1
|
Rice AJ, Sword TT, Chengan K, Mitchell DA, Mouncey NJ, Moore SJ, Bailey CB. Cell-free synthetic biology for natural product biosynthesis and discovery. Chem Soc Rev 2025; 54:4314-4352. [PMID: 40104998 PMCID: PMC11920963 DOI: 10.1039/d4cs01198h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Indexed: 03/20/2025]
Abstract
Natural products have applications as biopharmaceuticals, agrochemicals, and other high-value chemicals. However, there are challenges in isolating natural products from their native producers (e.g. bacteria, fungi, plants). In many cases, synthetic chemistry or heterologous expression must be used to access these important molecules. The biosynthetic machinery to generate these compounds is found within biosynthetic gene clusters, primarily consisting of the enzymes that biosynthesise a range of natural product classes (including, but not limited to ribosomal and nonribosomal peptides, polyketides, and terpenoids). Cell-free synthetic biology has emerged in recent years as a bottom-up technology applied towards both prototyping pathways and producing molecules. Recently, it has been applied to natural products, both to characterise biosynthetic pathways and produce new metabolites. This review discusses the core biochemistry of cell-free synthetic biology applied to metabolite production and critiques its advantages and disadvantages compared to whole cell and/or chemical production routes. Specifically, we review the advances in cell-free biosynthesis of ribosomal peptides, analyse the rapid prototyping of natural product biosynthetic enzymes and pathways, highlight advances in novel antimicrobial discovery, and discuss the rising use of cell-free technologies in industrial biotechnology and synthetic biology.
Collapse
Affiliation(s)
- Andrew J Rice
- Department of Biochemistry, School of Medicine - Basic Sciences, Vanderbilt University Medical Research Building-IV, Nashville, Tennessee, 37232, USA
| | - Tien T Sword
- Department of Chemistry, University of Tennessee-Knoxville, Knoxville, TN, USA
| | | | - Douglas A Mitchell
- Department of Biochemistry, School of Medicine - Basic Sciences, Vanderbilt University Medical Research Building-IV, Nashville, Tennessee, 37232, USA
- Department of Chemistry, Vanderbilt University, Medical Research Building-IV, Nashville, Tennessee, 37232, USA
| | - Nigel J Mouncey
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA
| | - Simon J Moore
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK.
| | - Constance B Bailey
- School of Chemistry, University of Sydney, Camperdown, NSW, 2001, Australia.
| |
Collapse
|
2
|
Kasdekar N, Spieker MR, Vasella A, Hobbie SN, Crich D. Synthesis of Methyl Aprabiosaminide and 2-Hydroxyapramycin from Apramycin. Org Lett 2025; 27:1918-1922. [PMID: 39950696 PMCID: PMC11877507 DOI: 10.1021/acs.orglett.5c00168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 01/25/2025] [Accepted: 01/30/2025] [Indexed: 03/01/2025]
Abstract
We describe a protocol for the selective cleavage of the 2-deoxystreptamine ring from the structurally unusual aminoglycoside antibiotic apramycin, enabling for the first time the preparation of aprabiosamine derivatives. We further describe reglycosylation of the aprabiosamine core with a selectively protected optically pure streptamine derivative, giving, after deprotection, 2-hydroxyapramycin, the first apramycin derivative functionalized at the 2 position.
Collapse
Affiliation(s)
- Niteshlal Kasdekar
- Department
of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, Georgia 30602, United States
| | - Michael R. Spieker
- Department
of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, Georgia 30602, United States
- Department
of Biochemistry and Molecular Biology, University
of Georgia, 120 East Green Street, Athens, Georgia 30602, United States
| | - Andrea Vasella
- Organic
Chemistry Laboratory, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland
| | - Sven N. Hobbie
- Division
of Clinical Bacteriology and Mycology, University
Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - David Crich
- Department
of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, Georgia 30602, United States
- Department
of Chemistry, University of Georgia, 302 East Campus Road, Athens, Georgia 30602, United States
- Complex
Carbohydrate
Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| |
Collapse
|
3
|
Dallal Bashi YH, Mairs R, Murtadha R, Kett V. Pulmonary Delivery of Antibiotics to the Lungs: Current State and Future Prospects. Pharmaceutics 2025; 17:111. [PMID: 39861758 PMCID: PMC11768398 DOI: 10.3390/pharmaceutics17010111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/04/2024] [Accepted: 12/13/2024] [Indexed: 01/27/2025] Open
Abstract
This paper presents a comprehensive review of the current literature, clinical trials, and products approved for the delivery of antibiotics to the lungs. While there are many literature reports describing potential delivery systems, few of these have translated into marketed products. Key challenges remaining are the high doses required and, for powder formulations, the ability of the inhaler and powder combination to deliver the dose to the correct portion of the respiratory tract for maximum effect. Side effects, safety concerns, and disappointing clinical trial results remain barriers to regulatory approval. In this review, we describe some possible approaches to address these issues and highlight prospects in this area.
