNA (shRNA). RESULTS The results of these comparisons suggested that GM II expression of ccRCC tissues was dramatically higher than that of para-carcinoma tissues (p < 0.05). GM II expression in the high-differentiation group was lower than that in the median- and low-differentiation groups (p < 0.05). GM II expression in stage I and II tissues was lower than that in stage III and IV tissues (p < 0.05). The expression levels of GM II in the group without lymph node metastasis were lower than those in the group with lymph node metastasis (p < 0.05). Survival analysis indicated that patients with ccRCC with high GM II expression generally had decreased overall survival. Uni-/multivariate Cox model analyses further suggested an association between GM II expression and prognosis of patients with breast cancer. High GM II expression is a potential and independent prognostic biomarker in ccRCC. The inhibition of GM II by transfecting with GM II-shRNA could reduce the proliferation and migration of ccRCC. CONCLUSION GM II expression in human ccRCC tissues was upregulated compared with that found in normal human renal tissue, and GM II may promote the progression and migration of ccRCC. Furthermore, the GM II gene may be used as a promising tumor marker for the diagnosis and prognosis of ccRCC.
Collapse
Affiliation(s)
- Chenglong Li
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Linjie Guo
- Department of Urology, Jingzhou First People's Hospital, Jingzhou, China,
| | - Fan Chen
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Weiming Yu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ting Rao
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuan Ruan
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
16
|
Yang LF, Shimadate Y, Kato A, Li YX, Jia YM, Fleet GWJ, Yu CY. Synthesis and glycosidase inhibition of N-substituted derivatives of 1,4-dideoxy-1,4-imino-d-mannitol (DIM). Org Biomol Chem 2020; 18:999-1011. [DOI: 10.1039/c9ob02029b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Four series of N-substituted DIMs have been synthesized and assayed against glycosidases to provide continuous and reliable inhibitory spectra.
Collapse
Affiliation(s)
- Lin-Feng Yang
- Beijing National Laboratory for Molecular Science (BNLMS)
- CAS Key Laboratory of Molecular Recognition and Function
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Yuna Shimadate
- Department of Hospital Pharmacy
- University of Toyama
- Toyama 930-0194
- Japan
| | - Atsushi Kato
- Department of Hospital Pharmacy
- University of Toyama
- Toyama 930-0194
- Japan
| | - Yi-Xian Li
- Beijing National Laboratory for Molecular Science (BNLMS)
- CAS Key Laboratory of Molecular Recognition and Function
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Yue-Mei Jia
- Beijing National Laboratory for Molecular Science (BNLMS)
- CAS Key Laboratory of Molecular Recognition and Function
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - George W. J. Fleet
- Chemistry Research Laboratory
- Department of Chemistry
- University of Oxford
- Oxford
- UK
| | - Chu-Yi Yu
- Beijing National Laboratory for Molecular Science (BNLMS)
- CAS Key Laboratory of Molecular Recognition and Function
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| |
Collapse
|
17
|
Synthesis of N-benzyl substituted 1,4-imino-l-lyxitols with a basic functional group as selective inhibitors of Golgi α-mannosidase IIb. Bioorg Chem 2019; 83:424-431. [DOI: 10.1016/j.bioorg.2018.10.066] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 10/23/2018] [Accepted: 10/29/2018] [Indexed: 12/17/2022]
|
18
|
Sladek V, Tokiwa H, Shimano H, Shigeta Y. Protein Residue Networks from Energetic and Geometric Data: Are They Identical? J Chem Theory Comput 2018; 14:6623-6631. [PMID: 30500196 DOI: 10.1021/acs.jctc.8b00733] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein residue networks (PRN) from energetic and geometric data are probably not identical. PRNs constructed from ab initio pair interaction energies are analyzed for the first time and compared to PRN based on center of mass separation. We use modern, previously unused algorithms such as global and local efficiencies to quantitatively confirm that both types of PRNs do exhibit small-world character. The main novelty finding is that interaction energy-based PRNs preserve small-world character even when clustered. A node hierarchy independent of the cutoff energy used for the edge creation is characteristic for them. Efficiency centrality identifies hubs responsible for such behavior. The interaction energy-based PRNs seem to comply with the scale-free network model with respect to efficiency centrality distribution as opposed to distance based PRNs. Community detection is introduced into protein network research as an extension beyond cluster analysis to study tertiary and quaternary structures.
