1
|
Rubio‐Gozalbo ME, Vos EN, Rivera I, Lai K, Berry GT. Reshaping the Treatment Landscape of a Galactose Metabolism Disorder. J Inherit Metab Dis 2025; 48:e70013. [PMID: 39953772 PMCID: PMC11829187 DOI: 10.1002/jimd.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/28/2025] [Accepted: 02/03/2025] [Indexed: 02/17/2025]
Abstract
The Leloir pathway was elucidated decades ago, unraveling how galactose is metabolized in the body. Different inborn errors of metabolism in this pathway are known, the most frequent and well-studied being Classic Galactosemia (CG) (OMIM 230400) due to pathogenic variants in the GALT gene. Substrate reduction using dietary restriction of galactose is currently the only available treatment option. Although this burdensome diet resolves the life-threatening clinical picture in neonates, patients still face long-term complications, including cognitive and neurological deficits as well as primary ovarian insufficiency. Emerging therapies aim to address these challenges on multiple fronts: (1) restoration of GALT activity with nucleic acid therapies, pharmacological chaperones, or enzyme replacement; (2) influencing the pathological cascade of events to prevent accumulation of metabolites (Galactokinase 1 (GALK1) inhibitors, aldose reductase inhibitors), address myo-inositol deficiency, or alleviate cellular stress responses; (3) substrate reduction with synthetic biotics or galactose uptake inhibitors to eliminate the need for lifelong diet; and (4) novel approaches to mitigate existing symptoms, such as non-invasive brain stimulation and reproductive innovations. Early, personalized intervention remains critical for optimizing patient outcomes. We review the advances in the development of different treatment modalities for CG and reflect on the factors that need to be considered and addressed to reshape the landscape of treatment.
Collapse
Affiliation(s)
- M. Estela Rubio‐Gozalbo
- Department of Pediatrics, MosaKids Children's HospitalMaastricht University Medical CentreMaastrichtthe Netherlands
- European Reference Network for Hereditary Metabolic Disorders (MetabERN) MemberPadovaItaly
- United for Metabolic Diseases (UMD)Amsterdamthe Netherlands
- Department of Clinical GeneticsMaastricht University Medical CentreMaastrichtthe Netherlands
- GROW School for Oncology and Reproduction, Faculty of Health, Medicine and Life SciencesMaastricht UniversityMaastrichtthe Netherlands
| | - E. Naomi Vos
- Department of Pediatrics, MosaKids Children's HospitalMaastricht University Medical CentreMaastrichtthe Netherlands
- European Reference Network for Hereditary Metabolic Disorders (MetabERN) MemberPadovaItaly
- United for Metabolic Diseases (UMD)Amsterdamthe Netherlands
- Department of Clinical GeneticsMaastricht University Medical CentreMaastrichtthe Netherlands
- GROW School for Oncology and Reproduction, Faculty of Health, Medicine and Life SciencesMaastricht UniversityMaastrichtthe Netherlands
| | - Isabel Rivera
- Research Institute for Medicines (iMed.ULisboa), Department of Pharmaceutical Sciences and Medicines, Faculty of PharmacyUniversidade de LisboaLisbonPortugal
| | - Kent Lai
- Division of Medical Genetics, Department of PediatricsUniversity of Utah Spencer Fox Eccles School of MedicineSalt Lake CityUtahUSA
| | - Gerard T. Berry
- Division of Genetics & GenomicsBoston Children's HospitalBostonMassachusettsUSA
- Department of PediatricsHarvard Medical SchoolBostonMassachusettsUSA
- Manton Center for Orphan Disease ResearchBoston Children's HospitalBostonMassachusettsUSA
| |
Collapse
|
2
|
Peralta-Cuevas E, Garcia-Atutxa I, Huerta-Saquero A, Villanueva-Flores F. The Role of Plant Virus-like Particles in Advanced Drug Delivery and Vaccine Development: Structural Attributes and Application Potential. Viruses 2025; 17:148. [PMID: 40006903 PMCID: PMC11861432 DOI: 10.3390/v17020148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 02/27/2025] Open
Abstract
Plant virus-like particles (pVLPs) present distinct research advantages, including cost-effective production and scalability through plant-based systems, making them a promising yet underutilized alternative to traditional VLPs. Human exposure to plant viruses through diet for millions of years supports their biocompatibility and safety, making them suitable for biomedical applications. This review offers a practical guide to selecting pVLPs based on critical design factors. It begins by examining how pVLP size and shape influence cellular interactions, such as uptake, biodistribution, and clearance, key for effective drug delivery and vaccine development. We also explore how surface charge affects VLP-cell interactions, impacting binding and internalization, and discuss the benefits of surface modifications to enhance targeting and stability. Additional considerations include host range and biosafety, ensuring safe, effective pVLP applications in clinical and environmental contexts. The scalability of pVLP production across different expression systems is also reviewed, noting challenges and opportunities in large-scale manufacturing. Concluding with future perspectives, the review highlights the innovation potential of pVLPs in vaccine development, targeted therapies, and diagnostics, positioning them as valuable tools in biotechnology and medicine. This guide provides a foundation for selecting optimal pVLPs across diverse applications.
