1
|
Almatroudi A. Biofilm Resilience: Molecular Mechanisms Driving Antibiotic Resistance in Clinical Contexts. BIOLOGY 2025; 14:165. [PMID: 40001933 PMCID: PMC11852148 DOI: 10.3390/biology14020165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/02/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025]
Abstract
Healthcare-associated infections pose a significant global health challenge, negatively impacting patient outcomes and burdening healthcare systems. A major contributing factor to healthcare-associated infections is the formation of biofilms, structured microbial communities encased in a self-produced extracellular polymeric substance matrix. Biofilms are critical in disease etiology and antibiotic resistance, complicating treatment and infection control efforts. Their inherent resistance mechanisms enable them to withstand antibiotic therapies, leading to recurrent infections and increased morbidity. This review explores the development of biofilms and their dual roles in health and disease. It highlights the structural and protective functions of the EPS matrix, which shields microbial populations from immune responses and antimicrobial agents. Key molecular mechanisms of biofilm resistance, including restricted antibiotic penetration, persister cell dormancy, and genetic adaptations, are identified as significant barriers to effective management. Biofilms are implicated in various clinical contexts, including chronic wounds, medical device-associated infections, oral health complications, and surgical site infections. Their prevalence in hospital environments exacerbates infection control challenges and underscores the urgent need for innovative preventive and therapeutic strategies. This review evaluates cutting-edge approaches such as DNase-mediated biofilm disruption, RNAIII-inhibiting peptides, DNABII proteins, bacteriophage therapies, antimicrobial peptides, nanoparticle-based solutions, antimicrobial coatings, and antimicrobial lock therapies. It also examines critical challenges associated with biofilm-related healthcare-associated infections, including diagnostic difficulties, disinfectant resistance, and economic implications. This review emphasizes the need for a multidisciplinary approach and underscores the importance of understanding biofilm dynamics, their role in disease pathogenesis, and the advancements in therapeutic strategies to combat biofilm-associated infections effectively in clinical settings. These insights aim to enhance treatment outcomes and reduce the burden of biofilm-related diseases.
Collapse
Affiliation(s)
- Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
2
|
Li W, Tao Z, Zhou M, Jiang H, Wang L, Ji B, Zhao Y. Antibiotic adjuvants against multidrug-resistant Gram-negative bacteria: important component of future antimicrobial therapy. Microbiol Res 2024; 287:127842. [PMID: 39032266 DOI: 10.1016/j.micres.2024.127842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/13/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024]
Abstract
The swift emergence and propagation of multidrug-resistant (MDR) bacterial pathogens constitute a tremendous global health crisis. Among these pathogens, the challenge of antibiotic resistance in Gram-negative bacteria is particularly pressing due to their distinctive structure, such as highly impermeable outer membrane, overexpressed efflux pumps, and mutations. Several strategies have been documented to combat MDR Gram-negative bacteria, including the structural modification of existing antibiotics, the development of antimicrobial adjuvants, and research on novel targets that MDR bacteria are sensitive to. Drugs functioning as adjuvants to mitigate resistance to existing antibiotics may play a pivotal role in future antibacterial therapy strategies. In this review, we provide a brief overview of potential antibacterial adjuvants against Gram-negative bacteria and their mechanisms of action, and discuss the application prospects and potential for bacterial resistance to these adjuvants, along with strategies to reduce this risk.
Collapse
Affiliation(s)
- Wenwen Li
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning Province 110016, PR China
| | - Zhen Tao
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning Province 110016, PR China
| | - Motan Zhou
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning Province 110016, PR China
| | - Huilin Jiang
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning Province 110016, PR China
| | - Liudi Wang
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning Province 110016, PR China
| | - Bingjie Ji
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning Province 110016, PR China
| | - Yongshan Zhao
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning Province 110016, PR China.
