1
|
Souza ARD, Antinarelli LMR, Lemos ASDO, Glanzmann N, Vicente B, Midlej VDV, Silva Neto AFD, Machado RRP, da Silva AD, Coimbra ES. Multiple mechanisms of action of a triazole-derived salt against Leishmania amazonensis: Apoptosis-like death and autophagy. Chem Biol Interact 2025; 409:111409. [PMID: 39922522 DOI: 10.1016/j.cbi.2025.111409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/18/2025] [Accepted: 02/03/2025] [Indexed: 02/10/2025]
Abstract
Current chemotherapy for leishmaniasis faces significant limitations due to high toxicity, prolonged treatment regimens, and increasing parasite resistance, highlighting the urgent need for innovative treatment strategies. This study aimed to evaluate the in vitro activity of 1,2,3-triazole derivatives against promastigotes and amastigotes of Leishmania amazonensis, as well as their cytotoxicity in murine macrophages. Additionally, we investigated the mechanism of parasite death through different biochemical and cellular indicators of cell death parameters. Our results underscored the importance of the salt form, as the neutral form showed no inhibition of parasite growth. In contrast, the triazole-derived salt demonstrated promising selective index (SI = 34.28) and antileishmanial activity (IC50 = 0.13 μM and IC50 = 2.06 μM against promastigote and amastigote forms, respectively), proving more active than miltefosine, the standard drug. Regarding the mode of action of the triazole-derived salt, this compound induced significant mitochondrial alterations in the parasite, characterized by an increase in mitochondrial membrane potential (ΔΨm), elevated levels of total and mitochondrial Reactive Oxygen Species (ROS), and lipid body accumulation in the cytoplasm. Treatment with triazole-derived salt also produced several ultrastructural, biochemical, and cellular changes in the promastigote forms, such as the occurrence of apoptosis-like death, including cell shrinkage and reduction in length, as well as exposure of phosphatidylserine in the outer leaflet of the plasma membrane and marked cell cycle interruption, in addition to DNA fragmentation. Despite MDC positive and the presence of membrane-bound vacuoles resembling autophagosomal structures observed by TEM analysis, autophagy is not a predominant process, with severe mitochondrial damage emerging as the primary event leading to parasite death. These findings demonstrate the promising antileishmanial potential of the triazole-derived salt, with its effect on multiple targets in parasite cells. Moreover, the association of the active compound with miltefosine showed an additive effect in treating L. amazonensis-infected macrophages. Altogether, these results highlight the therapeutic potential of the evaluated salt and support further studies to assess its in vivo efficacy in a murine model of cutaneous leishmaniasis.
Collapse
Affiliation(s)
- Andrezza Rodrigues de Souza
- Department of Parasitology, Microbiology and Immunology, Federal University of Juiz de Fora, Juiz de Fora, MG, 36036-900, Brazil
| | | | - Ari Sergio de Oliveira Lemos
- Department of Parasitology, Microbiology and Immunology, Federal University of Juiz de Fora, Juiz de Fora, MG, 36036-900, Brazil
| | - Nicolas Glanzmann
- Institute of Exact Sciences, Federal University of Juiz de Fora, Juiz de Fora, MG, 36036-900, Brazil
| | - Bruno Vicente
- Structural Biology Laboratory, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Victor do Valle Midlej
- Structural Biology Laboratory, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Adolfo Firmino da Silva Neto
- Department of Veterinary Medicine, Faculty of Medicine, Federal University of Juiz de Fora, Juiz de Fora, MG, 36036-900, Brazil
| | | | - Adilson David da Silva
- Institute of Exact Sciences, Federal University of Juiz de Fora, Juiz de Fora, MG, 36036-900, Brazil
| | - Elaine Soares Coimbra
- Department of Parasitology, Microbiology and Immunology, Federal University of Juiz de Fora, Juiz de Fora, MG, 36036-900, Brazil.
| |
Collapse
|
2
|
Faísca F, Petrovski Ž, Grilo I, Lima SAC, Santos MM, Branco LC. Synthesis, Characterization, Bioavailability and Antimicrobial Studies of Cefuroxime-Based Organic Salts and Ionic Liquids. Pharmaceutics 2024; 16:1291. [PMID: 39458620 PMCID: PMC11510342 DOI: 10.3390/pharmaceutics16101291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/10/2024] [Accepted: 08/16/2024] [Indexed: 10/28/2024] Open
Abstract
Low oral bioavailability is a common feature in most drugs, including antibiotics, due to low solubility in physiological media and inadequate cell permeability, which may limit their efficacy or restrict their administration in a clinical setting. Cefuroxime is usually administered in its prodrug form, cefuroxime axetil. However, its preparation requires further reaction steps and additional metabolic pathways to be converted into its active form. The combination of Active Pharmaceutical Ingredients (APIs) with biocompatible organic molecules as salts is a viable and documented method to improve the solubility and permeability of a drug. Herein, the preparations of five organic salts of cefuroxime as an anion with enhanced physicochemical characteristics have been reported. These were prepared via buffer-assisted neutralization methodology with pyridinium and imidazolium cations in quantitative yields and presented as solids at room temperature. Cell viability studies on 3T3 cells showed that only the cefuroxime salts combined with longer alkyl chain cations possess higher cytotoxicity than the original drug, and while most salts lost in vitro antibacterial activity against E. coli, P. aeruginosa and B. subtilis, one compound, [PyC10Py][CFX]2, retained the activity. Cefuroxime organic salts have a water solubility 8-to-200-times greater than the original drug at 37 °C. The most soluble compounds have a very low octanol-water partition, similar to cefuroxime, while more lipophilic salts partition predominantly to the organic phase.