Collapse
Affiliation(s)
- Esperanza Peralta-Cuevas
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada (CICATA), Unidad Morelos del Instituto Politécnico Nacional (IPN), Boulevard de la Tecnología No. 1036, Xochitepec 62790, Mexico;
| | - Igor Garcia-Atutxa
- Computer Science Department, Universidad Católica de Murcia (UCAM), Av. de los Jerónimos, 135, 30107 Murcia, Spain;
| | - Alejandro Huerta-Saquero
- Departamento de Bionanotecnología, Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México (UNAM), Km. 107 Carretera Tijuana-Ensenada, Ensenada 22860, Mexico;
| | - Francisca Villanueva-Flores
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada (CICATA), Unidad Morelos del Instituto Politécnico Nacional (IPN), Boulevard de la Tecnología No. 1036, Xochitepec 62790, Mexico;
| |
Collapse
|
3
|
Teixeira LF, Prauchner GRK, Gusso D, Wyse ATS. Classical Hereditary galactosemia: findings in patients and animal models. Metab Brain Dis 2024; 39:239-248. [PMID: 37702899 DOI: 10.1007/s11011-023-01281-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/21/2023] [Indexed: 09/14/2023]
Abstract
Classic galactosemia is a rare inborn error of metabolism that affects the metabolism of galactose, a sugar derived from milk and derivates. Classic galactosemia is caused by variants of the GALT gene, which lead to absent or misfolded forms of the ubiquitously present galactose-1-phosphate uridylyltransferase enzyme (GALT) driving galactose metabolites to accumulate, damaging cells from neurons to hepatocytes. The disease has different prevalence around the world due to different allele frequencies among populations and its symptoms range from cognitive and psychomotor impairment to hepatic, ophthalmological, and bone structural damage. The practice of newborn screening still varies among countries, dairy restriction treatment is a consensus despite advances in preclinical treatment strategies. Recent clinical studies in Duarte variant suggest dairy restriction could be reconsidered in these cases. Despite noteworthy advances in the classic galactosemia understanding, preclinical trials are still crucial to fully understand the pathophysiology of the disease and help propose new treatments. This review aims to report a comprehensive analysis of past studies and state of art research on galactosemia screening, its clinical and preclinical trials, and treatments with the goal of shedding light on this complex and multisystemic innate error of the metabolism.
Collapse
Affiliation(s)
- Lucas Ferreira Teixeira
- Laboratory of Neuroprotection and Neurometabolic Diseases, Department of Biochemistry - Wyse's Lab - ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Gustavo R Krupp Prauchner
- Laboratory of Neuroprotection and Neurometabolic Diseases, Department of Biochemistry - Wyse's Lab - ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Darlan Gusso
- Laboratory of Neuroprotection and Neurometabolic Diseases, Department of Biochemistry - Wyse's Lab - ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Angela T S Wyse
- Laboratory of Neuroprotection and Neurometabolic Diseases, Department of Biochemistry - Wyse's Lab - ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil.
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, CEP 90035-003, Brazil.
| |
Collapse
|
4
|
Kaltbeitzel J, Wich PR. Protein-based Nanoparticles: From Drug Delivery to Imaging, Nanocatalysis and Protein Therapy. Angew Chem Int Ed Engl 2023; 62:e202216097. [PMID: 36917017 DOI: 10.1002/anie.202216097] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 03/16/2023]
Abstract
Proteins and enzymes are versatile biomaterials for a wide range of medical applications due to their high specificity for receptors and substrates, high degradability, low toxicity, and overall good biocompatibility. Protein nanoparticles are formed by the arrangement of several native or modified proteins into nanometer-sized assemblies. In this review, we will focus on artificial nanoparticle systems, where proteins are the main structural element and not just an encapsulated payload. While under natural conditions, only certain proteins form defined aggregates and nanoparticles, chemical modifications or a change in the physical environment can further extend the pool of available building blocks. This allows the assembly of many globular proteins and even enzymes. These advances in preparation methods led to the emergence of new generations of nanosystems that extend beyond transport vehicles to diverse applications, from multifunctional drug delivery to imaging, nanocatalysis and protein therapy.
