1
|
Rossi M, Martinengo B, Diamanti E, Salerno A, Rizzardi N, Fato R, Bergamini C, Souza de Oliveira A, de Araújo Marques Ferreira T, Andrade Holanda C, Romeiro LAS, Soeiro MDNC, Nunes K, Ferreira de Almeida Fiuza L, Meuser Batista M, Fraga CAM, E A Alkhalaf H, Elmahallawy EK, Ebiloma GU, De Koning HP, Vittorio S, Vistoli G, Blanquart C, Bertrand P, Bolognesi ML. Benign-by-Design SAHA Analogues for Human and Animal Vector-Borne Parasitic Diseases. ACS Med Chem Lett 2024; 15:1506-1515. [PMID: 39291036 PMCID: PMC11403742 DOI: 10.1021/acsmedchemlett.4c00242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/24/2024] [Accepted: 08/08/2024] [Indexed: 09/19/2024] Open
Abstract
The search for new drugs fulfilling One Health and Green Chemistry requirements is an urgent call. Here, for the first time, we envisaged developing SAHA analogues by starting from the cashew nutshell liquid (CNSL) agro-industrial waste and employing a metathesis approach. This sustainable combination (comprising principles #7 and #9) allowed a straightforward synthesis of compounds 13-20. All of them were found to not be toxic on HepG2, IMR-32, and L929 cell lines. Then, their potential against major human and animal vector-borne parasitic diseases (VBPDs) was assessed. Compound 13 emerged as a green hit against the trypomastigote forms of T. b. brucei. In silico studies showed that the T. b. brucei HDAC (TbDAC) catalytic pocket could be occupied with a similar binding mode by both SAHA and 13, providing a putative explanation for its antiparasitic mechanism of action (13, EC50 = 0.7 ± 0.2 μM).
Collapse
Affiliation(s)
- Michele Rossi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, Bologna 40126, Italy
| | - Bianca Martinengo
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, Bologna 40126, Italy
| | - Eleonora Diamanti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, Bologna 40126, Italy
| | - Alessandra Salerno
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, Bologna 40126, Italy
| | - Nicola Rizzardi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, Bologna 40126, Italy
| | - Romana Fato
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, Bologna 40126, Italy
| | - Christian Bergamini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, Bologna 40126, Italy
| | - Andressa Souza de Oliveira
- Laboratório de Desenvolvimento de Inovações Terapêuticas, Núcleo de Medicina Tropical, Faculdade de Medicina, Universidade de Brasília, Brasília 70910-900, Brazil
| | - Thais de Araújo Marques Ferreira
- Laboratório de Desenvolvimento de Inovações Terapêuticas, Núcleo de Medicina Tropical, Faculdade de Medicina, Universidade de Brasília, Brasília 70910-900, Brazil
| | - Cleonice Andrade Holanda
- Laboratório de Desenvolvimento de Inovações Terapêuticas, Núcleo de Medicina Tropical, Faculdade de Medicina, Universidade de Brasília, Brasília 70910-900, Brazil
| | - Luiz Antonio Soares Romeiro
- Laboratório de Desenvolvimento de Inovações Terapêuticas, Núcleo de Medicina Tropical, Faculdade de Medicina, Universidade de Brasília, Brasília 70910-900, Brazil
| | - Maria de Nazaré Correia Soeiro
- Laboratório de Biologia Celular do Instituto Oswaldo Cruz, Fiocruz. Avenida Brasil 4365, Manguinhos, Rio de Janeiro CEP 21040360, Brazil
| | - Krislayne Nunes
- Laboratório de Biologia Celular do Instituto Oswaldo Cruz, Fiocruz. Avenida Brasil 4365, Manguinhos, Rio de Janeiro CEP 21040360, Brazil
| | - Ludmila Ferreira de Almeida Fiuza
- Laboratório de Biologia Celular do Instituto Oswaldo Cruz, Fiocruz. Avenida Brasil 4365, Manguinhos, Rio de Janeiro CEP 21040360, Brazil
| | - Marcos Meuser Batista
- Laboratório de Biologia Celular do Instituto Oswaldo Cruz, Fiocruz. Avenida Brasil 4365, Manguinhos, Rio de Janeiro CEP 21040360, Brazil
| | - Carlos A M Fraga
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Hamed E A Alkhalaf
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G43 2DX, United Kingdom
| | - Ehab Kotb Elmahallawy
- Departamento de Sanidad Animal, Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), Facultad de Veterinaria, Universidad de Córdoba, Córdoba 14014, Spain
- Department of Zoonoses, Faculty of Veterinary Medicine, Sohag University, Sohag 82524, Egypt
| | - Godwin U Ebiloma
- School of Science, Engineering & Environment, University of Salford, Manchester M5 4NT, United Kingdom
| | - Harry P De Koning
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G43 2DX, United Kingdom
| | - Serena Vittorio
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, Milan 20133, Italy
| | - Giulio Vistoli
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, Milan 20133, Italy
| | - Christophe Blanquart
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, Nantes CRCI2NA, France
| | - Philippe Bertrand
- University of Poitiers IC2MP UMR CNRS 7285, 4, rue Michel Brunet - TSA 51106. B27, Poitiers cedex 9 86073, France
| | - Maria Laura Bolognesi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, Bologna 40126, Italy
| |
Collapse
|
2
|
Martinengo B, Diamanti E, Uliassi E, Bolognesi ML. Harnessing the 12 Green Chemistry Principles for Sustainable Antiparasitic Drugs: Toward the One Health Approach. ACS Infect Dis 2024; 10:1856-1870. [PMID: 38724015 PMCID: PMC11184551 DOI: 10.1021/acsinfecdis.4c00172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/12/2024] [Accepted: 04/16/2024] [Indexed: 06/15/2024]
Abstract
Antiparasitic drug development stands as a critical endeavor in combating infectious diseases which, by affecting the well-being of humans, animals, and the environment, pose significant global health challenges. In a scenario where conventional pharmacological interventions have proven inadequate, the One Health approach, which emphasizes interdisciplinary collaboration and holistic solutions, emerges as a vital strategy. By advocating for the integration of One Health principles into the R&D pharmaceutical pipeline, this Perspective promotes green chemistry methodologies to foster the development of environmentally friendly antiparasitic drugs for both human and animal health. Moreover, it highlights the urgent need to address vector-borne parasitic diseases (VBPDs) within the context of One Health-driven sustainable development, underscoring the pivotal role of medicinal chemists in driving transformative change. Aligned with the Sustainable Development Goals (SDGs) and the European Green Deal, this Perspective explores the application of the 12 Principles of Green Chemistry as a systematic framework to guide drug discovery and production efforts in the context of VBPD. Through interdisciplinary collaboration and a constant commitment to sustainability, the field can overcome the challenges posed by VBPD while promoting global and environmental responsibility. Serving as a call to action, scientists are urged to integrate One Health concepts and green chemistry principles into routine drug development practices, thereby paving the way for a more sustainable R&D pharmaceutical pipeline for antiparasitic drugs.