Collapse
Affiliation(s)
- Yahya H Dallal Bashi
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK
- College Pharmacy, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Rachel Mairs
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Rand Murtadha
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Vicky Kett
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK
| |
Collapse
|
4
|
Kasdekar N, Spieker MR, Crich D. Practical Synthesis from Streptomycin and Regioselective Partial Deprotections of (-)-(1 R,2 S,3 R,4 R,5 S,6 S)-1,3-Di(deamino)-1,3-diazido-2,5,6-tri- O-benzylstreptamine. J Org Chem 2024; 89:4225-4231. [PMID: 38427951 PMCID: PMC10949228 DOI: 10.1021/acs.joc.3c02922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/09/2024] [Accepted: 02/19/2024] [Indexed: 03/03/2024]
Abstract
We describe the gram-scale synthesis of (-)-(1R,2S,3R,4R,5S,6S)-1,3-di(diamino)-1,3-diazido-2,5,6-tri-O-benzylstreptamine from streptomycin by (i) hydrolysis of the two streptomycin guanidine residues, (ii) reprotection of the amines as azides, (iii) protection of all alcohols as benzyl ethers, and (iv) glycosidic bond cleavage with HCl in methanol. Protocols for regioselective monodebenzylation and regioselective reduction of a single azide in the product are also described, providing four optically pure building blocks for exploitation in novel aminoglycoside synthesis.
Collapse
Affiliation(s)
- Niteshlal Kasdekar
- Department
of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, Georgia 30602, United States
| | - Michael R. Spieker
- Department
of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, Georgia 30602, United States
- Department
of Biochemistry and Molecular Biology, University
of Georgia, 120 East Green Street, Athens, Georgia 30602, United States
| | - David Crich
- Department
of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, Georgia 30602, United States
- Department
of Chemistry, University of Georgia, 302 East Campus Road, Athens, Georgia 30602, United States
- Complex
Carbohydrate Research Center, University
of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| |
Collapse
|
5
|
Jana S, Rajasekaran P, Haldimann K, Vasella A, Böttger EC, Hobbie SN, Crich D. Synthesis of Gentamicins C1, C2, and C2a and Antiribosomal and Antibacterial Activity of Gentamicins B1, C1, C1a, C2, C2a, C2b, and X2. ACS Infect Dis 2023; 9:1622-1633. [PMID: 37481733 PMCID: PMC10425985 DOI: 10.1021/acsinfecdis.3c00233] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Indexed: 07/25/2023]
Abstract
Complementing our earlier syntheses of the gentamicins B1, C1a, C2b, and X2, we describe the synthesis of gentamicins C1, C2, and C2a characterized by methyl substitution at the 6'-position, and so present an alternative access to previous chromatographic methods for accessing these sought-after compounds. We describe the antiribosomal activity of our full set of synthetic gentamicin congeners against bacterial ribosomes and hybrid ribosomes carrying the decoding A site of the human mitochondrial, A1555G mutant mitochondrial, and cytoplasmic ribosomes and establish structure-activity relationships with the substitution pattern around ring I to antiribosomal activity, antibacterial resistance due to the presence of aminoglycoside acetyl transferases acting on the 6'-position in ring I, and literature cochlear toxicity data.
Collapse
Affiliation(s)
- Santanu Jana
- Department
of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, Georgia 30602, United States
- Complex
Carbohydrate Research Center, University
of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Parasuraman Rajasekaran
- Department
of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, Georgia 30602, United States
- Complex
Carbohydrate Research Center, University
of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Klara Haldimann
- Institute
of Medical Microbiology, University of Zurich, Gloriastrasse 30, 8006 Zürich, Switzerland
| | - Andrea Vasella
- Organic
Chemistry Laboratory, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland
| | - Erik C. Böttger
- Institute
of Medical Microbiology, University of Zurich, Gloriastrasse 30, 8006 Zürich, Switzerland
| | - Sven N. Hobbie
- Institute
of Medical Microbiology, University of Zurich, Gloriastrasse 30, 8006 Zürich, Switzerland
| | - David Crich
- Department
