1
|
Umar AK, Limpikirati PK, Rivai B, Ardiansah I, Sriwidodo S, Luckanagul JA. Complexed hyaluronic acid-based nanoparticles in cancer therapy and diagnosis: Research trends by natural language processing. Heliyon 2025; 11:e41246. [PMID: 39811313 PMCID: PMC11729671 DOI: 10.1016/j.heliyon.2024.e41246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 12/10/2024] [Accepted: 12/13/2024] [Indexed: 01/16/2025] Open
Abstract
Hyaluronic acid (HA) is a popular surface modifier in targeted cancer delivery due to its receptor-binding abilities. However, HA alone faces limitations in lipid solubility, biocompatibility, and cell internalization, making it less effective as a standalone delivery system. This comprehensive study aimed to explore a dynamic landscape of complexation in HA-based nanoparticles in cancer therapy, examining diverse aspects from influential modifiers to emerging trends in cancer diagnostics. We discovered that certain active substances, such as 5-aminolevulinic acid, adamantane, and protamine, have been on trend in terms of their usage over the past decade. Dextran, streptavidin, and catechol emerge as intriguing conjugates for HA, coupled with nanostar, quantum dots, and nanoprobe structures for optimal drug delivery and diagnostics. Strategies like hypoxic conditioning, dual responsiveness, and pulse laser activation enhance controlled release, targeted delivery, and real-time diagnostic techniques like ultrasound imaging and X-ray computed tomography (X-ray CT). Based on our findings, conventional bibliometric tools fail to highlight relevant topics in this area, instead producing merely abstract and broad-meaning keywords. Extraction using Named Entity Recognition and topic search with Latent Dirichlet Allocation successfully revealed five representative topics with the ability to exclude irrelevant keywords. A shift in research focuses from optimizing chemical toxicity to particular targeting tactics and precise release mechanisms is evident. These findings reflect the dynamic landscape of HA-based nanoparticle research in cancer therapy, emphasizing advancements in targeted drug delivery, therapeutic efficacy, and multimodal diagnostic approaches to improve overall patient outcomes.
Collapse
Affiliation(s)
- Abd Kakhar Umar
- Pharmaceutical Sciences and Technology Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Medical Informatics Laboratory, ETFLIN, Palu City, 94225, Indonesia
| | - Patanachai K. Limpikirati
- Pharmaceutical Sciences and Technology Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Metabolomics for Life Sciences Research Unit, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Bachtiar Rivai
- Pharmaceutical Sciences and Technology Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Medical Informatics Laboratory, ETFLIN, Palu City, 94225, Indonesia
| | - Ilham Ardiansah
- Department of Animal Husbandry, Faculty Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Medical Informatics Laboratory, ETFLIN, Palu City, 94225, Indonesia
| | - Sriwidodo Sriwidodo
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| | - Jittima Amie Luckanagul
- Pharmaceutical Sciences and Technology Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Plant-produced Pharmaceuticals, Chulalongkorn University, Bangkok, 10330, Thailand
| |
Collapse
|
2
|
Fan G, Luo X, Shi Y, Wang Y, Ji L, Gong Y, Yang E, Chen C, Cui S, Ding H, Zhang Z, Wang J, Liu Y, Wang Z. FL118: A potential bladder cancer therapeutic compound targeting H2A.X identified through library screening. Bioorg Chem 2024; 153:107802. [PMID: 39244972 DOI: 10.1016/j.bioorg.2024.107802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/26/2024] [Accepted: 09/02/2024] [Indexed: 09/10/2024]
Abstract
The treatment of bladder cancer is limited by low drug efficacy and drug resistance. Hence, this study aimed to screen and identify potential drug precursors and investigate their mechanism of action. A set of camptothecin derivatives showing high anti-tumor potential was selected from early-stage research or literature and synthesized to construct a compound library. A total of 135 compounds were screened in T24 and J82 cells, revealing that FL118 significantly inhibited the proliferation of GC (gemcitabine + cisplatin)-sensitive/insensitive cells. FL118 exhibited excellent penetration and killing ability in organoids and three GC-insensitive patient-derived xenografts. Chemical proteomic and docking calculations were employed to identify binding proteins, indicating that FL118 can bind into H2A.X and its entwined DNA. The results of Cellular thermal shift assay and surface plasmon resonance (Kd = 3.77E-6) support the above findings. Fluorescence localization revealed widespread binding of FL118 within the cell nucleus. Furthermore, WB showed that FL118 increased cellular DNA damage, resulting in significant cell cycle inhibition. The binding of FL118 to H2A.X hindered the damage repair process, leading to apoptosis. Controllable adverse reactions were observed in mice treated with FL118. In conclusion, FL118 may be a superior anti-bladder cancer compound that acts as a molecular glue binding to both H2A.X and DNA. The resistance mediated by the DNA damage repair to DNA damage caused by GC regimen can be reversed by FL118. This distinct mechanism of FL118 has the potential to complement existing mainstream treatment approaches for bladder cancer.