Collapse
Affiliation(s)
- Bianca Martinengo
- Department of Pharmacy and
Biotechnology, Alma Mater Studiorum - University
of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Eleonora Diamanti
- Department of Pharmacy and
Biotechnology, Alma Mater Studiorum - University
of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Elisa Uliassi
- Department of Pharmacy and
Biotechnology, Alma Mater Studiorum - University
of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Maria Laura Bolognesi
- Department of Pharmacy and
Biotechnology, Alma Mater Studiorum - University
of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| |
Collapse
|
3
|
Nunes Lemes LF, Magoulas GE, Souza de Oliveira A, Barrias E, de Camargo Nascente L, Granado R, Teixeira de Macedo Silva S, Assimomytis N, de Souza W, Bolognesi ML, Romeiro LAS, Calogeropoulou T. Valorizing Constituents of Cashew Nut Shell Liquid toward the Sustainable Development of New Drugs against Chagas Disease. ACS Infect Dis 2023; 9:1334-1345. [PMID: 37307287 DOI: 10.1021/acsinfecdis.3c00076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Six new ether phospholipid analogues encompassing constituents from cashew nut shell liquid as the lipid portion were synthesized in an effort to valorize byproducts of the cashew industry toward the generation of potent compounds against Chagas disease. Anacardic acids, cardanols, and cardols were used as the lipid portions and choline as the polar headgroup. The compounds were evaluated for their in vitro antiparasitic activity against different developmental stages of Trypanosoma cruzi. Compounds 16 and 17 were found to be the most potent against T. cruzi epimastigotes, trypomastigotes, and intracellular amastigotes exhibiting selectivity indices against the latter 32-fold and 7-fold higher than current drug benznidazole, respectively. Hence, four out of six analogues can be considered as hit-compounds toward the sustainable development of new treatments for Chagas disease, based on inexpensive agro-waste material.
Collapse
Affiliation(s)
- Laís Flávia Nunes Lemes
- Tropical Medicine Center, Faculty of Medicine, University of Brasília, Campus Universitário Darcy Ribeiro, 70910-900 Brasília, Distrito Federal, Brazil
- Catholic University of Brasilia, QS 07, Lote 01, EPCT, Águas Claras, 71966-700 Brasília, Distrito Federal, Brazil
| | - George E Magoulas
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Andressa Souza de Oliveira
- Department of Pharmacy, Faculty of Health Sciences, University of Brasília, Campus Universitário Darcy Ribeiro, 70910-900 Brasília, Distrito Federal, Brazil
| | - Emile Barrias
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho s/n, Ilha do Fundão, 21941-900 Rio de Janeiro, Brazil
- Centro Nacional de Biologia Estrutural e Bioimagem, Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho s/n, Ilha do Fundão, 21941-902 Rio de Janeiro, Brazil
| | - Luciana de Camargo Nascente
- Department of Pharmacy, Faculty of Health Sciences, University of Brasília, Campus Universitário Darcy Ribeiro, 70910-900 Brasília, Distrito Federal, Brazil
| | - Renato Granado
- Laboratory of Metrology Applied to Life Sciences, National Institute of Metrology, Quality and Technology - Inmetro, Rua Santa Alexandrina, 416, Rio Comprido, 20261-232 Rio de Janeiro, Brazil
| | - Sara Teixeira de Macedo Silva
- Centro Nacional de Biologia Estrutural e Bioimagem, Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho s/n, Ilha do Fundão, 21941-902 Rio de Janeiro, Brazil
| | - Nikos Assimomytis
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Wanderley de Souza
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho s/n, Ilha do Fundão, 21941-900 Rio de Janeiro, Brazil
- Centro Nacional de Biologia Estrutural e Bioimagem, Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho s/n, Ilha do Fundão, 21941-902 Rio de Janeiro, Brazil
| | - Maria Laura Bolognesi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Luiz Antonio Soares Romeiro
- Tropical Medicine Center, Faculty of Medicine, University of Brasília, Campus Universitário Darcy Ribeiro, 70910-900 Brasília, Distrito Federal, Brazil
- Department of Pharmacy, Faculty of Health Sciences, University of Brasília, Campus Universitário Darcy Ribeiro, 70910-900 Brasília, Distrito Federal, Brazil
| | - Theodora Calogeropoulou
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| |
Collapse
|
4
|
Nunes JA, Ferreira da Silva-Júnior E. Hybrid-Compounds Against Trypanosomiases. Curr Drug Targets 2022; 23:1319-1329. [PMID: 35579157 DOI: 10.2174/1389450123666220509202352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/11/2022] [Accepted: 03/22/2022] [Indexed: 01/25/2023]
Abstract
Neglected tropical diseases (NTDs) are a global public health problem associated with approximately 20 conditions. Among these, Chagas disease (CD), caused by Trypanosoma cruzi, and human African trypanosomiasis (HAT), caused by T. brucei gambiense or T. brucei rhodesiense, affect mainly the populations of the countries from the American continent and sub- Saharan Africa. Pharmacological therapies used for such illnesses are not yet fully effective. In this context, the search for new therapeutic alternatives against these diseases becomes necessary. A drug design tool, recently recognized for its effectiveness in obtaining ligands capable of modulating multiple targets for complex diseases, concerns molecular hybridization. Therefore, this review aims to demonstrate the importance of applying molecular hybridization in facing the challenges of developing prototypes as candidates for the treatment of parasitic diseases. Therefore, studies involving different chemical classes that investigated and used hybrid compounds in recent years were compiled in this work, such as thiazolidinones, naphthoquinones, quinolines, and others. Finally, this review covers several applications of the exploration of molecular hybridization as a potent strategy in the development of molecules potentially active against trypanosomiases, in order to provide information that can help in designing new drugs with trypanocidal activity.
Collapse
Affiliation(s)
- Jessica Alves Nunes
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, 57072-970, Maceió, Brazil
| | - Edeildo Ferreira da Silva-Júnior
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, 57072-970, Maceió, Brazil.,Institute of Pharmaceutical Sciences, Federal University of Alagoas, 57072-970, Maceió, Brazil
| |
Collapse
|
5
|
Sahin C, Magomedova L, Ferreira TAM, Liu J, Tiefenbach J, Alves PS, Queiroz FJG, Oliveira ASD, Bhattacharyya M, Grouleff J, Nogueira PCN, Silveira ER, Moreira DC, Leite JRSDA, Brand GD, Uehling D, Poda G, Krause H, Cummins CL, Romeiro LAS. Phenolic Lipids Derived from Cashew Nut Shell Liquid to Treat Metabolic Diseases. J Med Chem 2022; 65:1961-1978. [PMID: 35089724 DOI: 10.1021/acs.jmedchem.1c01542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Metabolic diseases are increasing at staggering rates globally. The peroxisome proliferator-activated receptors (PPARα/γ/δ) are fatty acid sensors that help mitigate imbalances between energy uptake and utilization. Herein, we report compounds derived from phenolic lipids present in cashew nut shell liquid (CNSL), an abundant waste byproduct, in an effort to create effective, accessible, and sustainable drugs. Derivatives of anacardic acid and cardanol were tested for PPAR activity in HEK293 cell co-transfection assays, primary hepatocytes, and 3T3-L1 adipocytes. In vivo studies using PPAR-expressing zebrafish embryos identified CNSL derivatives with varying tissue-specific activities. LDT409 (23) is an analogue of cardanol with partial agonist activity for PPARα and PPARγ. Pharmacokinetic profiling showed that 23 is orally bioavailable with a half-life of 4 h in mice. CNSL derivatives represent a sustainable source of selective PPAR modulators with balanced intermediate affinities (EC50 ∼ 100 nM to 10 μM) that provide distinct and favorable gene activation profiles for the treatment of diabetes and obesity.