Collapse
Affiliation(s)
- Vladimir Sladek
- Institute of Chemistry - Centre for Glycomics , Dubravska cesta 9 , 84538 Bratislava , Slovakia.,Agency for Medical Research and Development (AMED) , Chiyoda-ku , Japan
| | - Hiroaki Tokiwa
- Agency for Medical Research and Development (AMED) , Chiyoda-ku , Japan.,Department of Chemistry , Rikkyo University , Nishi-Ikebukuro , Toshima, Tokyo 171-8501 , Japan
| | - Hitoshi Shimano
- Agency for Medical Research and Development (AMED) , Chiyoda-ku , Japan.,Department of Internal Medicine, Faculty of Medicine , University of Tsukuba , 1-1-1 Tennodai , Tsukuba, Ibaraki 305-8575 , Japan
| | - Yasuteru Shigeta
- Center for Computational Sciences , University of Tsukuba , Tennodai 1-1-1 , Tsukuba, Ibaraki 305-8577 , Japan
| |
Collapse
|
19
|
Bella M, Šesták S, Moncoľ J, Koóš M, Poláková M. Synthesis of 1,4-imino-L-lyxitols modified at C-5 and their evaluation as inhibitors of GH38 α-mannosidases. Beilstein J Org Chem 2018; 14:2156-2162. [PMID: 30202468 PMCID: PMC6122390 DOI: 10.3762/bjoc.14.189] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/24/2018] [Indexed: 01/01/2023] Open
Abstract
A synthetic approach to 1,4-imino-L-lyxitols with various modifications at the C-5 position is reported. These imino-L-lyxitol cores were used for the preparation of a series of N-(4-halobenzyl)polyhydroxypyrrolidines. An impact of the C-5 modification on the inhibition and selectivity against GH38 α-mannosidases from Drosophila melanogaster, the Golgi (GMIIb) and lysosomal (LManII) mannosidases and commercial jack bean α-mannosidase from Canavalia ensiformis was evaluated. The modification at C-5 affected their inhibitory activity against the target GMIIb enzyme. In contrast, no inhibition effect of the pyrrolidines against LManII was observed. The modification of the imino-L-lyxitol core is therefore a suitable motif for the design of inhibitors with desired selectivity against the target GMIIb enzyme.
Collapse
Affiliation(s)
- Maroš Bella
- Department of Glycochemistry, Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, SK-845 38, Bratislava, Slovakia
| | - Sergej Šesták
- Department of Glycochemistry, Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, SK-845 38, Bratislava, Slovakia
| | - Ján Moncoľ
- Department of Inorganic Chemistry, Faculty of Chemical and Food Technology, Radlinského 9, SK-812 37 Bratislava, Slovakia
| | - Miroslav Koóš
- Department of Glycochemistry, Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, SK-845 38, Bratislava, Slovakia
| | - Monika Poláková
- Department of Glycochemistry, Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, SK-845 38, Bratislava, Slovakia
| |
Collapse
|
20
|
Koyama R, Hakamata W, Hirano T, Nishio T. Identification of Small-Molecule Inhibitors of Human Golgi Mannosidase via a Drug Repositioning Screen. Chem Pharm Bull (Tokyo) 2018. [DOI: 10.1248/cpb.c17-01009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Ryosuke Koyama
- Department of Chemistry and Life Science, College of Bioresource Sciences, Nihon University
| | - Wataru Hakamata
- Department of Chemistry and Life Science, College of Bioresource Sciences, Nihon University
| | - Takako Hirano
- Department of Chemistry and Life Science, College of Bioresource Sciences, Nihon University
| | - Toshiyuki Nishio
- Department of Chemistry and Life Science, College of Bioresource Sciences, Nihon University
| |
Collapse
|