1
|
Zueva I, Belyaev G, Petrov K. Disease-modifying effect of donepezil on APP/PS1 mice at different stages of Alzheimer's disease. Mol Cell Biochem 2025:10.1007/s11010-025-05310-2. [PMID: 40399637 DOI: 10.1007/s11010-025-05310-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 05/09/2025] [Indexed: 05/23/2025]
Abstract
Despite Alzheimer's disease (AD) representing a significant global health concern, disease-modifying therapeutic options remain elusive. The use of animal models of the disease to develop drugs intended for the treatment of AD does not always predict their efficacy in clinical trials. Our research demonstrates the benefits of a drug-withdrawal approach to screening AD-modifying compounds, focussing on β-amyloid (Aβ)-related pathological changes in APP/PS1 transgenic mice at different stages of the disease. To assess the efficacy of this approach, we examined the AD-modifying effect of donepezil as a reference drug. A significant cognitive decline exhibited by APP/PS1 transgenic mice from 8.4 months of age was accompanied by progressive accumulation of Aβ plaques, decreased synaptophysin and vesicular acetylcholine transporter immunoexpression. Donepezil had a disease-modifying effect, slowing the deterioration of all the pathological markers studied when treatment was started in a pre-symptomatic stage of AD. However, in the group of mice with advanced stage of AD, such disease-modifying effects were not evident.
Collapse
Affiliation(s)
- Irina Zueva
- Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center "Kazan Scientific Center of the Russian Academy of Sciences", Kazan, Russia.
| | - Grigory Belyaev
- Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center "Kazan Scientific Center of the Russian Academy of Sciences", Kazan, Russia
| | - Konstantin Petrov
- Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center "Kazan Scientific Center of the Russian Academy of Sciences", Kazan, Russia
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| |
Collapse
|
2
|
Turgutalp B, Kizil C. Multi-target drugs for Alzheimer's disease. Trends Pharmacol Sci 2024; 45:628-638. [PMID: 38853102 DOI: 10.1016/j.tips.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 04/28/2024] [Accepted: 05/09/2024] [Indexed: 06/11/2024]
Abstract
Alzheimer's disease (AD), a leading cause of dementia, increasingly challenges our healthcare systems and society. Traditional therapies aimed at single targets have fallen short owing to the complex, multifactorial nature of AD that necessitates simultaneous targeting of various disease mechanisms for clinical success. Therefore, targeting multiple pathologies at the same time could provide a synergistic therapeutic effect. The identification of new disease targets beyond the classical hallmarks of AD offers a fertile ground for the design of new multi-target drugs (MTDs), and building on existing compounds have the potential to yield in successful disease modifying therapies. This review discusses the evolving landscape of MTDs, focusing on their potential as AD therapeutics. Analysis of past and current trials of compounds with multi-target activity underscores the capacity of MTDs to offer synergistic therapeutic effects, and the flourishing genetic understanding of AD will inform and inspire the development of MTD-based AD therapies.
Collapse
Affiliation(s)
- Bengisu Turgutalp
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, 650 West 168th Street, New York, NY 10032, USA; Department of Neurology, Columbia University Irving Medical Center, Columbia University, 710 West 168th Street, New York, NY 10032, USA.
| | - Caghan Kizil
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, 650 West 168th Street, New York, NY 10032, USA; Department of Neurology, Columbia University Irving Medical Center, Columbia University, 710 West 168th Street, New York, NY 10032, USA; Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia University, 630 West 168th Street, New York, NY, USA.
| |
Collapse
|
3
|
Guardigni M, Greco G, Poeta E, Santini A, Tassinari E, Bergamini C, Zalambani C, De Simone A, Andrisano V, Uliassi E, Monti B, Bolognesi ML, Fimognari C, Milelli A. Integrating a quinone substructure into histone deacetylase inhibitors to cope with Alzheimer's disease and cancer. RSC Med Chem 2024; 15:2045-2062. [PMID: 38911150 PMCID: PMC11187553 DOI: 10.1039/d4md00175c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/13/2024] [Indexed: 06/25/2024] Open
Abstract
Alzheimer's disease (AD) and cancer are among the most devastating diseases of the 21st century. Although the clinical manifestations are different and the cellular mechanisms underlying the pathologies are opposite, there are different classes of molecules that are effective in both diseases, such as quinone-based compounds and histone deacetylase inhibitors (HDACIs). Herein, we investigate the biological effects of a series of compounds built to exploit the beneficial effects of quinones and histone deacetylase inhibition (compounds 1-8). Among the different compounds, compound 6 turned out to be a potent cytotoxic agent in SH-SY5Y cancer cell line, with a half maximal inhibitory concentration (IC50) value lower than vorinostat and a pro-apoptotic activity. On the other hand, compound 8 was nontoxic up to the concentration of 100 μM and was highly effective in stimulating the proliferation of neural precursor cells (NPCs), as well as inducing differentiation into neurons, at low micromolar concentrations. In particular, it was able to induce NPC differentiation solely towards a neuronal-specific phenotype, without affecting glial cells commitment.