of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, Georgia 30602, United States
- Complex
Carbohydrate Research Center, University
of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
- Department
of Chemistry, University of Georgia, 302 East Campus Road, Athens, Georgia 30602, United States
| |
Collapse
|
6
|
Osman EO, Emam SH, Sonousi A, Kandil MM, Abdou AM, Hassan RA. Design, synthesis, anticancer, and antibacterial evaluation of some quinazolinone-based derivatives as DHFR inhibitors. Drug Dev Res 2023; 84:888-906. [PMID: 37052308 DOI: 10.1002/ddr.22060] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/07/2023] [Accepted: 04/01/2023] [Indexed: 04/14/2023]
Abstract
Two series of quinazolinone derivatives were designed and synthesized as dihydrofolate reductase (DHFR) inhibitors. All compounds were evaluated for their antibacterial and antitumor activities. Antibacterial activity was evaluated against three strains of Gram-positive and Gram-negative bacteria. Compound 3d exhibited the highest inhibitory activity against Staphylococcus aureus DHFR (SaDHFR) with IC50 of 0.769 ± 0.04 μM compared to 0.255 ± 0.014 μM for trimethoprim. Compound 3e was also more potent than trimethoprim against Escherichia coli DHFR (EcDHFR) with IC50 of 0.158 ± 0.01 μM and 0.226 ± 0.014 μM, respectively. Compound 3e exhibited a promising antiproliferative effect against most of the tested cancer cells. It also showed potent activity against leukemia (CCRF-CEM, and RPMI-8226); lung NCI-H522, and CNS U251 with GI% of 65.2, 63.22, 73.28, and 97.22, respectively. The cytotoxic activity of compound 3e was almost half the activity of doxorubicin against CCRF-CEM cell line with IC50 of 1.569 ± 0.06 μM and 0.822 ± 0.03 µM, respectively. In addition, compound 3e inhibited human DHFR with IC50 value of 0.527 ± 0.028 µM in comparison to methotrexate (IC50 = 0.118 ± 0.006 µM). Compound 3e caused an arrest of the cell cycle mainly at the S phase and caused a rise in the overall apoptotic percentage from 2.03% to 48.51%. (23.89-fold). Treatment of CCRF-CEM cells with compound 3e produced a significant increase in the active caspase-3 level by 6.25-fold compared to untreated cells. Molecular modeling studies were performed to evaluate the binding pattern of the most active compounds in the bacterial and human DHFR.
Collapse
Affiliation(s)
- Eman O Osman
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Soha H Emam
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Amr Sonousi
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- University of Hertfordshire Hosted by Global Academic Foundation, New Administrative Capital, Cairo, Egypt
| | - Mai M Kandil
- Department of Microbiology and Immunology, National Research Centre, Giza, Egypt
| | - Amr M Abdou
- Department of Microbiology and Immunology, National Research Centre, Giza, Egypt
| | - Rasha A Hassan
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
7
|
Jeremia L, Deprez BE, Dey D, Conn GL, Wuest WM. Ribosome-targeting antibiotics and resistance via ribosomal RNA methylation. RSC Med Chem 2023; 14:624-643. [PMID: 37122541 PMCID: PMC10131624 DOI: 10.1039/d2md00459c] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/17/2023] [Indexed: 03/05/2023] Open
Abstract
The rise of multidrug-resistant bacterial infections is a cause of global concern. There is an urgent need to both revitalize antibacterial agents that are ineffective due to resistance while concurrently developing new antibiotics with novel targets and mechanisms of action. Pathogen associated resistance-conferring ribosomal RNA (rRNA) methyltransferases are a growing threat that, as a group, collectively render a total of seven clinically-relevant ribosome-targeting antibiotic classes ineffective. Increasing frequency of identification and their growing prevalence relative to other resistance mechanisms suggests that these resistance determinants are rapidly spreading among human pathogens and could contribute significantly to the increased likelihood of a post-antibiotic era. Herein, with a view toward stimulating future studies to counter the effects of these rRNA methyltransferases, we summarize their prevalence, the fitness cost(s) to bacteria of their acquisition and expression, and current efforts toward targeting clinically relevant enzymes of this class.