Collapse
Affiliation(s)
- Cigdem Sahin
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Lilia Magomedova
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Thais A M Ferreira
- Department of Pharmacy, Faculty of Health Sciences, University of Brasilia, Brasilia, DF 71910-900, Brazil
| | - Jiabao Liu
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Jens Tiefenbach
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Priscilla S Alves
- Department of Pharmacy, Faculty of Health Sciences, University of Brasilia, Brasilia, DF 71910-900, Brazil
| | - Fellipe J G Queiroz
- Department of Pharmacy, Faculty of Health Sciences, University of Brasilia, Brasilia, DF 71910-900, Brazil
| | - Andressa S de Oliveira
- Department of Pharmacy, Faculty of Health Sciences, University of Brasilia, Brasilia, DF 71910-900, Brazil
| | - Mousumi Bhattacharyya
- Ontario Institute for Cancer Research, MaRS Centre, Toronto, Ontario M5G 0A3, Canada
| | - Julie Grouleff
- Ontario Institute for Cancer Research, MaRS Centre, Toronto, Ontario M5G 0A3, Canada
| | - Patrícia C N Nogueira
- CENAUREMN, Federal University of Ceará, Campus do Pici, Fortaleza, CE 60020-181, Brazil
| | - Edilberto R Silveira
- CENAUREMN, Federal University of Ceará, Campus do Pici, Fortaleza, CE 60020-181, Brazil
| | - Daniel C Moreira
- Faculty of Medicine, University of Brasilia, Brasilia, DF 71910-900, Brazil
| | | | - Guilherme D Brand
- Chemistry Institute, University of Brasília, Campus Universitário Darcy Ribeiro, Brasília, DF 70910-900, Brazil
| | - David Uehling
- Ontario Institute for Cancer Research, MaRS Centre, Toronto, Ontario M5G 0A3, Canada
| | - Gennady Poda
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada.,Ontario Institute for Cancer Research, MaRS Centre, Toronto, Ontario M5G 0A3, Canada
| | - Henry Krause
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Carolyn L Cummins
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Luiz A S Romeiro
- Department of Pharmacy, Faculty of Health Sciences, University of Brasilia, Brasilia, DF 71910-900, Brazil
| |
Collapse
|
6
|
Yıldırım H, Yıldız M, Bayrak N, Mataracı-Kara E, Özbek-Çelik B, Otsuka M, Fujita M, Radwan MO, TuYuN AF. Natural-product-inspired design and synthesis of thiolated coenzyme Q analogs as promising agents against Gram-positive bacterial strains: insights into structure–activity relationship, activity profile, mode of action, and molecular docking. RSC Adv 2022; 12:20507-20518. [PMID: 35919160 PMCID: PMC9284347 DOI: 10.1039/d2ra02136f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 07/05/2022] [Indexed: 11/21/2022] Open
Abstract
In an attempt to develop effective and potentially active antibacterial and/or antifungal agents, we designed, synthesized, and characterized thiolated CoQ analogs (CoQ1–8) with an extensive antimicrobial study. The antimicrobial profile of these analogs was determined using four Gram-negative bacteria, three Gram-positive bacteria, and three fungi. Because of the fact that the thiolated CoQ analogs were quite effective on all tested Gram-positive bacterial strains, including Staphylococcus aureus (ATCC® 29213) and Enterococcus faecalis (ATCC® 29212), the first two thiolated CoQ analogs emerged as potentially the most desirable ones in this series. Importantly, after the evaluation of the antibacterial and antifungal activity, we presented an initial structure–activity relationship for these CoQ analogs. In addition, the most promising thiolated CoQ analogs (CoQ1 and CoQ2) having the lowest MIC values on all tested Gram-positive bacterial strains, were further evaluated for their inhibition capacities of biofilm formation after evaluating their in vitro potential antimicrobial activity against each of 20 clinically obtained resistant strains of Gram-positive bacteria. CoQ1 and CoQ2 exhibited potential molecular interactions with S. aureus DNA gyrase in addition to excellent pharmacokinetics and lead-likeness profiles. Our findings offer important implications for a potential antimicrobial drug candidate, in particular for the treatment of infections caused by clinically resistant MRSA isolates. In an attempt to develop effective and potentially active antibacterial and/or antifungal agents, we designed, synthesized, and characterized thiolated CoQ analogs (CoQ1–8) with an extensive antimicrobial study.![]()
Collapse
Affiliation(s)
- Hatice Yıldırım
- Department of Chemistry, Engineering Faculty, Istanbul University-Cerrahpasa, Avcilar, 34320, Istanbul, Turkey
| | - Mahmut Yıldız
- Department of Chemistry, Gebze Technical University, Gebze, 41400, Kocaeli, Turkey
| | - Nilüfer Bayrak
- Department of Chemistry, Engineering Faculty, Istanbul University-Cerrahpasa, Avcilar, 34320, Istanbul, Turkey
| | - Emel Mataracı-Kara
- Department of Pharmaceutical Microbiology, Pharmacy Faculty, Istanbul University, Beyazit, 34116, Istanbul, Turkey
| | - Berna Özbek-Çelik
- Department of Pharmaceutical Microbiology, Pharmacy Faculty, Istanbul University, Beyazit, 34116, Istanbul, Turkey
| | - Masami Otsuka
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, 5–1 Oe-honmachi, Chuo-ku, Kumamoto 862–0973, Japan
- Department of Drug Discovery, Science Farm Ltd, 1–7–30 Kuhonji, Chuo-ku, Kumamoto 862–0976, Japan
| | - Mikako Fujita
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, 5–1 Oe-honmachi, Chuo-ku, Kumamoto 862–0973, Japan
| | - Mohamed O. Radwan
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, 5–1 Oe-honmachi, Chuo-ku, Kumamoto 862–0973, Japan
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Amaç Fatih TuYuN
- Department of Chemistry, Faculty of Science, Istanbul University, Fatih, Istanbul, Turkey
| |
Collapse
|
7
|
Espro C, Paone E, Mauriello F, Gotti R, Uliassi E, Bolognesi ML, Rodríguez-Padrón D, Luque R. Sustainable production of pharmaceutical, nutraceutical and bioactive compounds from biomass and waste. Chem Soc Rev 2021; 50:11191-11207. [PMID: 34553208 DOI: 10.1039/d1cs00524c] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The aim of this tutorial review is to provide a general overview of processes, technologies and challenges in the production of pharmaceutical and bioactive compounds from food waste and lignocellulosic residues. Particular attention is given to benign-by-design processes instinctively devoted to environmental sustainability for the recovery of bioactive compounds from food waste as well as for the production of alcohols, acids, polyols, furans and aromatic compounds from lignocellulosic residues. At the same time, novel green synthetic routes for the production of active pharmaceutical ingredients and the development of novel bioactive compounds are discussed. Recent success industrial stories on the use of food waste and lignocellulosic residues for pharmaceutical and nutraceutical applications are also discussed.