Collapse
Affiliation(s)
- Melissa Guardigni
- Department for Life Quality Studies, Alma Mater Studiorum - University of Bologna 47921 Rimini Italy
| | - Giulia Greco
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum - University of Bologna 40129 Bologna Italy
| | - Eleonora Poeta
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna 40126 Bologna Italy
| | - Alan Santini
- Department for Life Quality Studies, Alma Mater Studiorum - University of Bologna 47921 Rimini Italy
| | - Elisa Tassinari
- Department for Life Quality Studies, Alma Mater Studiorum - University of Bologna 47921 Rimini Italy
| | - Christian Bergamini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna 40126 Bologna Italy
| | - Chiara Zalambani
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna 40126 Bologna Italy
| | - Angela De Simone
- Department of Drug Science and Technology, University of Turin 10125 Turin Italy
| | - Vincenza Andrisano
- Department for Life Quality Studies, Alma Mater Studiorum - University of Bologna 47921 Rimini Italy
| | - Elisa Uliassi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna 40126 Bologna Italy
| | - Barbara Monti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna 40126 Bologna Italy
| | - Maria Laura Bolognesi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna 40126 Bologna Italy
| | - Carmela Fimognari
- Department for Life Quality Studies, Alma Mater Studiorum - University of Bologna 47921 Rimini Italy
| | - Andrea Milelli
- Department for Life Quality Studies, Alma Mater Studiorum - University of Bologna 47921 Rimini Italy
| |
Collapse
|
4
|
Cores Á, Carmona-Zafra N, Clerigué J, Villacampa M, Menéndez JC. Quinones as Neuroprotective Agents. Antioxidants (Basel) 2023; 12:1464. [PMID: 37508002 PMCID: PMC10376830 DOI: 10.3390/antiox12071464] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/12/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Quinones can in principle be viewed as a double-edged sword in the treatment of neurodegenerative diseases, since they are often cytoprotective but can also be cytotoxic due to covalent and redox modification of biomolecules. Nevertheless, low doses of moderately electrophilic quinones are generally cytoprotective, mainly due to their ability to activate the Keap1/Nrf2 pathway and thus induce the expression of detoxifying enzymes. Some natural quinones have relevant roles in important physiological processes. One of them is coenzyme Q10, which takes part in the oxidative phosphorylation processes involved in cell energy production, as a proton and electron carrier in the mitochondrial respiratory chain, and shows neuroprotective effects relevant to Alzheimer's and Parkinson's diseases. Additional neuroprotective quinones that can be regarded as coenzyme Q10 analogues are idobenone, mitoquinone and plastoquinone. Other endogenous quinones with neuroprotective activities include tocopherol-derived quinones, most notably vatiquinone, and vitamin K. A final group of non-endogenous quinones with neuroprotective activity is discussed, comprising embelin, APX-3330, cannabinoid-derived quinones, asterriquinones and other indolylquinones, pyrroloquinolinequinone and its analogues, geldanamycin and its analogues, rifampicin quinone, memoquin and a number of hybrid structures combining quinones with amino acids, cholinesterase inhibitors and non-steroidal anti-inflammatory drugs.