Collapse
Affiliation(s)
- Guangrui Fan
- Institute of Urology, Lanzhou University Second Hospital, Urinary System Disease Clinical Medical Research Center of Gansu Province, NO. 82 Cuiying Gate, Lanzhou 730000, Gansu Province, China
| | - Xiongfei Luo
- School of Pharmacy, Lanzhou University, No. 199, Donggang West Road, Lanzhou 730000, Gansu Province, China
| | - Yibo Shi
- Institute of Urology, Lanzhou University Second Hospital, Urinary System Disease Clinical Medical Research Center of Gansu Province, NO. 82 Cuiying Gate, Lanzhou 730000, Gansu Province, China
| | - Yingru Wang
- Institute of Urology, Lanzhou University Second Hospital, Urinary System Disease Clinical Medical Research Center of Gansu Province, NO. 82 Cuiying Gate, Lanzhou 730000, Gansu Province, China
| | - Luhua Ji
- Institute of Urology, Lanzhou University Second Hospital, Urinary System Disease Clinical Medical Research Center of Gansu Province, NO. 82 Cuiying Gate, Lanzhou 730000, Gansu Province, China
| | - Yuwen Gong
- Institute of Urology, Lanzhou University Second Hospital, Urinary System Disease Clinical Medical Research Center of Gansu Province, NO. 82 Cuiying Gate, Lanzhou 730000, Gansu Province, China
| | - Engaung Yang
- Institute of Urology, Lanzhou University Second Hospital, Urinary System Disease Clinical Medical Research Center of Gansu Province, NO. 82 Cuiying Gate, Lanzhou 730000, Gansu Province, China
| | - Chaohu Chen
- Institute of Urology, Lanzhou University Second Hospital, Urinary System Disease Clinical Medical Research Center of Gansu Province, NO. 82 Cuiying Gate, Lanzhou 730000, Gansu Province, China
| | - Shu Cui
- Institute of Urology, Lanzhou University Second Hospital, Urinary System Disease Clinical Medical Research Center of Gansu Province, NO. 82 Cuiying Gate, Lanzhou 730000, Gansu Province, China
| | - Hui Ding
- Institute of Urology, Lanzhou University Second Hospital, Urinary System Disease Clinical Medical Research Center of Gansu Province, NO. 82 Cuiying Gate, Lanzhou 730000, Gansu Province, China
| | - Zhijun Zhang
- School of Pharmacy, Lanzhou University, No. 199, Donggang West Road, Lanzhou 730000, Gansu Province, China
| | - Juan Wang
- Institute of Urology, Lanzhou University Second Hospital, Urinary System Disease Clinical Medical Research Center of Gansu Province, NO. 82 Cuiying Gate, Lanzhou 730000, Gansu Province, China
| | - Yingqian Liu
- School of Pharmacy, Lanzhou University, No. 199, Donggang West Road, Lanzhou 730000, Gansu Province, China.