Collapse
Affiliation(s)
- Claudia Espro
- Dipartimento di Ingegneria, Università di Messina, Messina, Italy
| | - Emilia Paone
- Dipartimento di Ingegneria Industriale (DIEF), Università degli Studi di Firenze, Firenze, Italy.,Dipartimento DICEAM, Università degli Studi Mediterranea di Reggio Calabria, Reggio Calabria, Italy
| | - Francesco Mauriello
- Dipartimento DICEAM, Università degli Studi Mediterranea di Reggio Calabria, Reggio Calabria, Italy
| | - Roberto Gotti
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum - Università di Bologna, Bologna, Italy.
| | - Elisa Uliassi
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum - Università di Bologna, Bologna, Italy.
| | - Maria Laura Bolognesi
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum - Università di Bologna, Bologna, Italy.
| | - Daily Rodríguez-Padrón
- Dipartimento di Ingegneria, Università di Messina, Messina, Italy.,Departamento de Química Orgánica, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie (C-3), Ctra. Nnal. IV-A, Km 396, E14014, Córdoba, Spain
| | - Rafael Luque
- Departamento de Química Orgánica, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie (C-3), Ctra. Nnal. IV-A, Km 396, E14014, Córdoba, Spain.,Peoples' Friendship University of Russia (RUDN University), 6 Miklukho Maklaya str., 117198, Moscow, Russian Federation
| |
Collapse
|
8
|
de Andrade Ramos G, Souza de Oliveira A, Bartolini M, Naldi M, Liparulo I, Bergamini C, Uliassi E, Wu L, Fraser PE, Abreu M, Kiametis AS, Gargano R, Silveira ER, Brand GD, Prchal L, Soukup O, Korábečný J, Bolognesi ML, Soares Romeiro LA. Discovery of sustainable drugs for Alzheimer's disease: cardanol-derived cholinesterase inhibitors with antioxidant and anti-amyloid properties. RSC Med Chem 2021; 12:1154-1163. [PMID: 34355181 PMCID: PMC8293282 DOI: 10.1039/d1md00046b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/29/2021] [Indexed: 01/21/2023] Open
Abstract
As part of our efforts to develop sustainable drugs for Alzheimer's disease (AD), we have been focusing on the inexpensive and largely available cashew nut shell liquid (CNSL) as a starting material for the identification of new acetylcholinesterase (AChE) inhibitors. Herein, we decided to investigate whether cardanol, a phenolic CNSL component, could serve as a scaffold for improved compounds with concomitant anti-amyloid and antioxidant activities. Ten new derivatives, carrying the intact phenolic function and an aminomethyl functionality, were synthesized and first tested for their inhibitory potencies towards AChE and butyrylcholinesterase (BChE). 5 and 11 were found to inhibit human BChE at a single-digit micromolar concentration. Transmission electron microscopy revealed the potential of five derivatives to modulate Aβ aggregation, including 5 and 11. In HORAC assays, 5 and 11 performed similarly to standard antioxidant ferulic acid as hydroxyl scavenging agents. Furthermore, in in vitro studies in neuronal cell cultures, 5 and 11 were found to effectively inhibit reactive oxygen species production at a 10 μM concentration. They also showed a favorable initial ADME/Tox profile. Overall, these results suggest that CNSL is a promising raw material for the development of potential disease-modifying treatments for AD.
Collapse
Affiliation(s)
- Giselle de Andrade Ramos
- Department of Pharmacy, Health Sciences Faculty, University of Brasília, Campus Universitário Darcy Ribeiro 70910-900 Brasília DF Brazil
| | - Andressa Souza de Oliveira
- Department of Pharmacy, Health Sciences Faculty, University of Brasília, Campus Universitário Darcy Ribeiro 70910-900 Brasília DF Brazil
| | - Manuela Bartolini
- Department of Pharmacy and Biotechnology, University of Bologna Via Belmeloro 6 40126 Bologna Italy
| | - Marina Naldi
- Department of Pharmacy and Biotechnology, University of Bologna Via Belmeloro 6 40126 Bologna Italy
| | - Irene Liparulo
- Department of Pharmacy and Biotechnology, University of Bologna Via Belmeloro 6 40126 Bologna Italy
| | - Christian Bergamini
- Department of Pharmacy and Biotechnology, University of Bologna Via Belmeloro 6 40126 Bologna Italy
| | - Elisa Uliassi
- Department of Pharmacy and Biotechnology, University of Bologna Via Belmeloro 6 40126 Bologna Italy
| | - Ling Wu
- Tanz Centre for Research in Neurodegenerative Diseases and Dept. of Medical Biophysics, University of Toronto Krembil Discovery Tower, 60 Leonard Avenue, 6KD-402 M5T 2S8 Toronto ON Canada
| | - Paul E Fraser
- Tanz Centre for Research in Neurodegenerative Diseases and Dept. of Medical Biophysics, University of Toronto Krembil Discovery Tower, 60 Leonard Avenue, 6KD-402 M5T 2S8 Toronto ON Canada
| | - Monica Abreu
- Physics Institute, University of Brasília, Campus Universitário Darcy Ribeiro 70910-900 Brasília DF Brazil
| | - Alessandra Sofia Kiametis
- Physics Institute, University of Brasília, Campus Universitário Darcy Ribeiro 70910-900 Brasília DF Brazil
| | - Ricardo Gargano
- Physics Institute, University of Brasília, Campus Universitário Darcy Ribeiro 70910-900 Brasília DF Brazil
| | - Edilberto Rocha Silveira
- CENAUREMN, Department of Organic and Inorganic Chemistry, Federal University of Ceará 60021-970 Fortaleza CE Brazil
| | - Guilherme D Brand
- Chemistry Institute, University of Brasília, Campus Universitário Darcy Ribeiro 70910-900 Brasília DF Brazil
| | - Lukas Prchal
- Biomedical Research Centre, University Hospital Hradec Kralove Sokolska 581, 500 05 Hradec Kralove Czech Republic
| | - Ondřej Soukup
- Biomedical Research Centre, University Hospital Hradec Kralove Sokolska 581, 500 05 Hradec Kralove Czech Republic
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence Trebesska 1575, 500 01 Hradec Kralove Czech Republic
| | - Jan Korábečný
- Biomedical Research Centre, University Hospital Hradec Kralove Sokolska 581, 500 05 Hradec Kralove Czech Republic
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence Trebesska 1575, 500 01 Hradec Kralove Czech Republic
| | - Maria Laura Bolognesi
- Department of Pharmacy and Biotechnology, University of Bologna Via Belmeloro 6 40126 Bologna Italy
| | - Luiz Antonio Soares Romeiro
- Department of Pharmacy, Health Sciences Faculty, University of Brasília, Campus Universitário Darcy Ribeiro 70910-900 Brasília DF Brazil
| |
Collapse
|
9
|