Collapse
Affiliation(s)
- Francisco Faísca
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal; (F.F.); (Ž.P.); (M.M.S.)
| | - Željko Petrovski
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal; (F.F.); (Ž.P.); (M.M.S.)
| | - Inês Grilo
- UCIBIO—Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal;
| | - Sofia A. C. Lima
- LAQV, REQUIMTE, ICBAS—School of Medicine and Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal;
| | - Miguel M. Santos
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal; (F.F.); (Ž.P.); (M.M.S.)
| | - Luis C. Branco
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal; (F.F.); (Ž.P.); (M.M.S.)
| |
Collapse
|
3
|
Filipe L, de Sousa T, Silva D, Santos MM, Ribeiro Carrott M, Poeta P, Branco LC, Gago S. In Vitro Antimicrobial Studies of Mesoporous Silica Nanoparticles Comprising Anionic Ciprofloxacin Ionic Liquids and Organic Salts. Pharmaceutics 2023; 15:1934. [PMID: 37514120 PMCID: PMC10385687 DOI: 10.3390/pharmaceutics15071934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
The combination of active pharmaceutical ingredients in the form of ionic liquids or organic salts (API-OSILs) with mesoporous silica nanoparticles (MSNs) as drug carriers can provide a useful tool in enhancing the capabilities of current antibiotics, especially against resistant strains of bacteria. In this publication, the preparation of a set of three nanomaterials based on the modification of a MSN surface with cholinium ([MSN-Chol][Cip]), 1-methylimidazolium ([MSN-1-MiM][Cip]) and 3-picolinium ([MSN-3-Pic][Cip]) ionic liquids coupled with anionic ciprofloxacin have been reported. All ionic liquids and functionalized nanomaterials were prepared through sustainable protocols, using microwave-assisted heating as an alternative to conventional methods. All materials were characterized through FTIR, solution 1H NMR, elemental analysis, XRD and N2 adsorption at 77 K. The prepared materials showed no in vitro cytotoxicity in fibroblasts viability assays. The minimum inhibitory concentration (MIC) for all materials was tested against Gram-negative K. pneumoniae and Gram-positive Enterococcus spp., both with resistant and sensitive strains. All sets of nanomaterials containing the anionic antibiotic outperformed free ciprofloxacin against resistant and sensitive forms of K. pneumoniae, with the prominent case of [MSN-Chol][Cip] suggesting a tenfold decrease in the MIC against sensitive strains. Against resistant K. pneumoniae, a five-fold decrease in the MIC was observed for all sets of nanomaterials compared with neutral ciprofloxacin. Against Enterococcus spp., only [MSN-1-MiM][Cip] was able to demonstrate a slight improvement over the free antibiotic.
Collapse
Affiliation(s)
- Luís Filipe
- Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), NOVA School of Science and Technology (FCT NOVA), Campus da Caparica, 2829-516 Caparica, Portugal
| | - Telma de Sousa
- Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), NOVA School of Science and Technology (FCT NOVA), Campus da Caparica, 2829-516 Caparica, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Microbiology and Antibiotic Resistance Team (MicroART), Departamento de Ciências Veterinárias, Universidade de Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Dário Silva
- Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), NOVA School of Science and Technology (FCT NOVA), Campus da Caparica, 2829-516 Caparica, Portugal
| | - Miguel M Santos
- Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), NOVA School of Science and Technology (FCT NOVA), Campus da Caparica, 2829-516 Caparica, Portugal
| | - Manuela Ribeiro Carrott
- LAQV-REQUIMTE, Institute for Research and Advanced Studies, Department of Chemistry and Biochemistry, School of Sciences and Technology, University of Évora, 7000-671 Évora, Portugal
| | - Patrícia Poeta
- Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), NOVA School of Science and Technology (FCT NOVA), Campus da Caparica, 2829-516 Caparica, Portugal
- Microbiology and Antibiotic Resistance Team (MicroART), Departamento de Ciências Veterinárias, Universidade de Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Luís C Branco
- Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), NOVA School of Science and Technology (FCT NOVA), Campus da Caparica, 2829-516 Caparica, Portugal
| | - Sandra Gago
- Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), NOVA School of Science and Technology (FCT NOVA), Campus da Caparica, 2829-516 Caparica, Portugal
| |
Collapse
|
4
|
Synthesis and Biological Evaluation of Amphotericin B Formulations Based on Organic Salts and Ionic Liquids against Leishmania infantum. Antibiotics (Basel) 2022; 11:antibiotics11121841. [PMID: 36551498 PMCID: PMC9774544 DOI: 10.3390/antibiotics11121841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
Nowadays, organic salts and ionic liquids (OSILs) containing active pharmaceutical ingredients (APIs) are being explored as drug delivery systems in modern therapies (OSILs-API). In that sense, this work is focused on the development of novel OSILs-API based on amphotericin B through an innovative procedure and the evaluation of the respective biological activity against Leishmania infantum. Several ammonium, methylimidazolium, pyridinium and phosphonium organic cations combined with amphotericin B as anion were synthesized in moderate to high yields and high purities by the water-reduced buffer neutralization method. All prepared compounds were characterized to confirm the desired chemical structure and the specific optical rotation ([α]D25) was also determined. The biological assays performed on L. infantum promastigotes showed increased activity against this parasitic disease when compared with the starting chloride forms and amphotericin B alone, highlighting [P6,6,6,14][AmB] as the most promising formulation. Possible synergism in the antiprotozoal activity was also evaluated for [P6,6,6,14][AmB], since it was proven to be the compound with the highest toxicity. This work reported a simple synthetic method, which can be applied to prepare other organic salts based on molecules containing fragile chemical groups, demonstrating the potential of these OSILs-AmB as possible agents against leishmaniasis.