Collapse
Affiliation(s)
- Jonas Kaltbeitzel
- School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Peter R Wich
- School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
5
|
Su Y, Liu B, Huang Z, Teng Z, Yang L, Zhu J, Huo S, Liu A. Virus-like particles nanoreactors: from catalysis towards bio-applications. J Mater Chem B 2023; 11:9084-9098. [PMID: 37697810 DOI: 10.1039/d3tb01112g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Virus-like particles (VLPs) are self-assembled supramolecular structures found in nature, often used for compartmentalization. Exploiting their inherent properties, including precise nanoscale structures, monodispersity, and high stability, these architectures have been widely used as nanocarriers to protect or enrich catalysts, facilitating catalytic reactions and avoiding interference from the bulk solutions. In this review, we summarize the current progress of virus-like particles (VLPs)-based nanoreactors. First, we briefly introduce the physicochemical properties of the most commonly used virus particles to understand their roles in catalytic reactions beyond the confined space. Next, we summarize the self-assembly of nanoreactors forming higher-order hierarchical structures, highlighting the emerging field of nanoreactors as artificial organelles and their potential biomedical applications. Finally, we discuss the current findings and future perspectives of VLPs-based nanoreactors.
Collapse
Affiliation(s)
- Yuqing Su
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Beibei Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Zhenkun Huang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Zihao Teng
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Liulin Yang
- State Key Laboratory of Physical Chemistry of Solid Surface, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Jie Zhu
- National-Local Joint Engineering Research and High-Quality Utilization, Changzhou University, Changzhou 213164, China
| | - Shuaidong Huo
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Aijie Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
6
|
Gama P, Juárez P, Rodríguez-Hernández AG, Vazquez-Duhalt R. Glucose oxidase virus-based nanoreactors for smart breast cancer therapy. Biotechnol J 2023; 18:e2300199. [PMID: 37417791 DOI: 10.1002/biot.202300199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/05/2023] [Indexed: 07/08/2023]
Abstract
BACKGROUND Breast cancer is the most common malignant tumor disease and the leading cause of female mortality. The evolution of nanomaterials science opens the opportunity to improve traditional cancer therapies, enhancing therapy efficiency and reducing side effects. METHODS AND MAJOR RESULTS Herein, protein cages conceived as enzymatic nanoreactors were designed and produced by using virus-like nanoparticles (VLPs) from Brome mosaic virus (BMV) and containing the catalytic activity of glucose oxidase (GOx) enzyme. The GOx enzyme was encapsulated into the BMV capsid (VLP-GOx), and the resulting enzymatic nanoreactors were coated with human serum albumin (VLP-GOx@HSA) for breast tumor cell targeting. The effect of the synthesized GOx nanoreactors on breast tumor cell lines was studied in vitro. Both nanoreactor preparations VLP-GOx and VLP-GOx@HSA showed to be highly cytotoxic for breast tumor cell cultures. Cytotoxicity for human embryonic kidney cells was also found. The monitoring of nanoreactor treatment on triple-negative breast cancer cells showed an evident production of oxygen by the catalase antioxidant enzyme induced by the high production of hydrogen peroxide from GOx activity. CONCLUSIONS AND IMPLICATIONS The nanoreactors containing GOx activity are entirely suitable for cytotoxicity generation in tumor cells. The HSA functionalization of the VLP-GOx nanoreactors, a strategy designed for selective cancer targeting, showed no improvement in the cytotoxic effect. The GOx containing enzymatic nanoreactors seems to be an interesting alternative to improve the current cancer therapy. In vivo studies are ongoing to reinforce the effectiveness of this treatment strategy.