Collapse
Affiliation(s)
- Learnmore Jeremia
- Department of Chemistry, Emory University 1515 Dickey Dr. Atlanta GA 30322 USA
| | - Benjamin E Deprez
- Department of Chemistry, Emory University 1515 Dickey Dr. Atlanta GA 30322 USA
| | - Debayan Dey
- Department of Biochemistry, Emory University School of Medicine 1510 Clifton Rd. Atlanta GA 30322 USA
| | - Graeme L Conn
- Department of Biochemistry, Emory University School of Medicine 1510 Clifton Rd. Atlanta GA 30322 USA
- Emory Antibiotic Resistance Center, Emory University School of Medicine 1510 Clifton Rd. Atlanta GA 30322 USA
| | - William M Wuest
- Department of Chemistry, Emory University 1515 Dickey Dr. Atlanta GA 30322 USA
- Emory Antibiotic Resistance Center, Emory University School of Medicine 1510 Clifton Rd. Atlanta GA 30322 USA
| |
Collapse
|
8
|
Otsuka Y, Umemura E, Takamiya Y, Ishibashi T, Hayashi C, Yamada K, Igarashi M, Shibasaki M, Takahashi Y. Aprosamine Derivatives Active against Multidrug-Resistant Gram-Negative Bacteria. ACS Infect Dis 2023; 9:886-898. [PMID: 36893496 DOI: 10.1021/acsinfecdis.2c00557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Novel aprosamine derivatives were synthesized for the development of aminoglycoside antibiotics active against multidrug-resistant Gram-negative bacteria. The synthesis of aprosamine derivatives involved glycosylation at the C-8' position and subsequent modification (epimerization and deoxygenation at the C-5 position and 1-N-acylation) of the 2-deoxystreptamine moiety. All 8'-β-glycosylated aprosamine derivatives (3a-h) showed excellent antibacterial activity against carbapenem-resistant Enterobacteriaceae and 16S ribosomal RNA methyltransferase-producing multidrug-resistant Gram-negative bacteria compared to the clinical drug, arbekacin. The antibacterial activity of 5-epi (6a-d) and 5-deoxy derivatives (8a,b and 8h) of β-glycosylated aprosamine was further enhanced. On the other hand, the derivatives (10a,b and 10h) in which the amino group at the C-1 position was acylated with (S)-4-amino-2-hydroxybutyric acid showed excellent activity (MICs 0.25-0.5 μg/mL) against resistant bacteria that produce the aminoglycoside-modifying enzyme, aminoglycoside 3-N-acetyltransferase IV, which induces high resistance against parent apramycin (MIC > 64 μg/mL). In particular, 8b and 8h showed approximately 2- to 8-fold antibacterial activity against carbapenem-resistant Enterobacteriaceae and 8- to 16-fold antibacterial activity against resistant Gram-positive bacteria, such as methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci, compared to apramycin. Our results showed that aprosamine derivatives have immense potential in the development of therapeutic agents for multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Yasunari Otsuka
- Institute of Microbial Chemistry (BIKAKEN), Tokyo 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Eijiro Umemura
- Institute of Microbial Chemistry (BIKAKEN), Tokyo 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Yukimi Takamiya
- Institute of Microbial Chemistry (BIKAKEN), Tokyo 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Teruhisa Ishibashi
- Institute of Microbial Chemistry (BIKAKEN), Tokyo 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Chigusa Hayashi
- Institute of Microbial Chemistry (BIKAKEN), Tokyo 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Keiko Yamada
- Pharmaceutical Analysis Laboratories, Pharmaceutical Research Center, Meiji Seika Pharma Co., Ltd., 788 Kayama, Odawara-shi 250-0852, Kanagawa, Japan
| | - Masayuki Igarashi
- Institute of Microbial Chemistry (BIKAKEN), Tokyo 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Masakatsu Shibasaki
- Institute of Microbial Chemistry (BIKAKEN), Tokyo 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Yoshiaki Takahashi
- Institute of Microbial Chemistry (BIKAKEN), Tokyo 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
| |
Collapse
|
9
|
Pirrone MG, Ande C, Haldimann K, Hobbie SN, Vasella A, Böttger EC, Crich D. Importance of Co-operative Hydrogen Bonding in the Apramycin-Ribosomal Decoding A-Site Interaction. ChemMedChem 2023; 18:e202200486. [PMID: 36198651 PMCID: PMC10092258 DOI: 10.1002/cmdc.202200486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/05/2022] [Indexed: 01/24/2023]
Abstract
An intramolecular hydrogen bond between the protonated equatorial 7'-methylamino group of apramycin and the vicinal axial 6'-hydroxy group acidifies the 6'-hydroxy group leading to a strong hydrogen bond to A1408 in the ribosomal drug binding pocket in the decoding A site of the small ribosomal subunit. In 6'-epiapramycin, the trans-nature of the 6'-hydroxy group and the 7'-methylamino group results in a much weaker intramolecular hydrogen bond, and a consequently weaker cooperative hydrogen bonding network with A1408, resulting overall in reduced inhibition of protein synthesis and antibacterial activity.
Collapse
Affiliation(s)
- Michael G. Pirrone
- Department of Pharmaceutical and Biomedical SciencesUniversity of Georgia250 West Green Street30602Athens, GAUSA
| | - Chennaiah Ande
- Department of Pharmaceutical and Biomedical SciencesUniversity of Georgia250 West Green Street30602Athens, GAUSA
| | - Klara Haldimann
- Institute of Medical MicrobiologyUniversity of ZurichGloriastrasse 288006ZürichSwitzerland
| | - Sven N. Hobbie
- Institute of Medical MicrobiologyUniversity of ZurichGloriastrasse 288006ZürichSwitzerland
| | - Andrea Vasella
- Organic Chemistry InstituteETH ZürichVladimir-Prelog-Weg 1–5/108093ZürichSwitzerland
| | - Erik C. Böttger
- Institute of Medical MicrobiologyUniversity of ZurichGloriastrasse 288006ZürichSwitzerland
| | - David Crich
- Department of Pharmaceutical and Biomedical SciencesDepartment of ChemistryComplex Carbohydrate Research CenterUniversity of Georgia250 West Green Street30602Athens, GAUSA
| |
Collapse
|
10
|
Lubriks D, Haldimann K, Hobbie SN, Vasella A, Suna E, Crich D. Synthesis, Antibacterial and Antiribosomal Activity of the 3 C-Aminoalkyl Modification in the Ribofuranosyl Ring of Apralogs (5- O-Ribofuranosyl Apramycins). Antibiotics (Basel) 2022; 12:antibiotics12010025. [PMID: 36671225 PMCID: PMC9854789 DOI: 10.3390/antibiotics12010025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
The synthesis and antiribosomal and antibacterial activity of both anomers of a novel apralog, 5-O-(5-amino-3-C-dimethylaminopropyl-D-ribofuranosyl)apramycin, are reported. Both anomers show excellent activity for the inhibition of bacterial ribosomes and that of MRSA and various wild-type Gram negative pathogens. The new compounds retain activity in the presence of the aminoglycoside phosphoryltransferase aminoglycoside modifying enzymes that act on the primary hydroxy group of typical 4,5-(2-deoxystreptamine)-type aminoglycoside and related apramycin derivatives. Unexpectedly, the two anomers have comparable activity both for the inhibition of bacterial ribosomes and of the various bacterial strains tested.