Collapse
Affiliation(s)
- Ángel Cores
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, Plaza de Ramón y Cajal sn, 28040 Madrid, Spain
| | - Noelia Carmona-Zafra
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, Plaza de Ramón y Cajal sn, 28040 Madrid, Spain
| | - José Clerigué
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, Plaza de Ramón y Cajal sn, 28040 Madrid, Spain
| | - Mercedes Villacampa
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, Plaza de Ramón y Cajal sn, 28040 Madrid, Spain
| | - J Carlos Menéndez
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, Plaza de Ramón y Cajal sn, 28040 Madrid, Spain
| |
Collapse
|
5
|
Uliassi E, Bergamini C, Rizzardi N, Naldi M, Cores Á, Bartolini M, Carlos Menéndez J, Bolognesi ML. Quinolinetrione-tacrine hybrids as multi-target-directed ligands against Alzheimer's disease. Bioorg Med Chem 2023; 91:117419. [PMID: 37487339 DOI: 10.1016/j.bmc.2023.117419] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/04/2023] [Accepted: 07/18/2023] [Indexed: 07/26/2023]
Abstract
Multi-target drug discovery is one of the most active fields in the search for new drugs against Alzheimer's disease (AD). This is because the complexity of AD pathological network might be adequately tackled by multi-target-directed ligands (MTDLs) aimed at modulating simultaneously multiple targets of such a network. In a continuation of our efforts to develop MTDLs for AD, we have been focusing on the molecular hybridization of the acetylcholinesterase inhibitor tacrine with the aim of expanding its anti-AD profile. Herein, we manipulated the structure of a previously developed tacrine-quinone hybrid (1). We designed and synthesized a novel set of MTDLs (2-6) by replacing the naphthoquinone scaffold of 1 with that of 2,5,8-quinolinetrione. The most interesting hybrid 3 inhibited cholinesterase enzymes at nanomolar concentrations. In addition, 3 exerted antioxidant effects in menadione-induced oxidative stress of SH-SY5Y cells. Importantly, 3 also showed low hepatotoxicity and good anti-amyloid aggregation properties. Remarkably, we uncovered the potential of the quinolinetrione scaffold, as a novel anti-amyloid aggregation and antioxidant motif to be used in further anti-AD MTDL drug discovery endeavors.
Collapse
Affiliation(s)
- Elisa Uliassi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, 40126 Bologna, Italy
| | - Christian Bergamini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, 40126 Bologna, Italy
| | - Nicola Rizzardi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, 40126 Bologna, Italy
| | - Marina Naldi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, 40126 Bologna, Italy
| | - Ángel Cores
- Department of Chemistry in Pharmaceutical Sciences, Organic and Medicinal Chemistry Unit, Faculty of Pharmacy, Universidad Complutense, 28040 Madrid, Spain
| | - Manuela Bartolini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, 40126 Bologna, Italy
| | - J Carlos Menéndez
- Department of Chemistry in Pharmaceutical Sciences, Organic and Medicinal Chemistry Unit, Faculty of Pharmacy, Universidad Complutense, 28040 Madrid, Spain.
| | - Maria Laura Bolognesi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, 40126 Bologna, Italy.
| |
Collapse
|
6
|
Recent advance on pleiotropic cholinesterase inhibitors bearing amyloid modulation efficacy. Eur J Med Chem 2022; 242:114695. [PMID: 36044812 DOI: 10.1016/j.ejmech.2022.114695] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/13/2022] [Accepted: 08/14/2022] [Indexed: 12/15/2022]
Abstract
Due to the hugely important roles of neurotransmitter acetylcholine (ACh) and amyloid-β (Aβ) in the pathogenesis of Alzheimer's disease (AD), the development of multi-target directed ligands (MTDLs) focused on cholinesterase (ChE) and Aβ becomes one of the most attractive strategies for combating AD. To date, numerous preclinical studies toward multifunctional conjugates bearing ChE inhibition and anti-Aβ aggregation have been reported. Noteworthily, most of the reported multifunctional cholinesterase inhibitors are carbamate-based compounds due to the initial properties of carbamate moiety. However, because their easy hydrolysis in vivo and the instability of the compound-enzyme conjugate, the mechanism of action of these compounds is rare. Thus, non-carbamate compounds are of great need for developing novel cholinesterase inhibitors. Besides, given that Aβ accumulation begins to occur 10-15 years before AD onset, modulating Aβ is ineffective only in inhibiting its aggregation but not eliminate the already accumulated Aβ if treatment is started when the patient has been diagnosed as AD. Considering the limitation of current Aβ accumulation modulators in ameliorating cognitive deficits and ineffectiveness of ChE inhibitors in blocking disease progression, the development of a practically valuable strategy with multiple pharmaceutical properties including ChE inhibition and Aβ modulation for treating AD is indispensable. In this review, we focus on summarizing the scaffold characteristics of reported non-carbamate cholinesterase inhibitors with Aβ modulation since 2020, and understanding the ingenious multifunctional drug design ideas to accelerate the pace of obtaining more efficient anti-AD drugs in the future.