Collapse
Affiliation(s)
- Pedro Gama
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada, Baja California, Mexico
- Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California, Mexico
| | - Patricia Juárez
- Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California, Mexico
| | - Ana G Rodríguez-Hernández
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada, Baja California, Mexico
| | - Rafael Vazquez-Duhalt
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada, Baja California, Mexico
| |
Collapse
|
7
|
Villanueva-Flores F, Pastor AR, Palomares LA, Huerta-Saquero A. A Novel Formulation of Asparaginase Encapsulated into Virus-like Particles of Brome Mosaic Virus: In Vitro and In Vivo Evidence. Pharmaceutics 2023; 15:2260. [PMID: 37765229 PMCID: PMC10535207 DOI: 10.3390/pharmaceutics15092260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/26/2023] [Accepted: 08/07/2023] [Indexed: 09/29/2023] Open
Abstract
The interest in plant-derived virus-like particles (pVLPs) for the design of a new generation of nanocarriers is based on their lack of infection for humans, their immunostimulatory properties to fight cancer cells, and their capability to contain and release cargo molecules. Asparaginase (ASNase) is an FDA-approved drug to treat acute lymphoblastic leukemia (LLA); however, it exhibits high immunogenicity which often leads to discontinuation of treatment. In previous work, we encapsulated ASNase into bacteriophage P22-based VLPs through genetic-directed design to form the ASNase-P22 nanobioreactors. In this work, a commercial ASNase was encapsulated into brome mosaic virus-like particles (BMV-VLPs) to form stable ASNase-BMV nanobioreactors. According to our results, we observed that ASNase-BMV nanobioreactors had similar cytotoxicity against MOLT-4 and Reh cells as the commercial drug. In vivo assays showed a higher specific anti-ASNase IgG response in BALB/c mice immunized with ASNase encapsulated into BMV-VLPs compared with those immunized with free ASNase. Nevertheless, we also detected a high and specific IgG response against BMV capsids on both ASNase-filled capsids (ASNase-BMV) and empty BMV capsids. Despite the fact that our in vivo studies showed that the BMV-VLPs stimulate the immune response either empty or with cargo proteins, the specific cytotoxicity against leukemic cells allows us to propose ASNase-BMV as a potential novel formulation for LLA treatment where in vitro and in vivo evidence of functionality is provided.
Collapse
Affiliation(s)
- Francisca Villanueva-Flores
- Departamento de Bionanotecnología, Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km. 107 Carretera Tijuana-Ensenada, Ensenada 22860, BC, Mexico
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Ave. Universidad 2001, Col. Chamilpa, Cuernavaca 62210, MO, Mexico
- Tecnológico de Monterrey, Escuela Nacional de Medicina y Ciencias de la Salud, Avenida Heroico Colegio Militar 4700, Nombre de Dios, Chihuahua 31300, CH, Mexico
| | - Ana Ruth Pastor
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Ave. Universidad 2001, Col. Chamilpa, Cuernavaca 62210, MO, Mexico
| | - Laura A Palomares
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Ave. Universidad 2001, Col. Chamilpa, Cuernavaca 62210, MO, Mexico
| | - Alejandro Huerta-Saquero
- Departamento de Bionanotecnología, Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km. 107 Carretera Tijuana-Ensenada, Ensenada 22860, BC, Mexico
| |
Collapse
|
8
|
González-Davis O, Villagrana-Escareño MV, Trujillo MA, Gama P, Chauhan K, Vazquez-Duhalt R. Virus-like nanoparticles as enzyme carriers for Enzyme Replacement Therapy (ERT). Virology 2023; 580:73-87. [PMID: 36791560 DOI: 10.1016/j.virol.2023.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/20/2023] [Accepted: 01/30/2023] [Indexed: 02/09/2023]
Abstract
Enzyme replacement therapy (ERT) has been used to treat a few of the many existing diseases which are originated from the lack of, or low enzymatic activity. Exogenous enzymes are administered to contend with the enzymatic activity deficiency. Enzymatic nanoreactors based on the enzyme encapsulation inside of virus-like particles (VLPs) appear as an interesting alternative for ERT. VLPs are excellent delivery vehicles for therapeutic enzymes as they are biodegradable, uniformly organized, and porous nanostructures that transport and could protect the biocatalyst from the external environment without much affecting the bioactivity. Consequently, significant efforts have been made in the production processes of virus-based enzymatic nanoreactors and their functionalization, which are critically reviewed. The use of virus-based enzymatic nanoreactors for the treatment of lysosomal storage diseases such as Gaucher, Fabry, and Pompe diseases, as well as potential therapies for galactosemia, and Hurler and Hunter syndromes are discussed.