Collapse
Affiliation(s)
- Dmitrijs Lubriks
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia
| | - Klara Haldimann
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 30, 8006 Zürich, Switzerland
| | - Sven N. Hobbie
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 30, 8006 Zürich, Switzerland
| | - Andrea Vasella
- Organic Chemistry Laboratory, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland
| | - Edgars Suna
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia
- Correspondence: (E.S.); (D.C.); Tel.: +37-16-701-4895 (E.S.); Tel.: +1-706-542-5605 (D.C.)
| | - David Crich
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, GA 30602, USA
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
- Department of Chemistry, University of Georgia, 302 East Campus Road, Athens, GA 30602, USA
- Correspondence: (E.S.); (D.C.); Tel.: +37-16-701-4895 (E.S.); Tel.: +1-706-542-5605 (D.C.)
| |
Collapse
|
11
|
Abstract
For more than three decades, RNA has been known to be a relevant and attractive macromolecule to target but figuring out which RNA should be targeted and how remains challenging. Recent years have seen the confluence of approaches for screening, drug optimization, and target validation that have led to the approval of a few RNA-targeting therapeutics for clinical applications. This focused perspective aims to highlight - but not exhaustively review - key factors accounting for these successes while pointing at crucial aspects worth considering for further breakthroughs.
Collapse
Affiliation(s)
- Quentin Vicens
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, CO 80045, USA
| | - Eric Westhof
- Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire, Architecture et Réactivité de l’ARN, CNRS UPR 9002, 2, allée Konrad Roentgen, F-67084 Strasbourg, France
| |
Collapse
|
12
|
Quirke JCK, Sati GC, Sonousi A, Gysin M, Haldimann K, Bottger EC, Vasella A, Hobbie SN, Crich D. Structure-Activity Relationships for 5''-Modifications of 4,5-Aminoglycoside Antibiotics. ChemMedChem 2022; 17:e202200120. [PMID: 35385605 DOI: 10.1002/cmdc.202200120] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/06/2022] [Indexed: 11/08/2022]
Abstract
Modification at the 5''-position of 4,5-disubstituted aminoglycoside antibiotics (AGAs) to circumvent inactivation by the APH(3',5'') class of aminoglycoside modifying enzymes (AMEs) has been widely reported. Such modifications, however, impact activity against wild type bacteria and affect target selectivity in unpredictable ways thereby hindering drug development. We present a systematic survey of modifications to the 5''-position of the 4,5-AGAs and of the related 5- O -furanosyl apramycin derivatives. In the neomycin and the apralog series, all modifications were well-tolerated, but other 4,5-AGAs require the presence of a hydrogen bonding group at the 5''-position for maintenance of high antibacterial activity. Though the 5''-amino modification resulted in comparable activity to the parent compounds, reduced selectivity against the human cytosolic decoding A site renders this modification generally unfavorable in paromomycin, propylamycin, and ribostamycin. Installation of a 5''-formamido group and, to a lesser degree, a 5''-ureido group resulted in comparable activity to the parents without the selectivity cost of the 5''-amino modification. The lessons learned from this work will aid in the design of next-generation AGAs capable of circumventing susceptibility to AMEs while maintaining high antibacterial activity and target selectivity.