Collapse
|
7
|
Discovery of novel β-carboline derivatives as selective AChE inhibitors with GSK-3β inhibitory property for the treatment of Alzheimer's disease. Eur J Med Chem 2021; 229:114095. [PMID: 34995924 DOI: 10.1016/j.ejmech.2021.114095] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/27/2021] [Accepted: 12/27/2021] [Indexed: 12/12/2022]
Abstract
The natural product harmine, a representative β-carboline alkaloid from the seeds of Peganum harmala L. (Zygophyllaceae), possesses a broad spectrum of biological activities. In this study, a novel series of harmine derivatives containing N-benzylpiperidine moiety were identified for the treatment of Alzheimer's disease (AD). The results showed that all the derivatives possessed significant anti-acetylcholinesterase (AChE) activity and good selectivity over butyrylcholinesterase (BChE). In particular, compound ZLWH-23 exhibited potent anti-AChE activity (IC50 = 0.27 μM) and selective BChE inhibition (IC50 = 20.82 μM), as well as acceptable glycogen synthase kinase-3 (GSK-3β) inhibition (IC50 = 6.78 μM). Molecular docking studies and molecular dynamics simulations indicated that ZLWH-23 could form stable interaction with AChE and GSK-3β. Gratifyingly, ZLWH-23 exhibited good selectivity for GSK-3β over multi-kinases and very low cytotoxicity towards SH-SY5Y, HEK-293T, HL-7702, and HepG2 cell lines. Importantly, ZLWH-23 displayed efficient reduction against tau hyperphosphorylation on Ser-396 site in Tau (P301L) 293T cell model. Collectively, harmine-based derivatives could be considered as possible drug leads for the development of AD therapies.
Collapse
|
8
|
Bisenieks E, Vigante B, Petrovska R, Turovska B, Muhamadejev R, Soloduns V, Velena A, Pajuste K, Saso L, Klovins J, Duburs G, Mandrika I. The Specificity and Broad Multitarget Properties of Ligands for the Free Fatty Acid Receptors FFA3/GPR41 and FFA2/GPR43 and the Related Hydroxycarboxylic Acid Receptor HCA2/GPR109A. Pharmaceuticals (Basel) 2021; 14:987. [PMID: 34681211 PMCID: PMC8537386 DOI: 10.3390/ph14100987] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/09/2021] [Accepted: 09/22/2021] [Indexed: 12/15/2022] Open
Abstract
The paradigm of ligand-receptor interactions postulated as "one compound-one target" has been evolving; a multi-target, pleiotropic approach is now considered to be realistic. Novel series of 1,4,5,6,7,8-hexahydro-5-oxoquinolines, pyranopyrimidines and S-alkyl derivatives of pyranopyrimidines have been synthesized in order to characterise their pleiotropic, multitarget activity on the FFA3/GPR41, FFA2/GPR43, and HCA2/GPR109A receptors. Hexahydroquinoline derivatives have been known to exhibit characteristic activity as FFA3/GPR41 ligands, but during this study we observed their impact on FFA2/GPR43 and HCA2/GPR109A receptors as well as their electron-donating activity. Oxopyranopyrimidine and thioxopyranopyrimidine type compounds have been studied as ligands of the HCA2/GPR109A receptor; nevertheless, they exhibited equal or higher activity towards FFA3/GPR41 and FFA2/GPR43 receptors. S-Alkyl derivatives of pyranopyrimidines that have not yet been studied as ligands of GPCRs were more active towards HCA2/GPR109A and FFA3/GPR41 receptors than towards FFA2/GPR43. Representative compounds from each synthesized series were able to decrease the lipopolysaccharide-induced gene expression and secretion of proinflammatory cytokines (IL-6, TNF-α) and of a chemokine (MCP-1) in THP-1 macrophages, resembling the effect of HCA2/GPR109A ligand niacin and the endogenous ligand propionate. This study revealed groups of compounds possessing multitarget activity towards several receptors. The obtained data could be useful for further development of multitarget ligands.
Collapse
Affiliation(s)
- Egils Bisenieks
- Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (E.B.); (B.V.); (B.T.); (R.M.); (V.S.); (A.V.); (K.P.)
| | - Brigita Vigante
- Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (E.B.); (B.V.); (B.T.); (R.M.); (V.S.); (A.V.); (K.P.)
| | - Ramona Petrovska
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (R.P.); (J.K.)
| | - Baiba Turovska
- Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (E.B.); (B.V.); (B.T.); (R.M.); (V.S.); (A.V.); (K.P.)
| | - Ruslan Muhamadejev
- Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (E.B.); (B.V.); (B.T.); (R.M.); (V.S.); (A.V.); (K.P.)
| | - Vitalijs Soloduns
- Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (E.B.); (B.V.); (B.T.); (R.M.); (V.S.); (A.V.); (K.P.)
| | - Astrida Velena
- Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (E.B.); (B.V.); (B.T.); (R.M.); (V.S.); (A.V.); (K.P.)
| | - Karlis Pajuste
- Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (E.B.); (B.V.); (B.T.); (R.M.); (V.S.); (A.V.); (K.P.)