| |
Collapse
|
3
|
de Souza GH, Vaz MS, Dos Santos Radai JA, Fraga TL, Rossato L, Simionatto S. Synergistic interaction of polymyxin B with carvacrol: antimicrobial strategy against polymyxin-resistant Klebsiella pneumoniae. Future Microbiol 2024; 19:181-193. [PMID: 38329374 DOI: 10.2217/fmb-2023-0070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 10/09/2023] [Indexed: 02/09/2024] Open
Abstract
Objective: The antimicrobial activities of the synergistic combination of carvacrol and polymyxin B against polymyxin-resistant Klebsiella pneumoniae were evaluated. Methods: The methods employed checkerboard assays to investigate synergism, biofilm inhibition assessment and membrane integrity assay. In addition, the study included in vivo evaluation using a mouse infection model. Results: The checkerboard method evaluated 48 combinations, with 23 indicating synergistic action. Among these, carvacrol 10 mg/kg plus polymyxin B 2 mg/kg exhibited in vivo antimicrobial activity in a mouse model of infection, resulting in increased survival and a significant decrease in bacterial load in the blood. Conclusion: Polymyxin in synergy with carvacrol represents a promising alternative to be explored in the development of new antimicrobials.
Collapse
Affiliation(s)
- Gleyce Ha de Souza
- Laboratório de Pesquisa em Ciências da Saúde, Universidade Federal da Grande Dourados - UFGD, Dourados, Mato Grosso do Sul, 79825-900, Brazil
| | - Marcia Sm Vaz
- Laboratório de Pesquisa em Ciências da Saúde, Universidade Federal da Grande Dourados - UFGD, Dourados, Mato Grosso do Sul, 79825-900, Brazil
| | - Joyce A Dos Santos Radai
- Laboratório de Pesquisa em Ciências da Saúde, Universidade Federal da Grande Dourados - UFGD, Dourados, Mato Grosso do Sul, 79825-900, Brazil
| | - Thiago L Fraga
- Centro Universitário da Grande Dourados - UNIGRAN, Dourados, Mato Grosso do Sul, 79824-900, Brazil
| | - Luana Rossato
- Laboratório de Pesquisa em Ciências da Saúde, Universidade Federal da Grande Dourados - UFGD, Dourados, Mato Grosso do Sul, 79825-900, Brazil
| | - Simone Simionatto
- Laboratório de Pesquisa em Ciências da Saúde, Universidade Federal da Grande Dourados - UFGD, Dourados, Mato Grosso do Sul, 79825-900, Brazil
| |
Collapse
|
4
|
Adhikrao PA, Motiram GM, Kumar G. Tackling Nontuberculous Mycobacteria by Repurposable Drugs and Potential Leads from Natural Products. Curr Top Med Chem 2024; 24:1291-1326. [PMID: 38288807 DOI: 10.2174/0115680266276938240108060247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 07/25/2024]
Abstract
Nontuberculous Mycobacteria (NTM) refer to bacteria other than all Mycobacterium species that do not cause tuberculosis or leprosy, excluding the species of the Mycobacterium tuberculosis complex, M. leprae and M. lepromatosis. NTM are ubiquitous and present in soils and natural waters. NTM can survive in a wide range of environmental conditions. The direct inoculum of the NTM from water or other materials is most likely a source of infections. NTMs are responsible for several illnesses, including pulmonary alveolar proteinosis, cystic fibrosis, bronchiectasis, chronic obstructive pneumoconiosis, and pulmonary disease. Recent reports suggest that NTM species have become insensitive to sterilizing agents, antiseptics, and disinfectants. The efficacy of existing anti-NTM regimens is diminishing and has been compromised due to drug resistance. New and recurring cases of multidrug-resistant NTM strains are increasing. Thus, there is an urgent need for ant-NTM regimens with novel modes of action. This review sheds light on the mode of antimicrobial resistance in the NTM species. Then, we discussed the repurposable drugs (antibiotics) that have shown new indications (activity against NTM strains) that could be developed for treating NTM infections. Also, we have summarised recently identified natural leads acting against NTM, which have the potential for treating NTM-associated infections.
