1
|
Xiang K, Li Y, Cong H, Yu B, Shen Y. Peptide-based non-viral gene delivery: A comprehensive review of the advances and challenges. Int J Biol Macromol 2024; 266:131194. [PMID: 38554914 DOI: 10.1016/j.ijbiomac.2024.131194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/14/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
Gene therapy is the most effective treatment option for diseases, but its effectiveness is affected by the choice and design of gene carriers. The genes themselves have to pass through multiple barriers in order to enter the cell and therefore require additional vectors to carry them inside the cell. In gene therapy, peptides have unique properties and potential as gene carriers, which can effectively deliver genes into specific cells or tissues, protect genes from degradation, improve gene transfection efficiency, and enhance gene targeting and biological responsiveness. This paper reviews the research progress of peptides and their derivatives in the field of gene delivery recently, describes the obstacles encountered by foreign materials to enter the interior of the cell, and introduces the following classes of functional peptides that can carry materials into the interior of the cell, and assist in transmembrane translocation of carriers, thus breaking through endosomal traps to enable successful entry of genetic materials into the nucleus of the cell. The paper also discusses the combined application of peptide vectors with other vectors to enhance its transfection ability, explores current challenges encountered by peptide vectors, and looks forward to future developments in the field.
Collapse
Affiliation(s)
- Kai Xiang
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Yanan Li
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China; School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China.
| | - Youqing Shen
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bio nanoengineering, and Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
2
|
Shou Z, Bai Z, Huo K, Zheng S, Shen Y, Zhou H, Huang X, Meng H, Xu C, Wu S, Li N, Chen C. Immobilizing c(RGDfc) on the surface of metal-phenolic networks by thiol-click reaction for accelerating osteointegration of implant. Mater Today Bio 2024; 25:101017. [PMID: 38495914 PMCID: PMC10940948 DOI: 10.1016/j.mtbio.2024.101017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/14/2024] [Accepted: 03/02/2024] [Indexed: 03/19/2024] Open
Abstract
The limited osteointegration often leads to the failure of implant, which can be improved by fixing bioactive molecules onto the surface, such as arginyl-glycyl-aspartic acid (RGD): a cell adhesion motif. Metal-Phenolic Networks (MPNs) have garnered increasing attention from different disciplines in recent years due to their simple and rapid process for depositing on various substrates or particles with different shapes. However, the lack of cellular binding sites on MPNs greatly blocks its application in tissue engineering. In this study, we present a facile and efficient approach for producing PC/Fe@c(RGDfc) composite coatings through the conjugation of c(RGDfc) peptides onto the surface of PC/Fe-MPNs utilizing thiol-click reaction. By combined various techniques (ellipsometry, X-ray photoelectron spectroscopy, Liquid Chromatography-Mass Spectrometry, water contact angle, scanning electronic microscopy, atomic force microscopy) the physicochemical properties (composition, coating mechanism and process, modulus and hydrophilicity) of PC/Fe@c(RGDfc) surface were characterized in detail. In addition, the PC/Fe@c(RGDfc) coating exhibits the remarkable ability to positively modulate cellular attachment, proliferation, migration and promoted bone-implant integration in vivo, maintaining the inherent features of MPNs: anti-inflammatory, anti-oxidative properties, as well as multiple substrate deposition. This work contributes to engineering MPNs-based coatings with bioactive molecules by a facile and efficient thiol-click reaction, as an innovative perspective for future development of surface modification of implant materials.