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, University Sapienza, 00185 Rome, Italy;
| | - Janis Klovins
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (R.P.); (J.K.)
| | - Gunars Duburs
- Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (E.B.); (B.V.); (B.T.); (R.M.); (V.S.); (A.V.); (K.P.)
| | - Ilona Mandrika
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (R.P.); (J.K.)
| |
Collapse
|
9
|
Suwanhom P, Saetang J, Khongkow P, Nualnoi T, Tipmanee V, Lomlim L. Synthesis, Biological Evaluation, and In Silico Studies of New Acetylcholinesterase Inhibitors Based on Quinoxaline Scaffold. Molecules 2021; 26:4895. [PMID: 34443482 PMCID: PMC8400540 DOI: 10.3390/molecules26164895] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/07/2021] [Accepted: 08/09/2021] [Indexed: 12/13/2022] Open
Abstract
A quinoxaline scaffold exhibits various bioactivities in pharmacotherapeutic interests. In this research, twelve quinoxaline derivatives were synthesized and evaluated as new acetylcholinesterase inhibitors. We found all compounds showed potent inhibitory activity against acetylcholinesterase (AChE) with IC50 values of 0.077 to 50.080 µM, along with promising predicted drug-likeness and blood-brain barrier (BBB) permeation. In addition, potent butyrylcholinesterase (BChE) inhibitory activity with IC50 values of 14.91 to 60.95 µM was observed in some compounds. Enzyme kinetic study revealed the most potent compound (6c) as a mixed-type AChE inhibitor. No cytotoxicity from the quinoxaline derivatives was noticed in the human neuroblastoma cell line (SHSY5Y). In silico study suggested the compounds preferred the peripheral anionic site (PAS) to the catalytic anionic site (CAS), which was different from AChE inhibitors (tacrine and galanthamine). We had proposed the molecular design guided for quinoxaline derivatives targeting the PAS site. Therefore, the quinoxaline derivatives could offer the lead for the newly developed candidate as potential acetylcholinesterase inhibitors.
Collapse
Affiliation(s)
- Paptawan Suwanhom
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai 90112, Songkhla, Thailand;
- Phytomedicine and Pharmaceutical Biotechnology Excellent Center (PPBEC), Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai 90112, Songkhla, Thailand
| | - Jirakrit Saetang
- Department of Surgery, Faculty of Medicine, Prince of Songkla University, Hat Yai 90112, Songkhla, Thailand;
| | - Pasarat Khongkow
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai 90112, Songkhla, Thailand;
| | - Teerapat Nualnoi
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai 90112, Songkhla, Thailand;
| | - Varomyalin Tipmanee
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai 90112, Songkhla, Thailand;
| | - Luelak Lomlim
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai 90112, Songkhla, Thailand;
- Phytomedicine and Pharmaceutical Biotechnology Excellent Center (PPBEC), Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai 90112, Songkhla, Thailand
| |
Collapse
|
10
|
Zhang L, Zhang G, Xu S, Song Y. Recent advances of quinones as a privileged structure in drug discovery. Eur J Med Chem 2021; 223:113632. [PMID: 34153576 DOI: 10.1016/j.ejmech.2021.113632] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/03/2021] [Accepted: 06/06/2021] [Indexed: 01/08/2023]
Abstract
Privileged structures are conductive to discover novel bioactive substances because they can bind to multiple targets with high affinity. Quinones are considered to be a privileged structure and useful template for the design of new compounds with potential pharmacological activity. This article presents the recent developments (2014-2021 update) of quinones in the fields of antitumor, antibacterial, antifungal, antiviral, anti-Alzheimer's disease (AD) and antimalarial, mainly focusing on biological activities, structural modification and mechanism of action.
Collapse
Affiliation(s)
- Li Zhang
- Department of Pharmacy, Jinan Second People's Hospital, 250001, 148 Jingyi Road, Jinan, PR China
| | - Guiying Zhang
- Department of Pharmacy, Rizhao People's Hospital, 276800, 126 Tai'an Road, Rizhao, PR China
| | - Shujing Xu
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, PR China
| | - Yuning Song
- Department of Clinical Pharmacy, Qilu Hospital of Shandong University, 250012, Jinan, PR China.
| |
Collapse
|