Collapse
Affiliation(s)
| | | | - Amr Sonousi
- Cairo University, Pharmaceutical Organic Chemistry, EGYPT
| | - Marina Gysin
- University of Zurich: Universitat Zurich, Medical Microbiology, SWITZERLAND
| | | | - Erik C Bottger
- University of Zurich: Universitat Zurich, Medical Microbiology, SWITZERLAND
| | - Andrea Vasella
- ETH-Zürich LOC: Eidgenossische Technische Hochschule Zurich Laboratorium fur Organische Chemie, Chemistry, SWITZERLAND
| | - Sven N Hobbie
- University of Zurich: Universitat Zurich, Medical Microbiology, SWITZERLAND
| | - David Crich
- University of Georgia, Pharmaceutical and Biomedical Sciences, 240 West Green Street, 30602, Athens, UNITED STATES
| |
Collapse
|
13
|
Petrychenko V, Peng BZ, de A P Schwarzer AC, Peske F, Rodnina MV, Fischer N. Structural mechanism of GTPase-powered ribosome-tRNA movement. Nat Commun 2021; 12:5933. [PMID: 34635670 PMCID: PMC8505512 DOI: 10.1038/s41467-021-26133-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/17/2021] [Indexed: 11/25/2022] Open
Abstract
GTPases are regulators of cell signaling acting as molecular switches. The translational GTPase EF-G stands out, as it uses GTP hydrolysis to generate force and promote the movement of the ribosome along the mRNA. The key unresolved question is how GTP hydrolysis drives molecular movement. Here, we visualize the GTPase-powered step of ongoing translocation by time-resolved cryo-EM. EF-G in the active GDP-Pi form stabilizes the rotated conformation of ribosomal subunits and induces twisting of the sarcin-ricin loop of the 23 S rRNA. Refolding of the GTPase switch regions upon Pi release initiates a large-scale rigid-body rotation of EF-G pivoting around the sarcin-ricin loop that facilitates back rotation of the ribosomal subunits and forward swiveling of the head domain of the small subunit, ultimately driving tRNA forward movement. The findings demonstrate how a GTPase orchestrates spontaneous thermal fluctuations of a large RNA-protein complex into force-generating molecular movement.
Collapse
MESH Headings
- Binding Sites
- Biomechanical Phenomena
- Cryoelectron Microscopy
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Guanosine Triphosphate/chemistry
- Guanosine Triphosphate/metabolism
- Hydrolysis
- Kinetics
- Models, Molecular
- Peptide Elongation Factor G/chemistry
- Peptide Elongation Factor G/genetics
- Peptide Elongation Factor G/metabolism
- Protein Binding
- Protein Biosynthesis
- Protein Conformation, alpha-Helical
- Protein Conformation, beta-Strand
- Protein Folding
- Protein Interaction Domains and Motifs
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/genetics
- RNA, Ribosomal, 23S/metabolism
- RNA, Transfer/chemistry
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- Ribosomes/metabolism
- Ribosomes/ultrastructure
- Thermodynamics
Collapse
Affiliation(s)
- Valentyn Petrychenko
- Department of Structural Dynamics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Bee-Zen Peng
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Ana C de A P Schwarzer
- Department of Structural Dynamics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
- Department of Molecular Biology, University Medical Center Göttingen, Göttingen, Germany
| | - Frank Peske
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.
| | - Niels Fischer
- Department of Structural Dynamics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.
| |
Collapse
|
14
|
Pirrone MG, Hobbie SN, Vasella A, Böttger EC, Crich D. Influence of ring size in conformationally restricted ring I analogs of paromomycin on antiribosomal and antibacterial activity. RSC Med Chem 2021; 12:1585-1591. [PMID: 34671740 DOI: 10.1039/d1md00214g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/03/2021] [Indexed: 11/21/2022] Open
Abstract
In order to further investigate the importance of the conformation of the ring I side chain in aminoglycoside antibiotic binding to the ribosomal target several derivatives of paromomycin were designed with conformationally locked side chains. By changing the size of the appended ring between O-4' and C-6' used to restrict the motion of the side chain, the position of the C-6' hydroxy group was fine tuned to probe for the optimal conformation for inhibition of the ribosome. While the changes in orientation of the 6'-hydroxy group cannot be completely dissociated from the size and hydrophobicity of the conformation-restricting ring, overall, it is apparent that the preferred conformation of the ring I side chain for interaction with A1408 in the decoding A site of the bacterial ribosome is an ideal gt conformation, which results in the highest antimicrobial activity as well as increased selectivity for bacterial over eukaryotic ribosomes.