Collapse
Affiliation(s)
- Zeyu Shou
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, People's Republic of China
| | - Zhibiao Bai
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Kaiyuan Huo
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Shengwu Zheng
- Wenzhou Celecare Medical Instruments Co., Ltd, Wenzhou, 325000, People's Republic of China
| | - Yizhe Shen
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Han Zhou
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Xiaojing Huang
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Hongming Meng
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Chenwei Xu
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Shaohao Wu
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Na Li
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, People's Republic of China
| | - Chun Chen
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
- Key Laboratory of Intelligent Treatment and Life Support for Critical Diseases of Zhejiang Province, Wenzhou, 325000, Zhejiang, People's Republic of China
- Zhejiang Engineering Research Center for Hospital Emergency and Process Digitization, Wenzhou, Zhejiang, 325000, People's Republic of China
| |
Collapse
|
3
|
Di Giorgio E, Ferino A, Huang W, Simonetti S, Xodo L, De Marco R. Dual-targeting peptides@PMO, a mimetic to the pro-apoptotic protein Smac/DIABLO for selective activation of apoptosis in cancer cells. Front Pharmacol 2023; 14:1237478. [PMID: 37711175 PMCID: PMC10497945 DOI: 10.3389/fphar.2023.1237478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/07/2023] [Indexed: 09/16/2023] Open
Abstract
The refractoriness of tumor cells to apoptosis represents the main mechanism of resistance to chemotherapy. Smac/DIABLO mimetics proved to be effective in overcoming cancer-acquired resistance to apoptosis as a consequence of overexpression of the anti-apoptotic proteins XIAP, cIAP1, and cIAP2. In this work, we describe a dual-targeting peptide capable of selectively activating apoptosis in cancer cells. The complex consists of a fluorescent periodic mesoporous organosilica nanoparticle that carries the short sequences of Smac/DIABLO bound to the αvβ3-integrin ligand. The dual-targeting peptide @PMO shows significantly higher toxicity in αvβ3-positive HeLa cells with respect to αvβ3-negative Ht29 cells. @PMO exhibited synergistic effects in combination with oxaliplatin in a panel of αvβ3-positive cancer cells, while its toxicity is overcome by XIAP overexpression or integrin β3 silencing. The successful uptake of the molecule by αvβ3-positive cells makes @PMO promising for the re-sensitization to apoptosis of many cancer types.
Collapse
Affiliation(s)
| | | | - Weizhe Huang
- Department of Agricultural, Food, Environmental and Animal Sciences (Di4A), University of Udine, Udine, Italy
| | - Sigrid Simonetti
- Department of Agricultural, Food, Environmental and Animal Sciences (Di4A), University of Udine, Udine, Italy
| | - Luigi Xodo
- Department of Medicine, University of Udine, Udine, Italy
| | - Rossella De Marco
- Department of Agricultural, Food, Environmental and Animal Sciences (Di4A), University of Udine, Udine, Italy
| |
Collapse
|
4
|
Yin L, Li X, Wang R, Zeng Y, Zeng Z, Xie T. Recent Research Progress of RGD Peptide–Modified Nanodrug Delivery Systems in Tumor Therapy. Int J Pept Res Ther 2023; 29:53. [DOI: 10.1007/s10989-023-10523-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2023] [Indexed: 01/06/2025]
Abstract
AbstractThere have been great advancements in targeted nanodrug delivery systems for tumor therapy. Liposomes, polymeric nanoparticles, and inorganic nanoparticles are commonly employed as nanocarriers for drug delivery, and it has been found that arginine glycine aspartic acid (RGD) peptides and their derivatives can be used as ligands of integrin receptors to enhance the direct targeting ability. In this paper, we review the recent applications of RGD-modified liposomes, polymeric nanoparticles, and inorganic nanocarriers in cancer diagnosis and treatment, discuss the current challenges and prospects, and examine the progress made by the latest research on RGD peptide–modified nano delivery systems in cancer therapy. In recent years, RGD peptide–modified nanodrug delivery systems have been proven to have great potential in tumor therapy. Finally, we provide an overview of the current limitations and future directions of RGD peptide–modified nano-drug delivery systems for cancer therapy. This review aims to elucidate the contribution of RGD peptide–modified nanodrug delivery systems in the field of tumor therapy.