Collapse
|
5
|
Faísca F, Correia V, Petrovski Ž, Branco LC, Rebelo-de-Andrade H, Santos MM. Enhanced In Vitro Antiviral Activity of Hydroxychloroquine Ionic Liquids against SARS-CoV-2. Pharmaceutics 2022; 14:pharmaceutics14040877. [PMID: 35456711 PMCID: PMC9031298 DOI: 10.3390/pharmaceutics14040877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 11/24/2022] Open
Abstract
The development of effective antiviral drugs against SARS-CoV-2 is urgently needed and a global health priority. In light of the initial data regarding the repurposing of hydroxychloroquine (HCQ) to tackle this coronavirus, herein we present a quantitative synthesis and spectroscopic and thermal characterization of seven HCQ room temperature ionic liquids (HCQ-ILs) obtained by direct protonation of the base with two equivalents of organic sulfonic, sulfuric and carboxylic acids of different polarities. Two non-toxic and hydrophilic HCQ-ILs, in particular, [HCQH2][C1SO3]2 and [HCQH2][GlcCOO]2, decreased the virus-induced cytopathic effect by two-fold in comparison with the original drug, [HCQH2][SO4]. Despite there being no significant differences in viral RNA production between the three compounds, progeny virus production was significantly affected (p < 0.05) by [HCQH2][GlcCOO]2. Overall, the data suggest that the in vitro antiviral activities of the HCQ-ILs are most likely the result of specific intra- and intermolecular interactions and not so much related with their hydrophilic or lipophilic character. This work paves the way for the development of future novel ionic formulations of hydroxychloroquine with enhanced physicochemical properties.
Collapse
Affiliation(s)
- Francisco Faísca
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (F.F.); (Ž.P.); (L.C.B.)
| | - Vanessa Correia
- Antiviral Resistance Lab, Research & Development Unit, Infectious Diseases Department, Instituto Nacional de Saúde Doutor Ricardo Jorge, IP, Av. Padre Cruz, 1649-016 Lisboa, Portugal;
| | - Željko Petrovski
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (F.F.); (Ž.P.); (L.C.B.)
| | - Luís C. Branco
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (F.F.); (Ž.P.); (L.C.B.)
| | - Helena Rebelo-de-Andrade
- Antiviral Resistance Lab, Research & Development Unit, Infectious Diseases Department, Instituto Nacional de Saúde Doutor Ricardo Jorge, IP, Av. Padre Cruz, 1649-016 Lisboa, Portugal;
- Host-Pathogen Interaction Unit, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal
- Correspondence: (H.R.-d.-A.); (M.M.S.)
| | - Miguel M. Santos
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (F.F.); (Ž.P.); (L.C.B.)
- Correspondence: (H.R.-d.-A.); (M.M.S.)
| |
Collapse
|
6
|
Forsyth CM, Greenhill NB, Junk PC, Deacon GB. Elucidating structural patterns in hydrogen bond dense materials: a study of ammonium salts of (4‐aminium‐1‐hydroxybutylidine)‐1,1‐bisphosphonic acid. Z Anorg Allg Chem 2021. [DOI: 10.1002/zaac.202100305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Craig. M. Forsyth
- School of Chemistry Monash University Clayton Victoria 3800 Australia
| | - Neil B. Greenhill
- School of Chemistry Monash University Clayton Victoria 3800 Australia
| | - Peter C. Junk
- College of Science and Engineering James Cook University Townsville Queensland 4811 Australia
| | - Glen B. Deacon
- School of Chemistry Monash University Clayton Victoria 3800 Australia
| |
Collapse
|
7
|
Teixeira S, Santos MM, Branco LC, Costa-Rodrigues J. Etidronate-based organic salts and ionic liquids: In vitro effects on bone metabolism. Int J Pharm 2021; 610:121262. [PMID: 34748807 DOI: 10.1016/j.ijpharm.2021.121262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 10/30/2021] [Accepted: 10/31/2021] [Indexed: 11/26/2022]
Abstract
Bisphosphonates are a class of drugs widely used for the treatment of several pathologies associated with increased bone resorption. Although displaying low oral bioavailability, these drugs have the ability to accumulate in bone matrix, where the biological effects are exerted. In the present work, four mono- and dianionic Etidronate-based Organic Salts and Ionic Liquids (Eti-OSILs) were developed by combination of this drug with the superbases 1,1,3,3-tetramethylguanidine (TMG) and 1,5-diazabicyclo(4.3.0)non-5-ene (DBN) as cations, aiming to improve not only the physicochemical properties of this seminal bisphosphonate, but also its efficacy in the modulation of cellular behavior, particularly on human osteoclasts and osteoblasts. It was observed that some of the developed compounds, in particular the dianionic ones, presented very high water solubility and diminished or absent polymorphism. Also, several of them appeared to be more cytotoxic against human breast and osteosarcoma cancer cell lines while retaining low toxicity to normal cells. Regarding bone cells, a promotion of an anabolic state was observed for all Eti-OSILs, primarily for the dianionic ones, which leads to an inhibition of osteoclastogenesis and an increase in osteoblastogenesis. The observed effects resulted from differential modulation of intracellular signaling pathways by the Eti-OSILs in comparison with Etidronate. Hence, these results pave the way for the development of more efficient and bioavailable ionic formulations of bisphosphonates aiming to effectively modulate bone metabolism, particularly in the case of increased bone resorption.