Carruthers LV, Munday JC, Ebiloma GU, Steketee P, Jayaraman S, Campagnaro GD, Ungogo MA, Lemgruber L, Donachie AM, Rowan TG, Peter R, Morrison LJ, Barrett MP, De Koning HP. Diminazene resistance in Trypanosoma congolense is not caused by reduced transport capacity but associated with reduced mitochondrial membrane potential. Mol Microbiol 2021; 116:564-588. [PMID: 33932053 DOI: 10.1111/mmi.14733] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/14/2021] [Accepted: 04/27/2021] [Indexed: 01/27/2023]
Abstract
Trypanosoma congolense is a principal agent causing livestock trypanosomiasis in Africa, costing developing economies billions of dollars and undermining food security. Only the diamidine diminazene and the phenanthridine isometamidium are regularly used, and resistance is widespread but poorly understood. We induced stable diminazene resistance in T. congolense strain IL3000 in vitro. There was no cross-resistance with the phenanthridine drugs, melaminophenyl arsenicals, oxaborole trypanocides, or with diamidine trypanocides, except the close analogs DB829 and DB75. Fluorescence microscopy showed that accumulation of DB75 was inhibited by folate. Uptake of [3 H]-diminazene was slow with low affinity and partly but reciprocally inhibited by folate and by competing diamidines. Expression of T. congolense folate transporters in diminazene-resistant Trypanosoma brucei brucei significantly sensitized the cells to diminazene and DB829, but not to oxaborole AN7973. However, [3 H]-diminazene transport studies, whole-genome sequencing, and RNA-seq found no major changes in diminazene uptake, folate transporter sequence, or expression. Instead, all resistant clones displayed a moderate reduction in the mitochondrial membrane potential Ψm. We conclude that diminazene uptake in T. congolense proceed via multiple low affinity mechanisms including folate transporters; while resistance is associated with a reduction in Ψm it is unclear whether this is the primary cause of the resistance.
Collapse
Affiliation(s)
- Lauren V Carruthers
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Jane C Munday
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Godwin U Ebiloma
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.,School of Health and Life Sciences, Teesside University, Middlesbrough, UK
| | - Pieter Steketee
- Roslin Institute, Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Edinburgh, UK
| | - Siddharth Jayaraman
- Roslin Institute, Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Edinburgh, UK
| | - Gustavo D Campagnaro
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Marzuq A Ungogo
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Leandro Lemgruber
- Glasgow Imaging Facility, Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Anne-Marie Donachie
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Tim G Rowan
- Global Alliance for Livestock Veterinary Medicine, Pentlands Science Park, Edinburgh, UK
| | - Rose Peter
- Global Alliance for Livestock Veterinary Medicine, Pentlands Science Park, Edinburgh, UK
| | - Liam J Morrison
- Roslin Institute, Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Edinburgh, UK
| | - Michael P Barrett
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.,Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
| | - Harry P De Koning
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
10
|
Zheoat AM, Alenezi S, Elmahallawy EK, Ungogo MA, Alghamdi AH, Watson DG, Igoli JO, Gray AI, de Koning HP, Ferro VA. Antitrypanosomal and Antileishmanial Activity of Chalcones and Flavanones from Polygonum salicifolium. Pathogens 2021; 10:pathogens10020175. [PMID: 33562567 PMCID: PMC7915666 DOI: 10.3390/pathogens10020175] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/12/2022] Open
Abstract
Trypanosomiasis and leishmaniasis are a group of neglected parasitic diseases caused by several species of parasites belonging to the family Trypansomatida. The present study investigated the antitrypanosomal and antileishmanial activity of chalcones and flavanones from Polygonum salicifolium, which grows in the wetlands of Iraq. The phytochemical evaluation of the plant yielded two chalcones, 2′,4′-dimethoxy-6′-hydroxychalcone and 2′,5′-dimethoxy-4′,6′-dihydroxychalcone, and two flavanones, 5,7-dimethoxyflavanone and 5,8-dimethoxy-7-hydroxyflavanone. The chalcones showed a good antitrypanosomal and antileishmanial activity while the flavanones were inactive. The EC50 values for 2′,4′-dimethoxy-6′-hydroxychalcone against Trypanosoma brucei brucei (0.5 μg/mL), T. congolense (2.5 μg/mL), and Leishmania mexicana (5.2 μg/mL) indicated it was the most active of the compounds. None of the compounds displayed any toxicity against a human cell line, even at 100 µg/mL, or cross-resistance with first line clinical trypanocides, such as diamidines and melaminophenyl arsenicals. Taken together, our study provides significant data in relation to the activity of chalcones and flavanones from P. salicifolium against both parasites in vitro. Further future research is suggested in order to investigate the mode of action of the extracted chalcones against the parasites.
Collapse
Affiliation(s)
- Ahmed M. Zheoat
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK; (A.M.Z.); (S.A.); (D.G.W.); (J.O.I.); (A.I.G.); (V.A.F.)
- Al-Manara College for Medical Sciences, Misan 10028, Iraq
| | - Samya Alenezi
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK; (A.M.Z.); (S.A.); (D.G.W.); (J.O.I.); (A.I.G.); (V.A.F.)
| | - Ehab Kotb Elmahallawy
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK; (E.K.E.); (M.A.U.); (A.H.A.)
- Department of Zoonoses, Faculty of Veterinary Medicine, Sohag University, Sohag 82524, Egypt
| | - Marzuq A. Ungogo
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK; (E.K.E.); (M.A.U.); (A.H.A.)
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria 810107, Nigeria
| | - Ali H. Alghamdi
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK; (E.K.E.); (M.A.U.); (A.H.A.)
- Biology Department, Faculty of Science, Albaha University, Albaha 7738-65799, Saudi Arabia
| | - David G. Watson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK; (A.M.Z.); (S.A.); (D.G.W.); (J.O.I.); (A.I.G.); (V.A.F.)
| | - John O. Igoli
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK; (A.M.Z.); (S.A.); (D.G.W.); (J.O.I.); (A.I.G.); (V.A.F.)
- Phytochemistry Research Group, Department of Chemistry, University of Agriculture, Makurdi 2373, Nigeria
| | - Alexander I. Gray
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK; (A.M.Z.); (S.A.); (D.G.W.); (J.O.I.); (A.I.G.); (V.A.F.)
| | - Harry P. de Koning
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK; (E.K.E.); (M.A.U.); (A.H.A.)