Collapse
|
5
|
Xie Z, Wu XJ, Cheng RW, Cui JH, Yuan ST, Zhou JW, Liu QH. JP1, a polypeptide specifically targeting integrin αVβ3, ameliorates choroidal neovascularization and diabetic retinopathy in mice. Acta Pharmacol Sin 2023; 44:897-912. [PMID: 36280689 PMCID: PMC10043287 DOI: 10.1038/s41401-022-01005-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 09/21/2022] [Indexed: 11/10/2022]
Abstract
Anti-vascular endothelial growth factor (VEGF) drugs have revolutionized the treatment of neovascular eye diseases, but responses are incomplete in some patients. Recent evidence shows that integrins are involved in the pathogenesis of neovascular age-related macular degeneration and diabetic retinopathy. JP1, derived from an optimized seven-amino-acid fragment of JWA protein, is a polypeptide specifically targeting integrin αVβ3. In this study we evaluated the efficacy of JP1 on laser-induced choroidal neovascularization (CNV) and retinal vascular leakage. CNV mice received a single intravitreal (IVT) injection of JP1 (10, 20, 40 µg) or ranibizumab (RBZ, 10 µg). We showed that JP1 injection dose-dependently inhibited laser-induced CNV; the effect of RBZ was comparable to that of 20 µg JP1; a combined IVT injection of JP1 (20 μg) and RBZ (5 μg) exerted a synergistic effect on CNV. In the 3rd month after streptozotocin injection, diabetic mice receiving IVT injection of JP1 (40 µg) or RBZ (10 µg) once a week for 4 weeks showed significantly suppressed retinal vascular leakage. In both in vivo and in vitro experiments, JP1 counteracted oxidative stress and inflammation via inhibiting ROS/NF-κB signaling in microglial cells, and angiogenesis via modulating MEK1/2-SP1-integrin αVβ3 and TRIM25-SP1-MMP2 axes in vascular endothelial cells. In addition, intraperitoneal injection of JP1 (1, 5 or 10 mg) once every other day for 3 times also dose-dependently inhibited CNV. After intraperitoneal injection of FITC-labeled JP1 (FITC-JP1) or FITC in laser-induced CNV mice, the fluorescence intensity in the CNV lesion was markedly increased in FITC-JP1 group, compared with that in FITC group, confirming that JP1 could penetrate the blood-retinal barrier to target CNV lesion. We conclude that JP1 can be used to design novel CNV-targeting therapeutic agents that may replace current invasive intraocular injections.
Collapse
Affiliation(s)
- Zhan Xie
- Department of Ophthalmology, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xin-Jing Wu
- Department of Ophthalmology, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Rui-Wen Cheng
- Department of Ophthalmology, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Jia-Hua Cui
- Department of Molecular Cell Biology & Toxicology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Song-Tao Yuan
- Department of Ophthalmology, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Jian-Wei Zhou
- Department of Molecular Cell Biology & Toxicology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Qing-Huai Liu
- Department of Ophthalmology, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
6
|
Tavakoli S, Firoozpour L, Davoodi J. The synergistic effect of chimeras consisting of N-terminal smac and modified KLA peptides in inducing apoptosis in breast cancer cell lines. Biochem Biophys Res Commun 2023; 655:138-144. [PMID: 36934589 DOI: 10.1016/j.bbrc.2023.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/26/2023] [Accepted: 03/05/2023] [Indexed: 03/08/2023]
Abstract
Drug resistance is one of the most important obstacles in effective cancer therapy triggered through various mechanisms. One of these mechanisms is caused by the upregulation of Inhibitor of Apoptosis Proteins (IAPs). IAPs, inhibit apoptosis through direct and/or indirect caspase inhibition, which themselves are antagonized by an endogenous protein called Second Mitochondrial-derived Activator of Caspases, Smac/Diablo, mediated by the presence of a tetrapeptide IAP binding motif at its N-terminus. Accordingly, Smac-based peptides are under intense investigation as anti-cancer drugs and have reached Phase 2 clinical trials, although, Smac based peptides or mimetics alone have not been effective as anti-cancer agents. On the other hand, KLA peptide has shown major toxicity against cancer cells through the induction of apoptosis. Consequently, we designed an anti-cancer chimera by fusing an octa-peptide from the N-terminus of mature Smac protein to a modified proapoptotic KLA peptide (KLAKLCKKLAKLCK) to be called Smac-KLA. This chimera, therefore, possesses both proapoptotic and anti-IAP activities. In addition, we dimerized this chimera via intermolecular disulfide bonds in order to enhance their cellular permeability. Both the Smac-KLA monomeric and dimeric peptides exhibited cytotoxic activity against both MCF-7 and MDA-MB231 breast cancer cell lines at low micromolar concentrations. Importantly, the dimerization of the chimeras enhanced their potency 2-4- fold due to higher cellular uptake.