Collapse
Affiliation(s)
- Sónia Teixeira
- Instituto de Ciências Biomédicas Abel Salazar, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| | - Miguel M Santos
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal.
| | - Luís C Branco
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal.
| | - João Costa-Rodrigues
- ESS - Escola Superior de Saúde, Politécnico do Porto, R. Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal; Instituto Politécnico de Viana do Castelo, Escola Superior de Saúde, Rua D. Moisés Alves Pinho 190, 4900-314 Viana do Castelo, Portugal; i3S, Instituto de Inovação e Investigação em Saúde, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal.
| |
Collapse
|
8
|
Sutar Y, Fulton SR, Paul S, Altamirano S, Mhatre S, Saeed H, Patel P, Mallick S, Bhat R, Patravale VB, Chauhan H, Nielsen K, Date AA. Docusate-Based Ionic Liquids of Anthelmintic Benzimidazoles Show Improved Pharmaceutical Processability, Lipid Solubility, and in Vitro Activity against Cryptococcus neoformans. ACS Infect Dis 2021; 7:2637-2649. [PMID: 34467755 PMCID: PMC8884109 DOI: 10.1021/acsinfecdis.1c00063] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
As the existing therapeutic modalities for the treatment of cryptococcal meningitis (CM) have suboptimal efficacy, repurposing existing drugs for the treatment of CM is of great interest. The FDA-approved anthelmintic benzimidazoles, albendazole, mebendazole, and flubendazole, have demonstrated potent but variable in vitro activity against Cryptococcus neoformans, the predominant fungal species responsible for CM. We performed molecular docking studies to ascertain the interaction of albendazole, mebendazole, and flubendazole with a C. neoformans β-tubulin structure, which revealed differential binding interactions and explained the different in vitro efficacies reported previously and observed in this investigation. Despite their promising in vitro efficacy, the repurposing of anthelmintic benzimidazoles for oral CM therapy is significantly hampered due to their high crystallinity, poor pharmaceutical processability, low and pH-dependent solubility, and drug precipitation upon entering the intestine, all of which result in low and variable oral bioavailability. Here, we demonstrate that the anthelmintic benzimidazoles can be transformed into partially amorphous low-melting ionic liquids (ILs) with a simple metathesis reaction using amphiphilic sodium docusate as a counterion. In vitro efficacy studies on a laboratory reference and a clinical isolate of C. neoformans showed 2- to 4-fold lower IC90 values for docusate-based ILs compared to the pure anthelmintic benzimidazoles. Furthermore, using a C. neoformans strain with green fluorescent protein (GFP)-tagged β-tubulin and albendazole and its docusate IL as model candidates, we showed that the benzimidazoles and their ILs reduce the viability of C. neoformans by interfering with its microtubule assembly. Unlike pure anthelmintic benzimidazoles, the docusate-based ILs showed excellent solubility in organic solvents and >30-fold higher solubility in bioavailability-enhancing lipid vehicles. Finally, the docusate ILs were successfully incorporated into SoluPlus, a self-assembling biodegradable polymer, which upon dilution with water formed polymeric micelles with a size of <100 nm. Thus, the development of docusate-based ILs represents an effective approach to improve the physicochemical properties and potency of anthelmintic benzimidazoles to facilitate their repurposing and preclinical development for CM therapy.
Collapse
Affiliation(s)
- Yogesh Sutar
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, Hilo, Hawaii 96720, United States
| | - Sophie R Fulton
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Sagarkumar Paul
- Department of Pharmaceutical Sciences, Creighton University School of Pharmacy and Health Profession, 2200 California Plaza, Omaha, Nebraska 68710, United States
| | - Sophie Altamirano
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Susmit Mhatre
- Department of Pharmaceutical Sciences, Institute of Chemical Technology, N.P Marg, Matunga, Mumbai, Maharashtra 400011, India
| | - Hiwa Saeed
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, Hilo, Hawaii 96720, United States
| | - Pratikkumar Patel
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, Hilo, Hawaii 96720, United States
| | - Sudipta Mallick
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, Hilo, Hawaii 96720, United States
| | - Roopal Bhat
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, Hilo, Hawaii 96720, United States
- Department of Pharmaceutics, Shree Chanakya Education Society's Indira College of Pharmacy, Tathawade, Pune, Maharashtra 411033, India
| | - Vandana B Patravale
- Department of Pharmaceutical Sciences, Institute of Chemical Technology, N.P Marg, Matunga, Mumbai, Maharashtra 400011, India
| | - Harsh Chauhan
- Department of Pharmaceutical Sciences, Creighton University School of Pharmacy and Health Profession, 2200 California Plaza, Omaha, Nebraska 68710, United States
| | - Kirsten Nielsen
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Abhijit A Date
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, Hilo, Hawaii 96720, United States
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii Manoa, Honolulu, Hawaii 96813, United States
| |
Collapse
|
9
|
de Juan Mora B, Filipe L, Forte A, Santos MM, Alves C, Teodoro F, Pedrosa R, Ribeiro Carrott M, Branco LC, Gago S. Boosting Antimicrobial Activity of Ciprofloxacin by Functionalization of Mesoporous Silica Nanoparticles. Pharmaceutics 2021; 13:pharmaceutics13020218. [PMID: 33562597 PMCID: PMC7914840 DOI: 10.3390/pharmaceutics13020218] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/19/2021] [Accepted: 02/01/2021] [Indexed: 12/24/2022] Open
Abstract
Mesoporous silica nanoparticles (MSNs) are very promising nanomaterials for treating bacterial infections when combined with pharmaceutical drugs. Herein, we report the preparation of two nanomaterials based on the immobilization of ciprofloxacin in mesoporous silica nanoparticles, either as the counter-ion of the choline derivative cation (MSN-[Ch][Cip]) or via anchoring on the surface of amino-group modified MSNs via an amide bond (MSN-Cip). Both nanomaterials were characterized by TEM, FTIR and solution 1H NMR spectroscopies, elemental analysis, XRD and N2 adsorption at 77 K in order to provide the desired structures. No cytotoxicity from the prepared mesoporous nanoparticles on 3T3 murine fibroblasts was observed. The antimicrobial activity of the nanomaterials was determined against Gram-positive (Staphylococcus aureus and Bacillus subtilis) and Gram-negative (Klebsiella pneumoniae) bacteria and the results were promising against S. aureus. In the case of B. subtilis, both nanomaterials exhibited higher antimicrobial activity than the precursor [Ch][Cip], and in the case of K. pneumoniae they exhibited higher activity than neutral ciprofloxacin.