Collapse
Affiliation(s)
- Oscar González-Davis
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 carretera, Tijuana-Ensenada, Baja California, 22860, Mexico
| | - Maria V Villagrana-Escareño
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 carretera, Tijuana-Ensenada, Baja California, 22860, Mexico
| | - Mario A Trujillo
- School of Medicine, Universidad Xochicalco, Ensenada, Baja California, Mexico
| | - Pedro Gama
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 carretera, Tijuana-Ensenada, Baja California, 22860, Mexico
| | - Kanchan Chauhan
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 carretera, Tijuana-Ensenada, Baja California, 22860, Mexico
| | - Rafael Vazquez-Duhalt
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 carretera, Tijuana-Ensenada, Baja California, 22860, Mexico.
| |
Collapse
|
9
|
Chauhan K, Olivares-Medina CN, Villagrana-Escareño MV, Juárez-Moreno K, Cadena-Nava RD, Rodríguez-Hernández AG, Vazquez-Duhalt R. Targeted Enzymatic VLP-Nanoreactors with β-Glucocerebrosidase Activity as Potential Enzyme Replacement Therapy for Gaucher's Disease. ChemMedChem 2022; 17:e202200384. [PMID: 35918294 DOI: 10.1002/cmdc.202200384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Indexed: 01/07/2023]
Abstract
Gaucher disease is a genetic disorder and the most common lysosomal disease caused by the deficiency of enzyme β-glucocerebrosidase (GCase). Although enzyme replacement therapy (ERT) is successfully applied using mannose-exposed conjugated glucocerebrosidase, the lower stability of the enzyme in blood demands periodic intravenous administration that adds to the high cost of treatment. In this work, the enzyme β-glucocerebrosidase was encapsulated inside virus-like nanoparticles (VLPs) from brome mosaic virus (BMV), and their surface was functionalized with mannose groups for targeting to macrophages. The VLP nanoreactors showed significant GCase catalytic activity. Moreover, the Michaelis-Menten constants for the free GCase enzyme (KM =0.29 mM) and the functionalized nanoreactors (KM =0.32 mM) were similar even after chemical modification. Importantly, the stability of enzymes under physiological conditions (pH 7.4, 37 °C) was enhanced by ≈11-fold after encapsulation; this is beneficial for obtaining a higher blood circulation half-life, which may decrease the cost of therapy by reducing the requirement of multiple intravenous injections. Finally, the mannose receptor targeted enzymatic nanoreactors showed enhanced internalization into macrophage cells. Thus, the catalytic activity and cell targeting suggest the potential of these nanoreactors in ERT of Gaucher's disease.
Collapse
Affiliation(s)
- Kanchan Chauhan
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 carretera Tijuana-Ensenada, 22860, Ensenada, Baja California, Mexico
| | - Cindy N Olivares-Medina
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 carretera Tijuana-Ensenada, 22860, Ensenada, Baja California, Mexico
| | - Maria V Villagrana-Escareño
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 carretera Tijuana-Ensenada, 22860, Ensenada, Baja California, Mexico
| | - Karla Juárez-Moreno
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 carretera Tijuana-Ensenada, 22860, Ensenada, Baja California, Mexico
| | - Rubén D Cadena-Nava
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 carretera Tijuana-Ensenada, 22860, Ensenada, Baja California, Mexico
| | - Ana G Rodríguez-Hernández
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 carretera Tijuana-Ensenada, 22860, Ensenada, Baja California, Mexico
| | - Rafael Vazquez-Duhalt
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 carretera Tijuana-Ensenada, 22860, Ensenada, Baja California, Mexico
| |
Collapse
|
10
|
Mejía-Méndez JL, Vazquez-Duhalt R, Hernández LR, Sánchez-Arreola E, Bach H. Virus-like Particles: Fundamentals and Biomedical Applications. Int J Mol Sci 2022; 23:8579. [PMID: 35955711 PMCID: PMC9369363 DOI: 10.3390/ijms23158579] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/25/2022] [Accepted: 07/29/2022] [Indexed: 02/04/2023] Open
Abstract
Nanotechnology is a fast-evolving field focused on fabricating nanoscale objects for industrial, cosmetic, and therapeutic applications. Virus-like particles (VLPs) are self-assembled nanoparticles whose intrinsic properties, such as heterogeneity, and highly ordered structural organization are exploited to prepare vaccines; imaging agents; construct nanobioreactors; cancer treatment approaches; or deliver drugs, genes, and enzymes. However, depending upon the intrinsic features of the native virus from which they are produced, the therapeutic performance of VLPs can vary. This review compiles the recent scientific literature about the fundamentals of VLPs with biomedical applications. We consulted different databases to present a general scenario about viruses and how VLPs are produced in eukaryotic and prokaryotic cell lines to entrap therapeutic cargo. Moreover, the structural classification, morphology, and methods to functionalize the surface of VLPs are discussed. Finally, different characterization techniques required to examine the size, charge, aggregation, and composition of VLPs are described.