Collapse
Affiliation(s)
- Somayeh Tavakoli
- Institute of Biochemistry and Biophysics, University of Tehran, Postal code: 1417614335, Tehran, Iran
| | - Loghman Firoozpour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Jamshid Davoodi
- Institute of Biochemistry and Biophysics, University of Tehran, Postal code: 1417614335, Tehran, Iran.
| |
Collapse
|
7
|
Arzani H, Rafii-Tabar H, Ramezani F. The investigation into the effect of the length of RGD peptides and temperature on the interaction with the αIIbβ3 integrin: a molecular dynamic study. J Biomol Struct Dyn 2022; 40:9701-9712. [PMID: 34060983 DOI: 10.1080/07391102.2021.1932602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The tripeptide Arg-Gly-Asp acid (RGD) is a protein sequence in the binding of proteins to cell surfaces, and is involved in various biological processes such as cell adhesion to the extracellular matrix, platelet activation, hemostasis, etc. The C2 domain of the Von Willebrand Factor (VWF), containing the RGD motif, plays an important role in the initial homeostasis process. It binds to the αIIbβ3 integrin and stimulates platelet aggregation. We have investigated, using the molecular Dynamic (MD) simulation method, the effect of the RGD-peptide length, and temperature variation, on the binding to the αIIbβ3 integrin receptor. We examined 10 different structural modes of the αIIbβ3 at three different temperatures; 237 K, 310 K and 318 K. Our findings show that the amino acids that form a binding pocket include Asp224, Tyr234, Ser226, Tyr190, Tyr189, Trp260, Trp262, Asp259, Lys253, Arg214, Asp217, Ser161 and Ala218 and that the ligand-receptor interaction was increased at higher temperatures. It was also found that the increase in the number of ligands' amino acids and their types (% glycine) plays an important role in the stability, conformation, and ligand-receptor interaction.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Hossein Arzani
- Department of Medical Physics and Biomedical Engineering, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hashem Rafii-Tabar
- Department of Medical Physics and Biomedical Engineering, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,The Physics Branch of Iran Academy of Sciences, Tehran, Iran
| | - Fatemeh Ramezani
- Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Herrera-León C, Ramos-Martín F, El Btaouri H, Antonietti V, Sonnet P, Martiny L, Zevolini F, Falciani C, Sarazin C, D’Amelio N. The Influence of Short Motifs on the Anticancer Activity of HB43 Peptide. Pharmaceutics 2022; 14:1089. [PMID: 35631675 PMCID: PMC9147034 DOI: 10.3390/pharmaceutics14051089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 01/10/2023] Open
Abstract
Despite the remarkable similarity in amino acid composition, many anticancer peptides (ACPs) display significant differences in terms of activity. This strongly suggests that particular relative dispositions of amino acids (motifs) play a role in the interaction with their biological target, which is often the cell membrane. To better verify this hypothesis, we intentionally modify HB43, an ACP active against a wide variety of cancers. Sequence alignment of related ACPs by ADAPTABLE web server highlighted the conserved motifs that could be at the origin of the activity. In this study, we show that changing the order of amino acids in such motifs results in a significant loss of activity against colon and breast cancer cell lines. On the contrary, amino acid substitution in key motifs may reinforce or weaken the activity, even when the alteration does not perturb the amphipathicity of the helix formed by HB43 on liposomes mimicking their surface. NMR and MD simulations with different membrane models (micelles, bicelles, and vesicles) indicate that the activity reflects the insertion capability in cancer-mimicking serine-exposing membranes, supported by the insertion of N-terminal phenylalanine in the FAK motif and the anchoring to the carboxylate of phosphatidylserine by means of arginine side chains.
Collapse
Affiliation(s)
- Claudia Herrera-León
- Unité de Génie Enzymatique et Cellulaire UMR 7025 CNRS, Université de Picardie Jules Verne, 80039 Amiens, France; (C.H.-L.); (F.R.-M.); (C.S.)
| | - Francisco Ramos-Martín
- Unité de Génie Enzymatique et Cellulaire UMR 7025 CNRS, Université de Picardie Jules Verne, 80039 Amiens, France; (C.H.-L.); (F.R.-M.); (C.S.)
| | - Hassan El Btaouri
- Matrice Extracellulaire et Dynamique Cellulaire UMR 7369 CNRS, Université de Reims Champagne Ardenne (URCA), 51100 Reims, France; (H.E.B.); (L.M.)
| | - Viviane Antonietti
- Agents Infectieux, Résistance et Chimiothérapie, AGIR UR 4294, Université de Picardie Jules Verne, UFR de Pharmacie, 80037 Amiens, France; (V.A.); (P.S.)
| | - Pascal Sonnet
- Agents Infectieux, Résistance et Chimiothérapie, AGIR UR 4294, Université de Picardie Jules Verne, UFR de Pharmacie, 80037 Amiens, France; (V.A.); (P.S.)