Collapse
Affiliation(s)
- Blanca de Juan Mora
- LAQV-REQUIMTE, Departamento de Química da Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal; (B.d.J.M.); (L.F.); (A.F.); (M.M.S.)
| | - Luís Filipe
- LAQV-REQUIMTE, Departamento de Química da Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal; (B.d.J.M.); (L.F.); (A.F.); (M.M.S.)
| | - Andreia Forte
- LAQV-REQUIMTE, Departamento de Química da Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal; (B.d.J.M.); (L.F.); (A.F.); (M.M.S.)
| | - Miguel M. Santos
- LAQV-REQUIMTE, Departamento de Química da Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal; (B.d.J.M.); (L.F.); (A.F.); (M.M.S.)
| | - Celso Alves
- MARE—Marine and Environmental Sciences Centre, Politécnico de Leiria, Avenida Porto de Pesca, 2520-630 Peniche, Portugal; (C.A.); (F.T.); (R.P.)
| | - Fernando Teodoro
- MARE—Marine and Environmental Sciences Centre, Politécnico de Leiria, Avenida Porto de Pesca, 2520-630 Peniche, Portugal; (C.A.); (F.T.); (R.P.)
| | - Rui Pedrosa
- MARE—Marine and Environmental Sciences Centre, Politécnico de Leiria, Avenida Porto de Pesca, 2520-630 Peniche, Portugal; (C.A.); (F.T.); (R.P.)
| | - Manuela Ribeiro Carrott
- Centro de Química de Évora, LAQV-REQUIMTE, Instituto de Investigação e Formação Avançada, Departamento de Química, Escola de Ciências e Tecnologia, Colégio Luís António Verney, Universidade de Évora, 7000-671 Évora, Portugal;
| | - Luís C. Branco
- LAQV-REQUIMTE, Departamento de Química da Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal; (B.d.J.M.); (L.F.); (A.F.); (M.M.S.)
- Correspondence: (L.C.B.); (S.G.)
| | - Sandra Gago
- LAQV-REQUIMTE, Departamento de Química da Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal; (B.d.J.M.); (L.F.); (A.F.); (M.M.S.)
- Correspondence: (L.C.B.); (S.G.)
| |
Collapse
|
10
|
Tampucci S, Guazzelli L, Burgalassi S, Carpi S, Chetoni P, Mezzetta A, Nieri P, Polini B, Pomelli CS, Terreni E, Monti D. pH-Responsive Nanostructures Based on Surface Active Fatty Acid-Protic Ionic Liquids for Imiquimod Delivery in Skin Cancer Topical Therapy. Pharmaceutics 2020; 12:pharmaceutics12111078. [PMID: 33187215 PMCID: PMC7697672 DOI: 10.3390/pharmaceutics12111078] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/06/2020] [Accepted: 11/07/2020] [Indexed: 12/12/2022] Open
Abstract
For topical treatment of skin cancer, the design of pH-responsive nanocarriers able to selectively release the drug in the tumor acidic microenvironment represents a reliable option for targeted delivery. In this context, a series of newly synthesized surface-active fatty acid-protic ionic liquids (FA-PILs), based on tetramethylguanidinium cation and different natural hydrophobic fatty acid carboxylates, have been investigated with the aim of developing a pH-sensitive nanostructured drug delivery system for cutaneous administration in the skin cancer therapy. The capability of FA-PILs to arrange in micelles when combined with each other and with the non-ionic surfactant d-α-Tocopherol polyethylene glycol succinate (vitamin E TPGS) as well as their ability to solubilize imiquimod, an immuno-stimulant drug used for the treatment of skin cancerous lesions, have been demonstrated. The FA-PILs-TPGS mixed micelles showed pH-sensitivity, suggesting that the acidic environment of cancer cells can trigger nanostructures’ swelling and collapse with consequent rapid release of imiquimod and drug cytotoxic potential enhancement. The in vitro permeation/penetration study showed that the micellar formulation produced effective imiquimod concentrations into the skin exposed to acid environment, representing a potential efficacious and selective drug delivery system able to trigger the drug release in the tumor tissues, at lower and less irritating drug concentrations.