Collapse
Affiliation(s)
- Patil Amruta Adhikrao
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, Balanagar, 500037, India
| | - Gudle Mayuri Motiram
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, Balanagar, 500037, India
| | - Gautam Kumar
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, Balanagar, 500037, India
| |
Collapse
|
5
|
Mendogralo EY, Nesterova LY, Nasibullina ER, Shcherbakov RO, Tkachenko AG, Sidorov RY, Sukonnikov MA, Skvortsov DA, Uchuskin MG. The Synthesis and Biological Evaluation of 2-(1 H-Indol-3-yl)quinazolin-4(3 H)-One Derivatives. Molecules 2023; 28:5348. [PMID: 37513221 PMCID: PMC10384628 DOI: 10.3390/molecules28145348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/03/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
The treatment of many bacterial diseases remains a significant problem due to the increasing antibiotic resistance of their infectious agents. Among others, this is related to Staphylococcus aureus, especially methicillin-resistant S. aureus (MRSA) and Mycobacterium tuberculosis. In the present article, we report on antibacterial compounds with activity against both S. aureus and MRSA. A straightforward approach to 2-(1H-indol-3-yl)quinazolin-4(3H)-one and their analogues was developed. Their structural and functional relationships were also considered. The antimicrobial activity of the synthesized compounds against Mycobacterium tuberculosis H37Rv, S. aureus ATCC 25923, MRSA ATCC 43300, Candida albicans ATCC 10231, and their role in the inhibition of the biofilm formation of S. aureus were reported. 2-(5-Iodo-1H-indol-3-yl)quinazolin-4(3H)-one (3k) showed a low minimum inhibitory concentration (MIC) of 0.98 μg/mL against MRSA. The synthesized compounds were assessed via molecular docking for their ability to bind long RSH (RelA/SpoT homolog) proteins using mycobacterial and streptococcal (p)ppGpp synthetase structures as models. The cytotoxic activity of some synthesized compounds was studied. Compounds 3c, f, g, k, r, and 3z displayed significant antiproliferative activities against all the cancer cell lines tested. Indolylquinazolinones 3b, 3e, and 3g showed a preferential suppression of the growth of rapidly dividing A549 cells compared to slower growing fibroblasts of non-tumor etiology.
Collapse
Affiliation(s)
- Elena Y Mendogralo
- Department of Chemistry, Perm State University, Bukireva St. 15, 614990 Perm, Russia
| | - Larisa Y Nesterova
- Department of Chemistry, Perm State University, Bukireva St. 15, 614990 Perm, Russia
- Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences, Goleva St. 13, 614081 Perm, Russia
| | | | - Roman O Shcherbakov
- Department of Chemistry, Perm State University, Bukireva St. 15, 614990 Perm, Russia
| | - Alexander G Tkachenko
- Department of Chemistry, Perm State University, Bukireva St. 15, 614990 Perm, Russia
- Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences, Goleva St. 13, 614081 Perm, Russia
| | - Roman Y Sidorov
- Department of Chemistry, Perm State University, Bukireva St. 15, 614990 Perm, Russia
- Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences, Goleva St. 13, 614081 Perm, Russia
| | - Maxim A Sukonnikov
- Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| | - Dmitry A Skvortsov
- Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| | - Maxim G Uchuskin
- Department of Chemistry, Perm State University, Bukireva St. 15, 614990 Perm, Russia
| |
Collapse
|
6
|
Xiao L. A Review: Meridianins and Meridianins Derivatives. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248714. [PMID: 36557848 PMCID: PMC9781522 DOI: 10.3390/molecules27248714] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022]
Abstract
Meridianins are a family of indole alkaloids derived from Antarctic tunicates with extensive pharmacological activities. A series of meridianin derivatives had been synthesized by drug researchers. This article reviews the extraction and purification methods, biological activities and pharmacological applications, pharmacokinetic characters and chemical synthesis of meridianins and their derivatives. And prospects on discovering new bioactivities of meridianins and optimizing their structure for the improvement of the ADMET properties are provided.