| | - Laurent Martiny
- Matrice Extracellulaire et Dynamique Cellulaire UMR 7369 CNRS, Université de Reims Champagne Ardenne (URCA), 51100 Reims, France; (H.E.B.); (L.M.)
| | - Fabrizia Zevolini
- Department of Medical Biotechnology, University of Siena, 53100 Siena, Italy; (F.Z.); (C.F.)
| | - Chiara Falciani
- Department of Medical Biotechnology, University of Siena, 53100 Siena, Italy; (F.Z.); (C.F.)
| | - Catherine Sarazin
- Unité de Génie Enzymatique et Cellulaire UMR 7025 CNRS, Université de Picardie Jules Verne, 80039 Amiens, France; (C.H.-L.); (F.R.-M.); (C.S.)
| | - Nicola D’Amelio
- Unité de Génie Enzymatique et Cellulaire UMR 7025 CNRS, Université de Picardie Jules Verne, 80039 Amiens, France; (C.H.-L.); (F.R.-M.); (C.S.)
| |
Collapse
|
9
|
Zhou X, Saiding Q, Wang X, Wang J, Cui W, Chen X. Regulated Exogenous/Endogenous Inflammation via "Inner-Outer" Medicated Electrospun Fibers for Promoting Tissue Reconstruction. Adv Healthc Mater 2022; 11:e2102534. [PMID: 34989182 DOI: 10.1002/adhm.202102534] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/26/2021] [Indexed: 12/31/2022]
Abstract
Regenerative medicine aims to provide solutions for structural and functional recovery in conditions where organs suffer from varying degrees of diseases or injuries. However, the exogenous inflammation triggered by implanted biomaterials and endogenous inflammation caused by some disease or tissue destruction has not been solved properly yet. Herein, a functional "inner-outer" medicated core-shell electrospun fibrous membrane is fabricated with RGD surface modification for exogenous inflammation suppression and puerarin loading in the core for long-term endogenous inflammation inhibition through microsol electrospinning technique. The "outer" RGD significantly increases biocompatibility of fibrous membrane through promoting cell viability, adhesion, and proliferation while the "inner" puerarin suppresses inflammatory gene expression via sustained drug release in vitro. Moreover, in a rat abdominal wall hernia model, the functional fibrous membrane successfully reduces exogenous and endogenous inflammation response and promotes wound healing through collagen deposition, smooth muscle formation, and vascularization. In summary, the functional "inner-outer" medicated fibrous membrane holds a great potential for clinical treatment of diseases that needs tissue reconstruction structurally and functionally accompanied by immunoregulation.
Collapse
Affiliation(s)
- Xue Zhou
- Shanghai Key Laboratory of Embryo Original Diseases The International Peace Maternal and Child Health Hospital Shanghai Jiao Tong University School of Medicine 910 Hengshan Road Shanghai 200030 P. R. China
- Department of Gynecology and Obstetrics Shanghai Fourth People's Hospital School of Medicine Tongji University Shanghai 200434 China
| | - Qimanguli Saiding
- Shanghai Key Laboratory of Embryo Original Diseases The International Peace Maternal and Child Health Hospital Shanghai Jiao Tong University School of Medicine 910 Hengshan Road Shanghai 200030 P. R. China
| | - Xianjing Wang
- Shanghai Key Laboratory of Embryo Original Diseases The International Peace Maternal and Child Health Hospital Shanghai Jiao Tong University School of Medicine 910 Hengshan Road Shanghai 200030 P. R. China
| | - Juan Wang
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Wenguo Cui
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Xinliang Chen
- Shanghai Key Laboratory of Embryo Original Diseases The International Peace Maternal and Child Health Hospital Shanghai Jiao Tong University School of Medicine 910 Hengshan Road Shanghai 200030 P. R. China
| |
Collapse
|
10
|
An overview on the two recent decades’ study of peptides synthesis and biological activities in Iran. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2022. [DOI: 10.1007/s13738-021-02312-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Herrera-León C, Ramos-Martín F, Antonietti V, Sonnet P, D'Amelio N. The impact of phosphatidylserine exposure on cancer cell membranes on the activity of the anticancer peptide HB43. FEBS J 2021; 289:1984-2003. [PMID: 34767285 DOI: 10.1111/febs.16276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 10/19/2021] [Accepted: 11/10/2021] [Indexed: 02/04/2023]
Abstract