Collapse
Affiliation(s)
- Silvia Tampucci
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56127 Pisa, Italy; (S.B.); (S.C.); (P.C.); (A.M.); (P.N.); (B.P.); (C.S.P.); (E.T.); (D.M.)
- Correspondence: (S.T.); (L.G.)
| | - Lorenzo Guazzelli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56127 Pisa, Italy; (S.B.); (S.C.); (P.C.); (A.M.); (P.N.); (B.P.); (C.S.P.); (E.T.); (D.M.)
- Correspondence: (S.T.); (L.G.)
| | - Susi Burgalassi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56127 Pisa, Italy; (S.B.); (S.C.); (P.C.); (A.M.); (P.N.); (B.P.); (C.S.P.); (E.T.); (D.M.)
| | - Sara Carpi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56127 Pisa, Italy; (S.B.); (S.C.); (P.C.); (A.M.); (P.N.); (B.P.); (C.S.P.); (E.T.); (D.M.)
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Patrizia Chetoni
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56127 Pisa, Italy; (S.B.); (S.C.); (P.C.); (A.M.); (P.N.); (B.P.); (C.S.P.); (E.T.); (D.M.)
| | - Andrea Mezzetta
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56127 Pisa, Italy; (S.B.); (S.C.); (P.C.); (A.M.); (P.N.); (B.P.); (C.S.P.); (E.T.); (D.M.)
| | - Paola Nieri
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56127 Pisa, Italy; (S.B.); (S.C.); (P.C.); (A.M.); (P.N.); (B.P.); (C.S.P.); (E.T.); (D.M.)
| | - Beatrice Polini
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56127 Pisa, Italy; (S.B.); (S.C.); (P.C.); (A.M.); (P.N.); (B.P.); (C.S.P.); (E.T.); (D.M.)
| | - Christian Silvio Pomelli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56127 Pisa, Italy; (S.B.); (S.C.); (P.C.); (A.M.); (P.N.); (B.P.); (C.S.P.); (E.T.); (D.M.)
| | - Eleonora Terreni
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56127 Pisa, Italy; (S.B.); (S.C.); (P.C.); (A.M.); (P.N.); (B.P.); (C.S.P.); (E.T.); (D.M.)
| | - Daniela Monti
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56127 Pisa, Italy; (S.B.); (S.C.); (P.C.); (A.M.); (P.N.); (B.P.); (C.S.P.); (E.T.); (D.M.)
| |
Collapse
|
11
|
Santos F, Branco LC, Duarte ARC. Organic Salts Based on Isoniazid Drug: Synthesis, Bioavailability and Cytotoxicity Studies. Pharmaceutics 2020; 12:pharmaceutics12100952. [PMID: 33050373 PMCID: PMC7600673 DOI: 10.3390/pharmaceutics12100952] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 11/23/2022] Open
Abstract
Tuberculosis is one of the ten causes of morbidity and mortality worldwide caused by Mycobacterium tuberculosis complex. Some of the anti-tuberculosis drugs used in clinic studies, despite being effective for the treatment of tuberculosis, present serious adverse effects as well as poor bioavailability, stability, and drug-resistance problems. Thus, it is important to develop approaches that could provide shorter drug regimens, preventing drug resistance, toxicity of the antibiotics, and improve their bioavailability. Herein, we reported the use of organic salts based on the isoniazid drug, which can act as an organic cation combined with suitable organic anions such as alkylsulfonate-based (mesylate, R or S-Camphorsulfonate), carboxylate-based (glycolate, vanylate) and sacharinate. The synthesis, characterization, and cytotoxicity studies comparing with the original isoniazid drug have been performed. The possibility to explore dicationic salts seems promising in order to improve original bioavailability, and promote the elimination of polymorphic forms as well as higher stability, which are relevant characteristics that the pharmaceutical industry pursues.
Collapse
|
12
|
Prudêncio C, Vieira M, Van der Auweraer S, Ferraz R. Recycling Old Antibiotics with Ionic Liquids. Antibiotics (Basel) 2020; 9:E578. [PMID: 32899785 PMCID: PMC7558273 DOI: 10.3390/antibiotics9090578] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 12/12/2022] Open
Abstract
Antibiotics are considered one of the great "miracles" of the 20th century. Now in the 21st century in the post-antibiotic era, the miracle is turning into a nightmare, due to the growing problem of the resistance of microorganisms to classic antimicrobials and the non-investment by the pharmaceutical industry in new antimicrobial agents. Unfortunately, the current COVID-19 pandemic has demonstrated the global risks associated with uncontrolled infections and the various forms of impact that such a pandemic may have on the economy and on social habits besides the associated morbidity and mortality. Therefore, there is an urgent need to recycle classic antibiotics, as is the case in the use of ionic liquids (ILs) based on antibiotics. Thus, the aim of the present review is to summarize the data on ILs, mainly those with antimicrobial action and especially against resistant strains. The main conclusions of this article are that ILs are flexible due to their ability to modulate cations and anions as a salt, making it possible to combine the properties of both and multiplying the activity of separate cations and anions. Also, these compounds have low cost methods of production, which makes it highly attractive to explore them, especially as antimicrobial agents and against resistant strains. ILs may further be combined with other therapeutic strategies, such as phage or lysine therapy, enhancing the therapeutic arsenal needed to fight this worldwide problem of antibacterial resistance. Thus, the use of ILs as antibiotics by themselves or together with phage therapy and lysine therapy are promising alternatives against pathogenic microorganisms, and may have the possibility to be used in new ways in order to restrain uncontrolled infections.