- Correspondence:
| | - Valerie A. Ferro
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK; (A.M.Z.); (S.A.); (D.G.W.); (J.O.I.); (A.I.G.); (V.A.F.)
| |
Collapse
|
11
|
Alenezi SS, Natto MJ, Igoli JO, Gray AI, Fearnley J, Fearnley H, de Koning HP, Watson DG. Novel flavanones with anti-trypanosomal activity isolated from Zambian and Tanzanian propolis samples. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2020; 14:201-207. [PMID: 33160277 PMCID: PMC7649109 DOI: 10.1016/j.ijpddr.2020.10.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/20/2022]
Abstract
A bioassay-guided phytochemical investigation of propolis samples from Tanzania and Zambia that screened for activity against Trypanosoma brucei has led to the isolation of two novel flavanones with promising antitrypanosomal activity. The compounds were characterized based on their spectral and physical data and identified as 6-(1,1-dimethylallyl) pinocembrin and 5-hydroxy-4″,4″-dimethyl-5″-methyl-5″-H-dihydrofuranol [2″,3″,6,7] flavanone. The two compounds, together with the propolis extracts and fractions, were assayed against a standard drug-sensitive strain of T. b. brucei (s427 wild-type), multi-drug resistant-resistant T. b. brucei (B48), drug-sensitive T. congolense (1L300) and a derived diminazene-resistant T. congolense strain (6C3), and for toxicity against U947 human cells and RAW 246.7 murine cells. Activity against T. b. brucei was higher than against T. congolense. Interestingly, the Tanzanian propolis extract was found to be more active than its fractions and purified compounds in these assays, with an IC50 of 1.20 μg/mL against T. b. brucei. The results of a cytotoxicity assay showed that the propolis extracts were less toxic than the purified compounds with mean IC50 values > 165.0 μg/mL. Two samples of propolis from East Africa display good activity against Trypanosoma brucei and T. congolense. Activity against both wild type and pentamidine and diminazene resistant forms. Two novel flavonoids and one known flavonoid were isolated from Tanzanian and Zambian propolis samples and characterized. Pure isolated compounds not much more active than crude extracts. Repeated observation of anti-protozoal activity shows the importance of propolis indefending the hive against infections.
Collapse
Affiliation(s)
- Samya S Alenezi
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, G40RE, Glasgow, UK
| | - Manal J Natto
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences University of Glasgow, Sir Graeme Davies Building 120 University Place, G12 8TA, Glasgow, Scotland, UK
| | - John O Igoli
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, G40RE, Glasgow, UK; Phytochemistry Research Group, Department of Chemistry, University of Agriculture, PMB 2373, Makurdi, Nigeria
| | - Alexander I Gray
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, G40RE, Glasgow, UK
| | | | | | - Harry P de Koning
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences University of Glasgow, Sir Graeme Davies Building 120 University Place, G12 8TA, Glasgow, Scotland, UK.
| | - David G Watson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, G40RE, Glasgow, UK.
| |
Collapse
|
12
|
Kara EM, Bayrak N, Yıldırım H, Yıldız M, Celik BO, Tuyun AF. Chlorinated plastoquinone analogs that inhibit Staphylococcus epidermidis and Candida albicans growth. Folia Microbiol (Praha) 2020; 65:785-795. [PMID: 32458315 DOI: 10.1007/s12223-020-00783-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 02/28/2020] [Indexed: 02/06/2023]
Abstract
Infectious diseases are the significant global health problem because of drug resistance to most classes of antimicrobials. Interest is growing in the development of new antimicrobials in pharmaceutical discovery. For that reason, the urgency for scientists to find and/or develop new important molecules is needed. Many natural active molecules that exhibit various biological activities have been isolated from the nature. For the present research, a new selected set of aminobenzoquinones, denoted as plastoquinone analogs (PQ1-24), was employed for their in vitro antimicrobial potential in a panel of seven bacterial strains (three Gram-positive and four Gram-negative bacteria) and three fungi. The results revealed PQ analogs with specific activity against bacteria including Staphylococcus epidermidis and pathogenic fungi, including Candida albicans. PQ8 containing methoxy group at the ortho position on the phenylamino moiety exhibited the highest growth inhibition against S. epidermidis with a minimum inhibitory concentration of 9.76 μg/mL. The antifungal profile of all PQ analogs indicated that five analogs (while PQ1, PQ8, PQ9, PQ11, and PQ18 were effective against Candida albicans, PQ1 and PQ18 were effective against Candida tropicalis) have potent antifungal activity. Selected analogs, PQ1 and PQ18, were studied for biofilm evaluation and time-kill kinetic study for better understanding.
Collapse
Affiliation(s)
- Emel Mataracı Kara
- Pharmaceutical Microbiology Department, Pharmacy Faculty, Istanbul University, Beyazit, 34116, Istanbul, Turkey.
| | - Nilüfer Bayrak
- Chemistry Department, Engineering Faculty, Istanbul University-Cerrahpasa, Avcilar, 34320, Istanbul, Turkey
| | - Hatice Yıldırım
- Chemistry Department, Engineering Faculty, Istanbul University-Cerrahpasa, Avcilar, 34320, Istanbul, Turkey
| | - Mahmut Yıldız
- Chemistry Department, Gebze Technical University, Gebze, 41400, Kocaeli, Turkey
| | - Berna Ozbek Celik
- Pharmaceutical Microbiology Department, Pharmacy Faculty, Istanbul University, Beyazit, 34116, Istanbul, Turkey
| | - Amaç Fatih Tuyun
- Department of Chemistry, Faculty of Science, Istanbul University, Vezneciler, 34134, Istanbul, Turkey.
| |
Collapse
|
13
|
Ivasiv V, Albertini C, Gonçalves AE, Rossi M, Bolognesi ML. Molecular Hybridization as a Tool for Designing Multitarget Drug Candidates for Complex Diseases. Curr Top Med Chem 2019; 19:1694-1711. [DOI: 10.2174/1568026619666190619115735] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/07/2019] [Accepted: 06/12/2019] [Indexed: 12/14/2022]
Abstract
Molecular hybridization is a well-exploited medicinal chemistry strategy that aims to combine
two molecules (or parts of them) in a new, single chemical entity. Recently, it has been recognized
as an effective approach to design ligands able to modulate multiple targets of interest. Hybrid compounds
can be obtained by linking (presence of a linker) or framework integration (merging or fusing)
strategies. Although very promising to combat the multifactorial nature of complex diseases, the development
of molecular hybrids faces the critical issues of selecting the right target combination and the
achievement of a balanced activity towards them, while maintaining drug-like-properties. In this review,
we present recent case histories from our own research group that demonstrate why and how molecular
hybridization can be carried out to address the challenges of multitarget drug discovery in two therapeutic
areas that are Alzheimer’s and parasitic diseases. Selected examples spanning from linker- to fragment-
based hybrids will allow to discuss issues and consequences relevant to drug design.