| | - Zhiping Wang
- Institute of Urology, Lanzhou University Second Hospital, Urinary System Disease Clinical Medical Research Center of Gansu Province, NO. 82 Cuiying Gate, Lanzhou 730000, Gansu Province, China.
| |
Collapse
|
3
|
Li C, Shi K, Zhao S, Liu J, Zhai Q, Hou X, Xu J, Wang X, Liu J, Wu X, Fan W. Natural-source payloads used in the conjugated drugs architecture for cancer therapy: Recent advances and future directions. Pharmacol Res 2024; 207:107341. [PMID: 39134188 DOI: 10.1016/j.phrs.2024.107341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/15/2024]
Abstract
Drug conjugates are obtained from tumor-located vectors connected to cytotoxic agents via linkers, which are designed to deliver hyper-toxic payloads directly to targeted cancer cells. These drug conjugates include antibody-drug conjugates (ADCs), peptide-drug conjugates (PDCs), small molecule-drug conjugates (SMDCs), nucleic acid aptamer-drug conjugates (ApDCs), and virus-like drug conjugate (VDCs), which show great therapeutic value in the clinic. Drug conjugates consist of a targeting carrier, a linker, and a payload. Payloads are key therapy components. Cytotoxic molecules and their derivatives derived from natural products are commonly used in the payload portion of conjugates. The ideal payload should have sufficient toxicity, stability, coupling sites, and the ability to be released under specific conditions to kill tumor cells. Microtubule protein inhibitors, DNA damage agents, and RNA inhibitors are common cytotoxic molecules. Among these conjugates, cytotoxic molecules of natural origin are summarized based on their mechanism of action, conformational relationships, and the discovery of new derivatives. This paper also mentions some cytotoxic molecules that have the potential to be payloads. It also summarizes the latest technologies and novel conjugates developed in recent years to overcome the shortcomings of ADCs, PDCs, SMDCs, ApDCs, and VDCs. In addition, this paper summarizes the clinical trials conducted on conjugates of these cytotoxic molecules over the last five years. It provides a reference for designing and developing safer and more efficient conjugates.
Collapse
Affiliation(s)
- Cuiping Li
- Department of Pharmacy, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China.
| | - Kourong Shi
- Department of Pharmacy, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China.
| | - Siyuan Zhao
- Department of Pharmacy, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China.
| | - Juan Liu
- Department of Pharmacy, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China.
| | - Qiaoli Zhai
- Department of Pharmacy, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China.
| | - Xiaoli Hou
- Department of Pharmacy, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China.
| | - Jie Xu
- Department of Pharmacy, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China.
| | - Xinyu Wang
- Shanghai Wei Er Lab, Shanghai 201707, China.
| | - Jiahui Liu
- Fujian University of Traditional Chinese Medicine, Fuzhou 350108, China.
| | - Xin Wu
- Fujian University of Traditional Chinese Medicine, Fuzhou 350108, China; Shanghai Wei Er Lab, Shanghai 201707, China.
| | - Wei Fan
- Department of Pharmacy, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China.