Collapse
Affiliation(s)
- Cristina Prudêncio
- Ciências Químicas e das Biomoléculas/CISA, Escola Superior de Saúde—Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 400, P-4200-072 Porto, Portugal; (M.V.); (S.V.d.A.)
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Mónica Vieira
- Ciências Químicas e das Biomoléculas/CISA, Escola Superior de Saúde—Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 400, P-4200-072 Porto, Portugal; (M.V.); (S.V.d.A.)
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Seppe Van der Auweraer
- Ciências Químicas e das Biomoléculas/CISA, Escola Superior de Saúde—Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 400, P-4200-072 Porto, Portugal; (M.V.); (S.V.d.A.)
- Odisee University of applied sciences, Technology Campus Ghent, 26, 1000 Brussels, Belgium
| | - Ricardo Ferraz
- Ciências Químicas e das Biomoléculas/CISA, Escola Superior de Saúde—Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 400, P-4200-072 Porto, Portugal; (M.V.); (S.V.d.A.)
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, P-4169-007 Porto, Portugal
| |
Collapse
|
13
|
Santos MM, Alves C, Silva J, Florindo C, Costa A, Petrovski Ž, Marrucho IM, Pedrosa R, Branco LC. Antimicrobial Activities of Highly Bioavailable Organic Salts and Ionic Liquids from Fluoroquinolones. Pharmaceutics 2020; 12:pharmaceutics12080694. [PMID: 32717808 PMCID: PMC7464485 DOI: 10.3390/pharmaceutics12080694] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/28/2020] [Accepted: 07/13/2020] [Indexed: 12/16/2022] Open
Abstract
As the development of novel antibiotics has been at a halt for several decades, chemically enhancing existing drugs is a very promising approach to drug development. Herein, we report the preparation of twelve organic salts and ionic liquids (OSILs) from ciprofloxacin and norfloxacin as anions with enhanced antimicrobial activity. Each one of the fluoroquinolones (FQs) was combined with six different organic hydroxide cations in 93-100% yield through a buffer-assisted neutralization methodology. Six of those were isomorphous salts while the remaining six were ionic liquids, with four of them being room temperature ionic liquids. The prepared compounds were not toxic to healthy cell lines and displayed between 47- and 1416-fold more solubility in water at 25 and 37 °C than the original drugs, with the exception of the ones containing the cetylpyridinium cation. In general, the antimicrobial activity against Klebsiella pneumoniae was particularly enhanced for the ciprofloxacin-based OSILs, with up to ca. 20-fold decreases of the inhibitory concentrations in relation to the parent drug, while activity against Staphylococcus aureus and the commensal Bacillus subtilis strain was often reduced. Depending on the cation-drug combination, broad-spectrum or strain-specific antibiotic salts were achieved, potentially leading to the future development of highly bioavailable and safe antimicrobial ionic formulations.
Collapse
Affiliation(s)
- Miguel M. Santos
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (A.C.); (Ž.P.)
- Correspondence: (M.M.S.); (R.P.); (L.C.B.)
| | - Celso Alves
- MARE–Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, 2520-641 Peniche, Portugal; (C.A.); (J.S.)
| | - Joana Silva
- MARE–Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, 2520-641 Peniche, Portugal; (C.A.); (J.S.)
| | - Catarina Florindo
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal; (C.F.); (I.M.M.)
| | - Alexandra Costa
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (A.C.); (Ž.P.)
| | - Željko Petrovski
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (A.C.); (Ž.P.)
| | - Isabel M. Marrucho
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal; (C.F.); (I.M.M.)
| | - Rui Pedrosa
- MARE–Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, 2520-641 Peniche, Portugal; (C.A.); (J.S.)
- Correspondence: (M.M.S.); (R.P.); (L.C.B.)
| | - Luís C. Branco
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (A.C.); (Ž.P.)
- Correspondence: (M.M.S.); (R.P.); (L.C.B.)
| |
Collapse
|
14
|
Teixeira S, Santos MM, Fernandes MH, Costa-Rodrigues J, Branco LC. Alendronic Acid as Ionic Liquid: New Perspective on Osteosarcoma. Pharmaceutics 2020; 12:pharmaceutics12030293. [PMID: 32213930 PMCID: PMC7151258 DOI: 10.3390/pharmaceutics12030293] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/16/2020] [Accepted: 03/16/2020] [Indexed: 12/15/2022] Open
Abstract
Herein the quantitative synthesis of eight new mono- and dianionic Organic Salts and Ionic Liquids (OSILs) from alendronic acid (ALN) is reported by following two distinct sustainable and straightforward methodologies, according to the type of cation. The prepared ALN-OSILs were characterized by spectroscopic techniques and their solubility in water and biological fluids was determined. An evaluation of the toxicity towards human healthy cells and also human breast, lung and bone (osteosarcoma) cell lines was performed. Globally, it was observed that the monoanionic OSILs showed lower toxicity than the corresponding dianionic structures to all cell types. The highest cytotoxic effect was observed in OSILs containing a [C2OHMIM] cation, in particular [C2OHMIM][ALN]. The latter showed an improvement in IC50 values of ca. three orders of magnitude for the lung and bone cancer cell lines as well as fibroblasts in comparison with ALN. The development of OSILs with high cytotoxicity effect towards the tested cancer cell types, and containing an anti-resorbing molecule such as ALN may represent a promising strategy for the development of new pharmacological tools to be used in those pathological conditions.