Collapse
Affiliation(s)
- Linxia Xiao
- School of Pharmacology, Jiangsu Vocational College of Medicine, Yancheng 224005, China
| |
Collapse
|
7
|
Berndsen R, Cunningham T, Kaelin L, Callender M, Boldog WD, Viering B, King A, Labban N, Pollock JA, Miller HB, Blackledge MS. Identification and Evaluation of Brominated Carbazoles as a Novel Antibiotic Adjuvant Scaffold in MRSA. ACS Med Chem Lett 2022; 13:483-491. [PMID: 35295086 PMCID: PMC8919279 DOI: 10.1021/acsmedchemlett.1c00680] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/02/2022] [Indexed: 12/23/2022] Open
Abstract
![]()
Antibiotic-resistant
infections are a pressing global concern,
causing millions of deaths each year. Methicillin-resistant Staphylococcus aureus (MRSA) is a leading cause of nosocomial
infections in healthcare settings and is increasingly responsible
for community-acquired infections that are often more difficult to
treat. Antibiotic adjuvants are small molecules that potentiate antibiotics
through nontoxic mechanisms and show excellent promise as novel therapeutics.
Screening of low-molecular-weight compounds was employed to identify
novel antibiotic adjuvant scaffolds for further elaboration. Brominated
carbazoles emerged from this screening as lead compounds for further
evaluation. Lead carbazoles were able to potentiate several β-lactam
antibiotics in three medically relevant strains of MRSA. Gene expression
studies determined that these carbazoles were dampening the transcription
of key genes that modulate β-lactam resistance in MRSA. The
lead brominated carbazoles represent novel scaffolds for elaboration
as antibiotic adjuvants.
Collapse
Affiliation(s)
- Rachel Berndsen
- Department of Chemistry, High Point University, High Point, North Carolina 27268, United States
| | - Taylor Cunningham
- Department of Chemistry, High Point University, High Point, North Carolina 27268, United States
| | - Lauren Kaelin
- Department of Chemistry, High Point University, High Point, North Carolina 27268, United States
| | - Makayla Callender
- Department of Chemistry, University of Richmond, Richmond, Virginia 23173, United States
| | - W. Dexter Boldog
- Department of Chemistry, High Point University, High Point, North Carolina 27268, United States
| | - Brianna Viering
- Department of Chemistry, High Point University, High Point, North Carolina 27268, United States
| | - Ashley King
- Department of Chemistry, High Point University, High Point, North Carolina 27268, United States
| | - Najwa Labban
- Department of Chemistry, University of Richmond, Richmond, Virginia 23173, United States
| | - Julie A. Pollock
- Department of Chemistry, University of Richmond, Richmond, Virginia 23173, United States
| | - Heather B. Miller
- Department of Chemistry, High Point University, High Point, North Carolina 27268, United States
| | - Meghan S. Blackledge
- Department of Chemistry, High Point University, High Point, North Carolina 27268, United States
| |
Collapse
|
8
|
Belardinelli JM, Li W, Martin KH, Zeiler MJ, Lian E, Avanzi C, Wiersma CJ, Nguyen TV, Angala B, de Moura VCN, Jones V, Borlee BR, Melander C, Jackson M. 2-Aminoimidazoles Inhibit Mycobacterium abscessus Biofilms in a Zinc-Dependent Manner. Int J Mol Sci 2022; 23:ijms23062950. [PMID: 35328372 PMCID: PMC8951752 DOI: 10.3390/ijms23062950] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/28/2022] [Accepted: 03/07/2022] [Indexed: 02/04/2023] Open
Abstract
Biofilm growth is thought to be a significant obstacle to the successful treatment of Mycobacterium abscessus infections. A search for agents capable of inhibiting M. abscessus biofilms led to our interest in 2-aminoimidazoles and related scaffolds, which have proven to display antibiofilm properties against a number of Gram-negative and Gram-positive bacteria, including Mycobacterium tuberculosis and Mycobacterium smegmatis. The screening of a library of 30 compounds led to the identification of a compound, AB-2-29, which inhibits the formation of M. abscessus biofilms with an IC50 (the concentration required to inhibit 50% of biofilm formation) in the range of 12.5 to 25 μM. Interestingly, AB-2-29 appears to chelate zinc, and its antibiofilm activity is potentiated by the addition of zinc to the culture medium. Preliminary mechanistic studies indicate that AB-2-29 acts through a distinct mechanism from those reported to date for 2-aminoimidazole compounds.