| |
Collapse
|
4
|
Wang X, Zhuang Y, Wang Y, Jiang M, Yao L. The recent developments of camptothecin and its derivatives as potential anti-tumor agents. Eur J Med Chem 2023; 260:115710. [PMID: 37595544 DOI: 10.1016/j.ejmech.2023.115710] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/07/2023] [Accepted: 08/03/2023] [Indexed: 08/20/2023]
Abstract
This review article focuses on the research progress made in the structural modifications of camptothecin (CPT), a potent cytotoxic natural alkaloid. CPT possesses a unique 5-fused ring structure and exhibits various beneficial activities such as anti-proliferative, anti-fungal, insecticidal, and anti-SARS-CoV-2 properties. CPT and its analogs, including Topotecan and Irinotecan, have been successfully developed and marketed as topoisomerase I inhibitors. To enhance the therapeutic potential of CPT, researchers have undertaken structural modifications primarily on the A, B, and E rings of the CPT core structure. These modifications aim to improve the efficacy, selectivity, and pharmacokinetic properties of CPT derivatives. The article reviews the advancements in hybridizing CPT with other bioactive compounds, the synthesis of novel CPT analogs, and their associated biological activities. Moreover, the structure-activity relationship (SAR) of these modified CPT derivatives is summarized to gain insights into their structure-function correlations. In addition to discussing the modifications and biological activities of CPT derivatives, the article also touches upon the mechanism of parent drug release. Many CPT derivatives are prodrugs, meaning they require metabolic activation to generate the active form of the drug. It is a resource for researchers interested in developing novel anti-tumor agents based on CPT, addressing the limitations associated with the parent drug, and exploring various aspects of CPT modifications.
Collapse
Affiliation(s)
- Xianzhang Wang
- School of Pharmacy, Yantai University, Yantai, 264005, China
| | - Yumeng Zhuang
- School of Pharmacy, Yantai University, Yantai, 264005, China
| | - Yuankun Wang
- School of Pharmacy, Yantai University, Yantai, 264005, China
| | - Maokai Jiang
- School of Pharmacy, Yantai University, Yantai, 264005, China
| | - Lei Yao
- School of Pharmacy, Yantai University, Yantai, 264005, China.
| |
Collapse
|
5
|
Li Y, Zhao D, Zhang W, Yang M, Wu Z, Shi W, Lan S, Guo Z, Yu H, Wu D. A novel camptothecin derivative, ZBH-01, exhibits superior antitumor efficacy than irinotecan by regulating the cell cycle. J Transl Med 2023; 21:422. [PMID: 37386467 PMCID: PMC10308760 DOI: 10.1186/s12967-023-04196-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 05/14/2023] [Indexed: 07/01/2023] Open
Abstract
BACKGROUND Irinotecan (CPT-11) is a classic chemotherapeutic agent that plays an important role in the clinical treatment of metastatic colon cancer and other malignant tumors. We previously designed a series of novel irinotecan derivatives. In this study, we select one representative, ZBH-01, to investigate its sophisticated antitumor mechanism in colon tumor cells. METHODS The cytotoxic activity of ZBH-01 on colon cancer cells was evaluate by MTT or Cell Counting Kit-8 (CCK8) assay, 3D and xenograft model. The inhibitory effect of ZBH-01 on TOP1 was detected by DNA relaxation assay and Immuno Complex of Ezyme (ICE) bioassay. The molecular mechanism of ZBH-01 was explored by Next-Generation Sequencing (NGS), bioinformatics analyses, flow cytometry, qRT-PCR, and western blot etc. RESULTS: ZBH-01 can induce obvious DNA damage and has superior antitumor activity against colon cancer cells compared to CPT-11 and SN38 (7-Ethyl-10-hydroxy camptothecin, the in vivo active form of CPT-11) both in vivo and in vitro. Its inhibitory effect on topoisomerase I (TOP1) was also comparable with these two control drugs. There are a much larger number of 842 downregulated and 927 upregulated mRNAs in ZBH-01 treatment group than that in the controls. The most significantly enriched KEGG pathways for these dysregulated mRNAs were DNA replication, the p53 signaling pathway, and the cell cycle. After constructing a protein-protein interaction (PPI) network and screening out a prominent cluster, 14 involved in the cell cycle process was identified. Consistently, ZBH-01 induced G0/G1 phase arrest in colon cancer cells, while CPT-11/SN38 caused S phase arrest. The initiation of apoptosis by ZBH-01 was also superior to CPT-11/SN38, followed by the increased expression of Bax, active caspase 3, and cleaved-PARP, and decreased expression of Bcl-2. Additionally, CCNA2 (cyclin A2), CDK2 (cyclin-dependent kinase 2), and MYBL2 (MYB proto-oncogene like 2) might be involved in the G0/G1 cell cycle arrest induced by ZBH-01. CONCLUSIONS ZBH-01 can be an antitumor candidate drug for preclinical study in the future.