Collapse
Affiliation(s)
- Viktoriya Ivasiv
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum − University of Bologna, I-40126, Bologna, Italy
| | - Claudia Albertini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum − University of Bologna, I-40126, Bologna, Italy
| | - Ana E. Gonçalves
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum − University of Bologna, I-40126, Bologna, Italy
| | - Michele Rossi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum − University of Bologna, I-40126, Bologna, Italy
| | - Maria L. Bolognesi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum − University of Bologna, I-40126, Bologna, Italy
| |
Collapse
|
14
|
Zhang L, Jiang Y, Pang X, Hua P, Gao X, Li Q, Li Z. Simultaneous Optimization of Ultrasound-Assisted Extraction for Flavonoids and Antioxidant Activity of Angelica keiskei Using Response Surface Methodology (RSM). Molecules 2019; 24:E3461. [PMID: 31554203 PMCID: PMC6804174 DOI: 10.3390/molecules24193461] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/06/2019] [Accepted: 09/18/2019] [Indexed: 02/02/2023] Open
Abstract
Angelica keiskei Koidzumi (A. keiskei), as a Japanese edible herbal plant, enjoys a variety of biological activities due to the presence of numerous active compounds, especially flavonoids. This study aims for the optimization of ultrasound-assisted extraction (UAE) for flavonoids in A. keiskei and their antioxidant activity by using the response surface methodology (RSM). Single-factor experiments and a four-factor three-level Box-Behnken design (BBD) were performed to explore the effects of the following parameters on flavonoid extraction and antioxidant activity evaluation: ultrasonic temperature (X1), ultrasonic time (X2), ethanol concentration (X3) and liquid-solid ratio (X4). The optimum conditions of the combination of total flavonoid content (TFC), 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging capacity (DPPH-RSC) and ferric-reducing antioxidant power (FRAP) were as follows: X1 = 80 °C, X2 = 4 min, X3 = 78%, X4 = 35 mL/g, respectively. The experimental results provide a theoretical basis for the extensive utilization of A. keiskei and flavonoids extraction from A. keiskei as a potential source of antioxidants.
Collapse
Affiliation(s)
- Lei Zhang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China.
- Institute of Angelica keiskei Health Industry Technology, Qingdao University, Qingdao 266071, China.
| | - Yuhuan Jiang
- Institute of Angelica keiskei Health Industry Technology, Qingdao University, Qingdao 266071, China.
- Institute of Advanced Cross-Field Science, College of Life Sciences, Qingdao University, Qingdao 266071, China.
| | - Xuening Pang
- Institute of Angelica keiskei Health Industry Technology, Qingdao University, Qingdao 266071, China.
- Institute of Advanced Cross-Field Science, College of Life Sciences, Qingdao University, Qingdao 266071, China.
| | - Puyue Hua
- Institute of Angelica keiskei Health Industry Technology, Qingdao University, Qingdao 266071, China.
- Institute of Advanced Cross-Field Science, College of Life Sciences, Qingdao University, Qingdao 266071, China.
| | - Xiang Gao
- Institute of Angelica keiskei Health Industry Technology, Qingdao University, Qingdao 266071, China.
- Institute of Advanced Cross-Field Science, College of Life Sciences, Qingdao University, Qingdao 266071, China.
| | - Qun Li
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China.
- Institute of Angelica keiskei Health Industry Technology, Qingdao University, Qingdao 266071, China.
| | - Zichao Li
- Institute of Angelica keiskei Health Industry Technology, Qingdao University, Qingdao 266071, China.
- Institute of Advanced Cross-Field Science, College of Life Sciences, Qingdao University, Qingdao 266071, China.
- Qingdao Balanson Biotech Co., Ltd., Qingdao 266071, China.
| |
Collapse
|
15
|
Khandazhinskaya AL, Matyugina ES, Solyev PN, Wilkinson M, Buckheit KW, Buckheit RW, Chernousova LN, Smirnova TG, Andreevskaya SN, Alzahrani KJ, Natto MJ, Kochetkov SN, de Koning HP, Seley-Radtke KL. Investigation of 5'-Norcarbocyclic Nucleoside Analogues as Antiprotozoal and Antibacterial Agents. Molecules 2019; 24:E3433. [PMID: 31546633 PMCID: PMC6804079 DOI: 10.3390/molecules24193433] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/16/2019] [Accepted: 09/19/2019] [Indexed: 11/17/2022] Open
Abstract
Carbocyclic nucleosides have long played a role in antiviral, antiparasitic, and antibacterial therapies. Recent results from our laboratories from two structurally related scaffolds have shown promising activity against both Mycobacterium tuberculosis and several parasitic strains. As a result, a small structure activity relationship study was designed to further probe their activity and potential. Their synthesis and the results of the subsequent biological activity are reported herein.
Collapse
Affiliation(s)
- Anastasia L. Khandazhinskaya
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, 32 Vavilov St., Moscow 119991, Russia; (E.S.M.); (P.N.S.); (S.N.K.)
| | - Elena S. Matyugina
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, 32 Vavilov St., Moscow 119991, Russia; (E.S.M.); (P.N.S.); (S.N.K.)
| | - Pavel N. Solyev
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, 32 Vavilov St., Moscow 119991, Russia; (E.S.M.); (P.N.S.); (S.N.K.)
| | - Maggie Wilkinson
- ImQuest BioSciences, 7340 Executive Way Suite R, Frederick, MD 21704, USA; (M.W.); (K.W.B.)
| | - Karen W. Buckheit
- ImQuest BioSciences, 7340 Executive Way Suite R, Frederick, MD 21704, USA; (M.W.); (K.W.B.)
| | - Robert W. Buckheit
- ImQuest BioSciences, 7340 Executive Way Suite R, Frederick, MD 21704, USA; (M.W.); (K.W.B.)
| | - Larisa N. Chernousova
- Central Tuberculosis Research Institute, 2 Yauzskaya Alley, Moscow 107564, Russia; (L.N.C.); (T.G.S.); (S.N.A.)
| | - Tatiana G. Smirnova
- Central Tuberculosis Research Institute, 2 Yauzskaya Alley, Moscow 107564, Russia; (L.N.C.); (T.G.S.); (S.N.A.)
| | - Sofya N. Andreevskaya
- Central Tuberculosis Research Institute, 2 Yauzskaya Alley, Moscow 107564, Russia; (L.N.C.); (T.G.S.); (S.N.A.)
| | - Khalid J. Alzahrani
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Sir Graeme Davies Building, 120 University Place, Glasgow G12 8TA, UK; (K.J.A.); (M.J.N.); (H.P.d.K.)