Collapse
Affiliation(s)
- Juan M. Belardinelli
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (J.M.B.); (W.L.); (E.L.); (C.A.); (C.J.W.); (B.A.); (V.C.N.d.M.); (V.J.)
| | - Wei Li
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (J.M.B.); (W.L.); (E.L.); (C.A.); (C.J.W.); (B.A.); (V.C.N.d.M.); (V.J.)
| | - Kevin H. Martin
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (K.H.M.); (B.R.B.)
| | - Michael J. Zeiler
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA; (M.J.Z.); (C.M.)
| | - Elena Lian
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (J.M.B.); (W.L.); (E.L.); (C.A.); (C.J.W.); (B.A.); (V.C.N.d.M.); (V.J.)
| | - Charlotte Avanzi
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (J.M.B.); (W.L.); (E.L.); (C.A.); (C.J.W.); (B.A.); (V.C.N.d.M.); (V.J.)
| | - Crystal J. Wiersma
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (J.M.B.); (W.L.); (E.L.); (C.A.); (C.J.W.); (B.A.); (V.C.N.d.M.); (V.J.)
| | - Tuan Vu Nguyen
- Department of Chemistry, North Carolina State University, Raleigh, NC 27607, USA;
| | - Bhanupriya Angala
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (J.M.B.); (W.L.); (E.L.); (C.A.); (C.J.W.); (B.A.); (V.C.N.d.M.); (V.J.)
| | - Vinicius C. N. de Moura
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (J.M.B.); (W.L.); (E.L.); (C.A.); (C.J.W.); (B.A.); (V.C.N.d.M.); (V.J.)
| | - Victoria Jones
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (J.M.B.); (W.L.); (E.L.); (C.A.); (C.J.W.); (B.A.); (V.C.N.d.M.); (V.J.)
| | - Bradley R. Borlee
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (K.H.M.); (B.R.B.)
| | - Christian Melander
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA; (M.J.Z.); (C.M.)
- Department of Chemistry, North Carolina State University, Raleigh, NC 27607, USA;
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (J.M.B.); (W.L.); (E.L.); (C.A.); (C.J.W.); (B.A.); (V.C.N.d.M.); (V.J.)
- Correspondence: ; Tel.: +1-(970)-491-3582
| |
Collapse
|
9
|
King A, Blackledge MS. Evaluation of small molecule kinase inhibitors as novel antimicrobial and antibiofilm agents. Chem Biol Drug Des 2021; 98:1038-1064. [PMID: 34581492 PMCID: PMC8616828 DOI: 10.1111/cbdd.13962] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/24/2021] [Accepted: 09/15/2021] [Indexed: 12/25/2022]
Abstract
Antibiotic resistance is a global and pressing concern. Our current therapeutic arsenal is increasingly limited as bacteria are developing resistance at a rate that far outpaces our ability to create new treatments. Novel approaches to treating and curing bacterial infections are urgently needed. Bacterial kinases have been increasingly explored as novel drug targets and are poised for development into novel therapeutic agents to combat bacterial infections. This review describes several general classes of bacterial kinases that play important roles in bacterial growth, antibiotic resistance, and biofilm formation. General features of these kinase classes are discussed and areas of particular interest for the development of inhibitors will be highlighted. Small molecule kinase inhibitors are described and organized by phenotypic effect, spotlighting particularly interesting inhibitors with novel functions and potential therapeutic benefit. Finally, we provide our perspective on the future of bacterial kinase inhibition as a viable strategy to combat bacterial infections and overcome the pressures of increasing antibiotic resistance.
Collapse
Affiliation(s)
- Ashley King
- Department of Chemistry, High Point University, One University Parkway, High Point, NC 27268
| | - Meghan S. Blackledge
- Department of Chemistry, High Point University, One University Parkway, High Point, NC 27268
| |
Collapse
|
10
|
Microwave-assisted synthesis of double-headed derivatives of (4-amino-5-mercapto-4H-1,2,4-triazol-3-yl)-ethan-1-ol and study of their biological activity. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04501-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|