Collapse
Affiliation(s)
- Jorge L. Mejía-Méndez
- Departamento de Ciencias Químico Biológicas, Universidad de las Américas Puebla, Santa Catarina Mártir s/n, Cholula 72810, Puebla, Mexico; (J.L.M.-M.); (L.R.H.); (E.S.-A.)
| | - Rafael Vazquez-Duhalt
- Centro de Nanociencias y Nanotecnología UNAM, Km 107 Carretera Tijuana-Ensenada, Ensenada 22860, Baja California, Mexico;
| | - Luis R. Hernández
- Departamento de Ciencias Químico Biológicas, Universidad de las Américas Puebla, Santa Catarina Mártir s/n, Cholula 72810, Puebla, Mexico; (J.L.M.-M.); (L.R.H.); (E.S.-A.)
| | - Eugenio Sánchez-Arreola
- Departamento de Ciencias Químico Biológicas, Universidad de las Américas Puebla, Santa Catarina Mártir s/n, Cholula 72810, Puebla, Mexico; (J.L.M.-M.); (L.R.H.); (E.S.-A.)
| | - Horacio Bach
- Department of Medicine, Division of Infectious Diseases, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| |
Collapse
|
11
|
Paiva TO, Schneider A, Bataille L, Chovin A, Anne A, Michon T, Wege C, Demaille C. Enzymatic activity of individual bioelectrocatalytic viral nanoparticles: dependence of catalysis on the viral scaffold and its length. NANOSCALE 2022; 14:875-889. [PMID: 34985473 DOI: 10.1039/d1nr07445h] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The enzymatic activity of tobacco mosaic virus (TMV) nanorod particles decorated with an integrated electro-catalytic system, comprising the quinoprotein glucose-dehydrogenase (PQQ-GDH) enzyme and ferrocenylated PEG chains as redox mediators, is probed at the individual virion scale by atomic force microscopy-scanning electrochemical atomic force microscopy (AFM-SECM). A marked dependence of the catalytic activity on the particle length is observed. This finding can be explained by electron propagation along the viral backbone, resulting from electron exchange between ferrocene moieties, coupled with enzymatic catalysis. Thus, the use of a simple 1D diffusion/reaction model allows the determination of the kinetic parameters of the virus-supported enzyme. Comparative analysis of the catalytic behavior of the Fc-PEG/PQQ-GDH system assembled on two differing viral scaffolds, TMV (this work) and bacteriophage-fd (previous work), reveals two distinct kinetic effects of scaffolding: An enhancement of catalysis that does not depend on the virus type and a modulation of substrate inhibition that depends on the virus type. AFM-SECM detection of the enzymatic activity of a few tens of PQQ-GDH molecules, decorating a 40 nm-long viral domain, is also demonstrated, a record in terms of the lowest number of enzyme molecules interrogated by an electrochemical imaging technique.
Collapse
Affiliation(s)
- Telmo O Paiva
- Université de Paris, Laboratoire d'Electrochimie Moléculaire, CNRS UMR 7591, F-75013 Paris, France.
| | - Angela Schneider
- University of Stuttgart, Institute of Biomaterials and Biomolecular Systems, Research Unit Molecular and Synthetic Plant Virology, 70569 Stuttgart, Germany.
| | - Laure Bataille
- Université de Bordeaux, Biologie du Fruit et Pathologie, INRA UMR 1332, F-33140 Villenave d'Ornon, France.
| | - Arnaud Chovin
- Université de Paris, Laboratoire d'Electrochimie Moléculaire, CNRS UMR 7591, F-75013 Paris, France.
| | - Agnès Anne
- Université de Paris, Laboratoire d'Electrochimie Moléculaire, CNRS UMR 7591, F-75013 Paris, France.
| | - Thierry Michon
- Université de Bordeaux, Biologie du Fruit et Pathologie, INRA UMR 1332, F-33140 Villenave d'Ornon, France.
| | - Christina Wege
- University of Stuttgart, Institute of Biomaterials and Biomolecular Systems, Research Unit Molecular and Synthetic Plant Virology, 70569 Stuttgart, Germany.
| | - Christophe Demaille
- Université de Paris, Laboratoire d'Electrochimie Moléculaire, CNRS UMR 7591, F-75013 Paris, France.
| |
Collapse
|