Collapse
Affiliation(s)
- Sónia Teixeira
- Faculdade de Medicina Dentária, U. Porto, Rua Dr. Manuel Pereira da Silva, 4200-393 Porto, Portugal; (S.T.); (M.H.F.); (J.C.-R.)
| | - Miguel M. Santos
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal;
| | - Maria H. Fernandes
- Faculdade de Medicina Dentária, U. Porto, Rua Dr. Manuel Pereira da Silva, 4200-393 Porto, Portugal; (S.T.); (M.H.F.); (J.C.-R.)
- UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
| | - João Costa-Rodrigues
- Faculdade de Medicina Dentária, U. Porto, Rua Dr. Manuel Pereira da Silva, 4200-393 Porto, Portugal; (S.T.); (M.H.F.); (J.C.-R.)
- ESS—Escola Superior de Saúde, Instituto Politécnico do Porto, R. Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal
- Instituto Politécnico de Viana do Castelo, Escola Superior de Saúde, Rua D. Moisés Alves Pinho 190, 4900-314 Viana do Castelo, Portugal
| | - Luís C. Branco
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal;
- Correspondence:
| |
Collapse
|
15
|
Ferraz R, Silva D, Dias AR, Dias V, Santos MM, Pinheiro L, Prudêncio C, Noronha JP, Petrovski Ž, Branco LC. Synthesis and Antibacterial Activity of Ionic Liquids and Organic Salts Based on Penicillin G and Amoxicillin hydrolysate Derivatives against Resistant Bacteria. Pharmaceutics 2020; 12:pharmaceutics12030221. [PMID: 32131540 PMCID: PMC7150922 DOI: 10.3390/pharmaceutics12030221] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/19/2020] [Accepted: 02/19/2020] [Indexed: 12/21/2022] Open
Abstract
The preparation and characterization of ionic liquids and organic salts (OSILs) that contain anionic penicillin G [secoPen] and amoxicillin [seco-Amx] hydrolysate derivatives and their in vitro antibacterial activity against sensitive and resistant Escherichia coli and Staphylococcus aureus strains is reported. Eleven hydrolyzed β-lactam-OSILs were obtained after precipitation in moderate-to-high yields via the neutralization of the basic ammonia buffer of antibiotics with different cation hydroxide salts. The obtained minimum inhibitory concentration (MIC) data of the prepared compounds showed a relative decrease of the inhibitory concentrations (RDIC) in the order of 100 in the case of [C2OHMIM][seco-Pen] against sensitive S. aureus ATCC25923 and, most strikingly, higher than 1000 with [C16Pyr][seco-Amx] against methicillin-resistant Staphylococcus aureus (MRSA) ATCC 43300. These outstanding in vitro results showcase that a straightforward transformation of standard antibiotics into hydrolyzed organic salts can dramatically change the pharmaceutical activity of a drug, including giving rise to potent formulations of antibiotics against deadly bacteria strains.
Collapse
Affiliation(s)
- Ricardo Ferraz
- Ciências Químicas e das Biomoléculas (CQB) e Centro de Investigação em Saúde e Ambiente (CISA), Escola Superior de Saúde do Instituto Politécnico do Porto, 4400-330 Porto, Portugal; (A.R.D.); (V.D.); (C.P.)
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal
- Correspondence: (R.F.); (Ž.P.); (L.C.B.)
| | - Dário Silva
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (D.S.); (M.M.S.); (L.P.); (J.P.N.)
| | - Ana Rita Dias
- Ciências Químicas e das Biomoléculas (CQB) e Centro de Investigação em Saúde e Ambiente (CISA), Escola Superior de Saúde do Instituto Politécnico do Porto, 4400-330 Porto, Portugal; (A.R.D.); (V.D.); (C.P.)
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal
| | - Vitorino Dias
- Ciências Químicas e das Biomoléculas (CQB) e Centro de Investigação em Saúde e Ambiente (CISA), Escola Superior de Saúde do Instituto Politécnico do Porto, 4400-330 Porto, Portugal; (A.R.D.); (V.D.); (C.P.)
| | - Miguel M. Santos
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (D.S.); (M.M.S.); (L.P.); (J.P.N.)
| | - Luís Pinheiro
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (D.S.); (M.M.S.); (L.P.); (J.P.N.)
| | - Cristina Prudêncio
- Ciências Químicas e das Biomoléculas (CQB) e Centro de Investigação em Saúde e Ambiente (CISA), Escola Superior de Saúde do Instituto Politécnico do Porto, 4400-330 Porto, Portugal; (A.R.D.); (V.D.); (C.P.)
- i3S, Instituto de Inovação e Investigação em Saúde, Universidade do Porto, 4099-002 Porto, Portugal
| | - João Paulo Noronha
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (D.S.); (M.M.S.); (L.P.); (J.P.N.)
| | - Željko Petrovski
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (D.S.); (M.M.S.); (L.P.); (J.P.N.)
- Correspondence: (R.F.); (Ž.P.); (L.C.B.)
| | - Luís C. Branco
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (D.S.); (M.M.S.); (L.P.); (J.P.N.)
- Correspondence: (R.F.); (Ž.P.); (L.C.B.)
| |
Collapse
|