Collapse
Affiliation(s)
- Michael G Pirrone
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia 250 West Green Street Athens GA 30602 USA .,Complex Carbohydrate Research Center, University of Georgia 315 Riverbend Road Athens GA 30602 USA.,Department of Chemistry, Wayne State University 5101 Cass Avenue Detroit MI 48202 USA
| | - Sven N Hobbie
- Institute of Medical Microbiology, University of Zurich Gloriastrasse 28 8006 Zürich Switzerland
| | - Andrea Vasella
- Organic Chemistry Laboratory, ETH Zürich Vladimir-Prelog-Weg 1-5/10 8093 Zürich Switzerland
| | - Erik C Böttger
- Institute of Medical Microbiology, University of Zurich Gloriastrasse 28 8006 Zürich Switzerland
| | - David Crich
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia 250 West Green Street Athens GA 30602 USA .,Complex Carbohydrate Research Center, University of Georgia 315 Riverbend Road Athens GA 30602 USA.,Department of Chemistry, University of Georgia 140 Cedar Street Athens GA 30602 USA
| |
Collapse
|
15
|
Lubriks D, Zogota R, Sarpe VA, Matsushita T, Sati GC, Haldimann K, Gysin M, Böttger EC, Vasella A, Suna E, Hobbie SN, Crich D. Synthesis and Antibacterial Activity of Propylamycin Derivatives Functionalized at the 5''- and Other Positions with a View to Overcoming Resistance Due to Aminoglycoside Modifying Enzymes. ACS Infect Dis 2021; 7:2413-2424. [PMID: 34114793 DOI: 10.1021/acsinfecdis.1c00158] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Propylamycin (4'-deoxy-4'-propylparomomycin) is a next generation aminoglycoside antibiotic that displays increased antibacterial potency over the parent, coupled with reduced susceptibility to resistance determinants and reduced ototoxicity in the guinea pig model. Propylamycin nevertheless is inactivated by APH(3')-Ia, a specific aminoglycoside phosphotransferase isozyme that acts on the primary hydroxy group of the ribofuranosyl moiety (at the 5''-position). To overcome this problem, we have prepared and studied the antibacterial and antiribosomal activity of various propylamycin derivatives carrying amino or substituted amino groups at the 5''-position in place of the vulnerable hydroxy group. We find that the introduction of an additional basic amino group at this position, while overcoming the action of the aminoglycoside phosphoryltransferase isozymes acting at the 5''-position as anticipated, results in a significant drop in selectivity for the bacterial over the eukaryotic ribosomes that is predictive of increased ototoxicity. In contrast, 5''-deoxy-5''-formamidopropylamycin retains the excellent across-the-board levels of antibacterial activity of propylamycin itself, while circumventing the action of the offending aminoglycoside phosphotransferase isozymes and affording even greater selectivity for the bacterial over the eukaryotic ribosomes. Other modifications to address the susceptibility of propylamycin to the APH(3')-Ia isozyme including deoxygenation at the 3'-position and incorporation of a 6',5''-bis(hydroxyethylamino) modification offer no particular advantage.
Collapse
Affiliation(s)
| | - Rimants Zogota
- Latvian Institute of Organic Synthesis, Riga, Latvia LV-1006
| | - Vikram A. Sarpe
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, Georgia 30602, United States
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Takahiko Matsushita
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Girish C. Sati
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Klara Haldimann
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 28, 8006 Zürich, Switzerland
| | - Marina Gysin
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 28, 8006 Zürich, Switzerland
| | - Erik C. Böttger
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 28, 8006 Zürich, Switzerland
| | - Andrea Vasella
- Organic Chemistry Laboratory, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland
| | - Edgars Suna
- Latvian Institute of Organic Synthesis, Riga, Latvia LV-1006
| | - Sven N. Hobbie
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 28, 8006 Zürich, Switzerland
| | - David Crich
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, Georgia 30602, United States
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
- Department of Chemistry, University of Georgia, 140 Cedar Street, Athens, Georgia 30602, United States
| |
Collapse
|
16
|
Chaurasia H, Singh VK, Mishra R, Yadav AK, Ram NK, Singh P, Singh RK. Molecular modelling, synthesis and antimicrobial evaluation of benzimidazole nucleoside mimetics. Bioorg Chem 2021; 115:105227. [PMID: 34399320 DOI: 10.1016/j.bioorg.2021.105227] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/20/2021] [Accepted: 07/28/2021] [Indexed: 01/23/2023]
Abstract
A series of new N-1-(β-d-ribofuranosyl) benzimidazole derivatives has been designed using in silico methods and synthesized as probable antimicrobial agents. Further, the compounds were assessed for their antibacterial and antifungal activity. Antibacterial screening was done by employing broth micro-dilution method and compounds exhibited excellent inhibitory activity (MIC, 50-1.56 µg/mL) against different human pathogenic bacteria, viz. B. cerus, B. subtilis, S. aureus, E. coli and P. aeruginosa and drug resistant strain (DRS) of E. coli. A great synergistic effect was observed during evaluation of ∑FIC, where a combination study was performed using standard references, viz. chloramphenicol and kanamycin. The MIC data obtained from different methods of combination approach revealed 4-128 fold more potency compared to compounds tested alone. The results clearly indicated the possibility of these compounds as active ingredients of drug regimen used against MDR strains. Antifungal screening were also performed employing two different methods, viz. serial dilution method and zone inhibition method, clearly indicated that compounds were also potentially active against several species of pathogenic fungal strains, viz. A. flavus, A. niger, F. oxysporum and C. albicans. The assessment of structure activity relationship (SAR) clearly revealed that presence of less polar and more hydrophobic substituents positively favours the antibacterial activity, conversely, more polar and hydrophilic substituents favours the antifungal activities. Thus, the results positively endorsed the compounds as potent antibacterial and antifungal agents which could be developed as possible drug regimens.