Collapse
Affiliation(s)
- Yongqi Li
- Department of Cancer Centre, The First Hospital of Jilin University, Changchun, 130021, China
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, 130061, China
| | - Dawei Zhao
- Department of Breast Tumor, Jilin Cancer Hospital, Changchun, 130012, China
| | - Wenqiu Zhang
- Department of Cancer Centre, The First Hospital of Jilin University, Changchun, 130021, China
| | - Miaomiao Yang
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, 130061, China
| | - Zhihui Wu
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, 130061, China
| | - Weiguo Shi
- Institute of Pharmacology and Toxicology Academy of Military Medical Sciences, Beijing, 100850, China
| | - Shijie Lan
- Department of Cancer Centre, The First Hospital of Jilin University, Changchun, 130021, China
| | - Zhen Guo
- Department of Cancer Centre, The First Hospital of Jilin University, Changchun, 130021, China
| | - Hong Yu
- Cell Biology Laboratory, Jilin Province Institute of Cancer Prevention and Treatment, Jilin Cancer Hospital, Changchun, 130012, China.
| | - Di Wu
- Department of Cancer Centre, The First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
6
|
Dai Y, Qian M, Li Y. Structural Modification Endows Small-Molecular SN38 Derivatives with Multifaceted Functions. Molecules 2023; 28:4931. [PMID: 37446591 DOI: 10.3390/molecules28134931] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
As a camptothecin derivative, 7-ethyl-10-hydroxycamptothecin (SN38) combats cancer by inhibiting topoisomerase I. SN38 is one of the most active compounds among camptothecin derivatives. In addition, SN38 is also a theranostic reagent due to its intrinsic fluorescence. However, the poor water solubility, high systemic toxicity and limited action against drug resistance and metastasis of tumor cells of SN38 indicates that there is great space for the structural modification of SN38. From the perspective of chemical modification, this paper summarizes the progress of SN38 in improving solubility, increasing activity, reducing toxicity and possessing multifunction and analyzes the strategies of structure modification to provide a reference for drug development based on SN38.
Collapse
Affiliation(s)
- Yi Dai
- College of Pharmaceutical Science, Anhui Xinhua University, Hefei 230088, China
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Meng Qian
- College of Pharmaceutical Science, Anhui Xinhua University, Hefei 230088, China
| | - Yan Li
- College of Pharmaceutical Science, Anhui Xinhua University, Hefei 230088, China
| |
Collapse
|
7
|
Dai Y, Zhang Y, Ye T, Chen Y. Synthesis and Antitumor Evaluation of Biotin-SN38-Valproic Acid Conjugates. Molecules 2023; 28:molecules28093936. [PMID: 37175346 PMCID: PMC10179906 DOI: 10.3390/molecules28093936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Despite the strong anticancer activity of SN38 (7-ethyl-10-hydroxy-camptothecin), the severe side effects and loss of anticancer activity caused by the lack of selectivity to cancer cells and hydrolysis of ring E prevent its clinical application. To address the issue, herein a multifunctional SN38 derivative (compound 9) containing biotin (tumor-targeting group) and valproic acid (histone deacetylase inhibitor, HDACi) was synthesized via click chemistry and evaluated using MTT assay. The in vitro cytotoxicity study showed that compound 9 exhibited superior cytotoxicity than irinotecan against human cervical cancer HeLa cells, albeit it was inferior to SN38. More significantly, compound 9 significantly reduced toxicity in mouse embryonic fibroblast NIH3T3 cells, indicating that compound 9 had the capacity to enhance tumor targeting due to its cell selectivity. Further studies demonstrated that, compared with irinotecan, compound 9 induced similar apoptosis of cancer cells. Consequently, compound 9 can not only improve its tumor-targeting ability mediated by biotin but also exert potent anticancer activity through the effect of SN38 and valproic acid, indicating that the design concept is an effective strategy for the structural modification of SN38.