- Department of Clinical Laboratory, College of Applied Medical Sciences, Taif University, Taif 21974, Saudi Arabia
| | - Manal J. Natto
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Sir Graeme Davies Building, 120 University Place, Glasgow G12 8TA, UK; (K.J.A.); (M.J.N.); (H.P.d.K.)
| | - Sergey N. Kochetkov
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, 32 Vavilov St., Moscow 119991, Russia; (E.S.M.); (P.N.S.); (S.N.K.)
| | - Harry P. de Koning
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Sir Graeme Davies Building, 120 University Place, Glasgow G12 8TA, UK; (K.J.A.); (M.J.N.); (H.P.d.K.)
| | - Katherine L. Seley-Radtke
- Department of Chemistry & Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| |
Collapse
|
16
|
Alotaibi A, Ebiloma GU, Williams R, Alenezi S, Donachie AM, Guillaume S, Igoli JO, Fearnley J, de Koning HP, Watson DG. European propolis is highly active against trypanosomatids including Crithidia fasciculata. Sci Rep 2019; 9:11364. [PMID: 31388043 PMCID: PMC6684629 DOI: 10.1038/s41598-019-47840-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 07/25/2019] [Indexed: 11/30/2022] Open
Abstract
Extracts of 35 samples of European propolis were tested against wild type and resistant strains of the protozoal pathogens Trypanosoma brucei, Trypanosoma congolense and Leishmania mexicana. The extracts were also tested against Crithidia fasciculata a close relative of Crithidia mellificae, a parasite of bees. Crithidia, Trypanosoma and Leishmania are all members of the order Kinetoplastida. High levels of activity were obtained for all the samples with the levels of activity varying across the sample set. The highest levels of activity were found against L. mexicana. The propolis samples were profiled by using liquid chromatography with high resolution mass spectrometry (LC-MS) and principal components analysis (PCA) of the data obtained indicated there was a wide variation in the composition of the propolis samples. Orthogonal partial least squares (OPLS) associated a butyrate ester of pinobanksin with high activity against T. brucei whereas in the case of T. congolense high activity was associated with methyl ethers of chrysin and pinobanksin. In the case of C. fasciculata highest activity was associated with methyl ethers of galangin and pinobanksin. OPLS modelling of the activities against L. mexicana using the mass spectrometry produced a less successful model suggesting a wider range of active components.
Collapse
Affiliation(s)
- Abdullah Alotaibi
- University of Strathclyde, Strathclyde Institute of Pharmacy and Biomedical Science, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - Godwin U Ebiloma
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Roderick Williams
- IBEHR, School of Health and Life Science, University of the West of Scotland, High Street, Paisley, PA1 2BE, UK
| | - Samya Alenezi
- University of Strathclyde, Strathclyde Institute of Pharmacy and Biomedical Science, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - Anne-Marie Donachie
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Selome Guillaume
- IBEHR, School of Health and Life Science, University of the West of Scotland, High Street, Paisley, PA1 2BE, UK
| | - John O Igoli
- University of Strathclyde, Strathclyde Institute of Pharmacy and Biomedical Science, 161 Cathedral Street, Glasgow, G4 0RE, UK
- Department of Chemistry, University of Agriculture, PMB 2373, Makurdi, Nigeria
| | | | - Harry P de Koning
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - David G Watson
- University of Strathclyde, Strathclyde Institute of Pharmacy and Biomedical Science, 161 Cathedral Street, Glasgow, G4 0RE, UK.
| |
Collapse
|
17
|
Soares Romeiro LA, da Costa Nunes JL, de Oliveira Miranda C, Simões Heyn Roth Cardoso G, de Oliveira AS, Gandini A, Kobrlova T, Soukup O, Rossi M, Senger J, Jung M, Gervasoni S, Vistoli G, Petralla S, Massenzio F, Monti B, Bolognesi ML. Novel Sustainable-by-Design HDAC Inhibitors for the Treatment of Alzheimer's Disease. ACS Med Chem Lett 2019; 10:671-676. [PMID: 30996816 DOI: 10.1021/acsmedchemlett.9b00071] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 03/29/2019] [Indexed: 12/31/2022] Open
Abstract
Alzheimer's disease (AD) represents a global problem, with an estimation of the majority of dementia patients in low- and middle-income countries by 2050. Thus, the development of sustainable drugs has attracted much attention in recent years. In light of this, taking inspiration from the HDAC inhibitor vorinostat (1), we develop the first HDAC inhibitors derived from cashew nut shell liquid (CNSL), an inexpensive agro-food waste material. CNSL derivatives 8 and 9 display a HDAC inhibitory profile similar to 1, together with a more promising safety for 9 compared to 1. Moreover, both compounds and particularly 9 were able to effectively modulate glial cell-induced inflammation and to revert the pro-inflammatory phenotype. All these results demonstrate that the use of inexpensive food waste materials could be successfully applied for the development of accessible and sustainable drug candidates for the treatment of AD.
Collapse
Affiliation(s)
- Luiz Antonio Soares Romeiro
- Department of Pharmacy, Health Sciences Faculty, University of Brasília, Campus Universitário
Darcy Ribeiro, 70910-900 Brasília, DF, Brazil
- LADETER, Catholic University of Brasilia, QS 07, Lote 01,
EPCT, Águas Claras, 71966-700 Brasília, DF, Brazil
| | - Jéssica Larissa da Costa Nunes
- Department of Pharmacy, Health Sciences Faculty, University of Brasília, Campus Universitário
Darcy Ribeiro, 70910-900 Brasília, DF, Brazil
| | - Camila de Oliveira Miranda
- Department of Pharmacy, Health Sciences Faculty, University of Brasília, Campus Universitário
Darcy Ribeiro, 70910-900 Brasília, DF, Brazil
| | - Gabriella Simões Heyn Roth Cardoso
- Department of Pharmacy, Health Sciences Faculty, University of Brasília, Campus Universitário
Darcy Ribeiro, 70910-900 Brasília, DF, Brazil
| | - Andressa Souza de Oliveira
- Department of Pharmacy, Health Sciences Faculty, University of Brasília, Campus Universitário
Darcy Ribeiro, 70910-900 Brasília, DF, Brazil
| | - Annachiara Gandini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy
- Department of Neuroscience, Laboratory of Prion Biology, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Bonomea 265, I-34136 Trieste, Italy
| | - Tereza Kobrlova
- Biomedical Research Center, University Hospital Hradec Kralove, 500 00 Hradec Kralove, Czech Republic
| | - Ondrej Soukup
- Biomedical Research Center, University Hospital Hradec Kralove, 500 00 Hradec Kralove, Czech Republic
| | - Michele Rossi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy
| | - Johanna Senger
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstraße 25, 79104 Freiburg im Breisgau, Germany
| | - Manfred Jung
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstraße 25, 79104 Freiburg im Breisgau, Germany
| | - Silvia Gervasoni
- Department of Pharmaceutical Science, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy
| | - Giulio Vistoli
- Department of Pharmaceutical Science, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy
| | - Sabrina Petralla
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy
| | - Francesca Massenzio
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy
| | - Barbara Monti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy
| | - Maria Laura Bolognesi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy
| |
Collapse
|