Collapse
Affiliation(s)
- Himani Chaurasia
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Prayagraj 211002, India
| | - Vishal K Singh
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Prayagraj 211002, India
| | - Richa Mishra
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Prayagraj 211002, India
| | - Aditya K Yadav
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Prayagraj 211002, India
| | - Nand K Ram
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Prayagraj 211002, India
| | - Prashant Singh
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Prayagraj 211002, India
| | - Ramendra K Singh
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Prayagraj 211002, India.
| |
Collapse
|
17
|
Zhang Q, Chi H, Wu L, Deng Z, Yu Y. Two Cryptic Self‐Resistance Mechanisms in
Streptomyces tenebrarius
Reveal Insights into the Biosynthesis of Apramycin. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Qian Zhang
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery (Ministry of Education) School of Pharmaceutical Sciences Wuhan University Wuhan 430071 China
| | - Hao‐Tian Chi
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery (Ministry of Education) School of Pharmaceutical Sciences Wuhan University Wuhan 430071 China
| | - Linrui Wu
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery (Ministry of Education) School of Pharmaceutical Sciences Wuhan University Wuhan 430071 China
| | - Zixin Deng
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery (Ministry of Education) School of Pharmaceutical Sciences Wuhan University Wuhan 430071 China
| | - Yi Yu
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery (Ministry of Education) School of Pharmaceutical Sciences Wuhan University Wuhan 430071 China
| |
Collapse
|
18
|
Zhang Q, Chi H, Wu L, Deng Z, Yu Y. Two Cryptic Self‐Resistance Mechanisms in
Streptomyces tenebrarius
Reveal Insights into the Biosynthesis of Apramycin. Angew Chem Int Ed Engl 2021; 60:8990-8996. [DOI: 10.1002/anie.202100687] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Indexed: 12/30/2022]
Affiliation(s)
- Qian Zhang
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery (Ministry of Education) School of Pharmaceutical Sciences Wuhan University Wuhan 430071 China
| | - Hao‐Tian Chi
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery (Ministry of Education) School of Pharmaceutical Sciences Wuhan University Wuhan 430071 China
| | - Linrui Wu
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery (Ministry of Education) School of Pharmaceutical Sciences Wuhan University Wuhan 430071 China
| | - Zixin Deng
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery (Ministry of Education) School of Pharmaceutical Sciences Wuhan University Wuhan 430071 China
| | - Yi Yu
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery (Ministry of Education) School of Pharmaceutical Sciences Wuhan University Wuhan 430071 China
| |
Collapse
|
19
|
Crich D. En Route to the Transformation of Glycoscience: A Chemist's Perspective on Internal and External Crossroads in Glycochemistry. J Am Chem Soc 2021; 143:17-34. [PMID: 33350830 PMCID: PMC7856254 DOI: 10.1021/jacs.0c11106] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Carbohydrate chemistry is an essential component of the glycosciences and is fundamental to their progress. This Perspective takes the position that carbohydrate chemistry, or glycochemistry, has reached three crossroads on the path to the transformation of the glycosciences, and illustrates them with examples from the author's and other laboratories. The first of these potential inflexion points concerns the mechanism of the glycosylation reaction and the role of protecting groups. It is argued that the experimental evidence supports bimolecular SN2-like mechanisms for typical glycosylation reactions over unimolecular ones involving stereoselective attack on naked glycosyl oxocarbenium ions. Similarly, it is argued that the experimental evidence does not support long-range stereodirecting participation of remote esters through bridged bicyclic dioxacarbenium ions in organic solution in the presence of typical counterions. Rational design and improvement of glycosylation reactions must take into account the roles of the counterion and of concentration. A second crossroads is that between mainstream organic chemistry and glycan synthesis. The case is made that the only real difference between glycan and organic synthesis is the formation of C-O rather than C-C bonds, with diastereocontrol, strategy, tactics, and elegance being of critical importance in both areas: mainstream organic chemists should feel comfortable taking this fork in the road, just as carbohydrate chemists should traveling in the opposite direction. A third crossroads is that between carbohydrate chemistry and medicinal chemistry, where there are equally many opportunities for traffic in either direction. The glycosciences have advanced enormously in the past decade or so, but creativity, input, and ingenuity of scientists from all fields is needed to address the many sophisticated challenges that remain, not the least of which is the development of a broader and more general array of stereospecific glycosylation reactions.
Collapse
Affiliation(s)
- David Crich
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, Georgia 30602, United States
- Department of Chemistry, University of Georgia, 140 Cedar Street, Athens, Georgia 30602, United States
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| |
Collapse
|