Collapse
Affiliation(s)
- Yi Dai
- College of Pharmaceutical Science, Anhui Xinhua University, Hefei 230088, China
| | - Yang Zhang
- Department of General Surgery, The First Affiliated Hospital of University of Science and Technology of China, Hefei 230031, China
| | - Tianxiang Ye
- College of Pharmaceutical Science, Anhui Xinhua University, Hefei 230088, China
| | - Yue Chen
- College of Pharmaceutical Science, Anhui Xinhua University, Hefei 230088, China
| |
Collapse
|
8
|
Lv W, Yang K, Yu J, Wu Y, Zhang M, Liu Z, Wang X, Zhou J, Ma H, Yi R, Chu H, Chen J. A generalizable strategy for crosslinkable albumin-based hydrogels and application as potential anti-tumor nanoplatform. J Biomater Appl 2023; 37:1813-1822. [DOI: 10.1177/08853282231166489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Albumin-based hydrogels have emerged as promising nanoparticle systems for the effective delivery of hydrophobic anticancer drugs. Anti-cancer drugs often cause some adverse effects, such as toxicity and rapid clearance by mononuclear phagocytic systems. Herein, a new strategy of synthesizing N-hydroxysuccinimide (NHS)-activated linker to form crosslinkable albumin-based hydrogels (CABH) is reported. The CABH favored physiochemical characteristics improvement of doxorubicin (Dox) and drug release. The CABH was constructed depending on the crosslinking reaction between NHS activated glycerol and albumin. The size of CABH was approximately 200 nm examined by dynamic light scattering (DLS) and transmission electron microscopy (TEM). It was found that the particle size and size distribution of the CABH remained stable in neutral PBS for 1 week. Dox loaded CABH would be controllably released in weak acidic environment verified by in vitro release and in vitro cell imaging. The Dox loaded hydrogel results in significant killing in the case of acidic culture medium. Our work provides a crosslinking method to formulate albumin nanoplatform and improve the size, stability, drug loading capacity and controlled release, which throws light on the potential application in drug delivery.
Collapse
Affiliation(s)
- WanWan Lv
- Hunan University of Science and Technology, Xiangtan, China
| | - Kai Yang
- Hunan University of Science and Technology, Xiangtan, China
| | - Jingwen Yu
- Hunan University of Science and Technology, Xiangtan, China
| | - Yiqing Wu
- Hunan University of Science and Technology, Xiangtan, China
| | - Mengdi Zhang
- Hunan University of Science and Technology, Xiangtan, China
| | - Zichuan Liu
- Hunan University of Science and Technology, Xiangtan, China
| | - Xixuan Wang
- Hunan University of Science and Technology, Xiangtan, China
| | - Jiahui Zhou
- Hunan University of Science and Technology, Xiangtan, China
| | - Haoran Ma
- Hunan University of Science and Technology, Xiangtan, China
| | | | - Hui Chu
- Hunan University of Science and Technology, Xiangtan, China
| | - Jian Chen
- Hunan University of Science and Technology, Xiangtan, China
| |
Collapse
|
9
|
Anti-tumor effects and mechanism of a novel camptothecin derivative YCJ100. Life Sci 2022; 311:121105. [DOI: 10.1016/j.lfs.2022.121105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/08/2022] [Accepted: 10/16/2022] [Indexed: 11/18/2022]
|
10
|
Design, synthesis, and anticancer activities of 8,9-substituted Luotonin A analogs as novel topoisomerase I inhibitors. Med Chem Res 2021. [DOI: 10.1007/s00044-021-02749-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|