HB43 (FAKLLAKLAKKLL) is a synthetic peptide active against cell lines derived from breast, colon, melanoma, lung, prostate, and cervical cancers. Despite its remarkable spectrum of activity, the mechanism of action at the molecular level has never been investigated, preventing further optimization of its selectivity. The alternation of charged and hydrophobic residues suggests amphipathicity, but the formation of alpha-helical structure seems discouraged by its short length and the large number of positively charged residues. Using different biophysical and in silico approaches we show that HB43 is completely unstructured in solution but assumes alpha-helical conformation in the presence of DPC micelles and liposomes exposing phosphatidylserine (PS) used as mimics of cancer cell membranes. Membrane permeabilization assays demonstrate that the interaction leads to the preferential destabilization of PS-containing vesicles with respect to PC-containing ones, here used as noncancerous cell mimics. ssNMR reveals that HB43 is able to fluidify the internal structure of cancer-cell mimicking liposomes while MD simulations show its internalization in such bilayers. This is achieved by the formation of specific interactions between the lysine side chains and the carboxylate group of phosphatidylserine and/or the phosphate oxygen atoms of targeted phospholipids, which could catalyze the formation of the alpha helix required for internalization. With the aim of better understanding the peptide biocompatibility and the additional antibacterial activity, the interaction with noncancerous cell mimicking liposomes exposing phosphatidylcholine (PC) and bacterial mimicking bilayers exposing phosphatidylglycerol (PG) is also described.
Collapse
Affiliation(s)
- Claudia Herrera-León
- Unité de Génie Enzymatique et Cellulaire, UMR 7025, CNRS, Université de Picardie Jules Verne, Amiens, France
| | - Francisco Ramos-Martín
- Unité de Génie Enzymatique et Cellulaire, UMR 7025, CNRS, Université de Picardie Jules Verne, Amiens, France
| | - Viviane Antonietti
- Agents Infectieux, Résistance et Chimiothérapie, UFR de Pharmacie, AGIR UR 4294, Université de Picardie Jules Verne, Amiens, France
| | - Pascal Sonnet
- Agents Infectieux, Résistance et Chimiothérapie, UFR de Pharmacie, AGIR UR 4294, Université de Picardie Jules Verne, Amiens, France
| | - Nicola D'Amelio
- Unité de Génie Enzymatique et Cellulaire, UMR 7025, CNRS, Université de Picardie Jules Verne, Amiens, France
| |
Collapse
|
12
|
Rafeeq H, Hussain A, Tarar MHA, Afsheen N, Bilal M, Iqbal HMN. Expanding the bio-catalysis scope and applied perspectives of nanocarrier immobilized asparaginases. 3 Biotech 2021; 11:453. [PMID: 34616647 PMCID: PMC8486911 DOI: 10.1007/s13205-021-02999-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/18/2021] [Indexed: 02/08/2023] Open
Abstract
l-asparaginase is an essential enzyme in medicine and a well-known chemotherapeutic agent. This enzyme's importance is not limited to its use as an anti-cancer agent; it also has a wide variety of medicinal applications. Antimicrobial properties, prevention of infectious disorders, autoimmune diseases, and canine and feline cancer are among the applications. Apart from the healthcare industry, its importance has been identified in the food industry as a food manufacturing agent to lower acrylamide levels. When isolated from their natural habitats, they are especially susceptible to different denaturing conditions due to their protein composition. The use of an immobilization technique is one of the most common approaches suggested to address these limitations. Immobilization is a technique that involves fixing enzymes to or inside stable supports, resulting in a heterogeneous immobilized enzyme framework. Strong support structures usually stabilize the enzymes' configuration, and their functions are maintained as a result. In recent years, there has been a lot of curiosity and focus on the ability of immobilized enzymes. The nanomaterials with ideal properties can be used to immobilize enzymes to regulate key factors that determine the efficacy of bio-catalysis. With applications in biotechnology, immunosensing, biomedicine, and nanotechnology sectors have opened a realm of opportunities for enzyme immobilization.
Collapse
Affiliation(s)
- Hamza Rafeeq
- Department of Biochemistry, Riphah International University, Faisalabad, Pakistan
| | - Asim Hussain
- Department of Biochemistry, Riphah International University, Faisalabad, Pakistan
| | | | - Nadia Afsheen
- Department of Biochemistry, Riphah International University, Faisalabad, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an, 223003 China
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, 64849 Monterrey, Mexico
| |
Collapse
|