1
|
Ding SY, Yang YX, Liu C, Quan XY, Zhao ZH, Jin CH. Synthesis and biological evaluation of sulfonamide derivatives containing imidazole moiety as ALK5 inhibitors. Mol Divers 2025; 29:2143-2156. [PMID: 39212874 DOI: 10.1007/s11030-024-10973-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Four series of sulfonamide derivatives (13a-b, 14a-d, 15a-b, and 16a-d) were synthesized and evaluated for their activin receptor-like kinase 5 (ALK5) inhibitory activities. Of these, compounds 13b (IC50 = 0.130 μM) and 15a (IC50 = 0.130 μM) showed the highest inhibitory activities against ALK5 kinase, with activities similar to the positive control LY-2157299. Notably, we discovered that introduction of sulfonamide group at the 2-position of the central imidazole ring significantly increased ALK5 inhibitory activity. Compounds 13b and 15a did not show toxicity in A549 cells up to the maximum concentration of 50 μM, and effectively inhibited TGF-β1-induced Smad-signaling and cell motility in A549 cells. The results indicate that compounds 13b and 15a are worth of further development as anticancer agents.
Collapse
Affiliation(s)
- Shu-Yan Ding
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Yu-Xuan Yang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Chuang Liu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Xu-Yin Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Zi-Han Zhao
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Cheng-Hua Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China.
| |
Collapse
|
2
|
Li WX, Lu YF, Wang F, Ai B, Jin SB, Li S, Xu GH, Jin CH. Application of 18β-glycyrrhetinic acid in the structural modification of natural products: a review. Mol Divers 2025; 29:739-781. [PMID: 38683490 DOI: 10.1007/s11030-024-10864-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 03/26/2024] [Indexed: 05/01/2024]
Abstract
18β-Glycyrrhetinic acid (GA) is an oleane-type pentacyclic triterpene saponin obtained from glycyrrhizic acid by removing 2 glucuronic acid groups. GA and its analogues are active substances of glycyrrhiza aicd, with similar structure and important pharmacological effects such as anti-inflammatory, anti-diabetes, anti-tumor and anti-fibrosis. Although GA combined compounds are in the clinical trial stages, its application potential is severely restricted by its low bioavailability, water solubility and membrane permeability. In this article, synthetic methods and structure-activity relationships (SARs) of GA derivatives from 2018 to present are reviewed based on pharmacological activity. It is hoped that this review can provide reference for the future development of potential GA preclinical candidate compounds, and furnish ideas for the development of pentacyclic triterpenoid lead compounds.
Collapse
Affiliation(s)
- Wan-Xin Li
- Key Laboratory of Natural Medicines of the Changbai Mountain Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Ye-Fang Lu
- Interdisciplinary Program of Biological Function Molecules, College of Integration Science, Yanbian University, Yanji, 133002, China
| | - Fei Wang
- Key Laboratory of Natural Medicines of the Changbai Mountain Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Bing Ai
- Key Laboratory of Natural Medicines of the Changbai Mountain Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Sheng-Bo Jin
- Interdisciplinary Program of Biological Function Molecules, College of Integration Science, Yanbian University, Yanji, 133002, China
| | - Siqi Li
- Key Laboratory of Natural Medicines of the Changbai Mountain Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China.
| | - Guang-Hua Xu
- Key Laboratory of Natural Medicines of the Changbai Mountain Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China.
| | - Cheng-Hua Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China.
- Interdisciplinary Program of Biological Function Molecules, College of Integration Science, Yanbian University, Yanji, 133002, China.
| |
Collapse
|
3
|
Han LY, Sun JX, Liu C, Ai B, Piao MG, Zhang C, Quan JS, Jin CH. Synthesis and antimicrobial activity evaluation of pyrazole derivatives containing imidazothiadiazole moiety. Future Med Chem 2025; 17:157-170. [PMID: 39723690 PMCID: PMC11749441 DOI: 10.1080/17568919.2024.2444868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 12/11/2024] [Indexed: 12/28/2024] Open
Abstract
AIM The purpose of this work was to investigate the antimicrobial activity of pyrazole derivatives (21a - i and 23a - o) synthesized. MATERIALS & METHODS The pyrazole derivatives were synthesized, molecular docked and tested for their antimicrobial activity, cytotoxicity, and hemolysis rate. RESULTS Most of the target compounds showed high selective inhibitory activity against multi-drug resistance compared with other strains. Of these, compounds 21c (MIC = 0.25 µg/mL) and 23 h (MIC = 0.25 µg/mL) showed the strongest antibacterial activity, which was 4-flods than that of the positive control compound gatifloxacin (MIC = 1 µg/mL). Furthermore, compound 23 h showed no cytotoxicity to human LO2 cells, and did not show hemolysis even at ultra-high concentration. CONCLUSION These results prompted that these compounds are valuable for further development as antimicrobial agents.
Collapse
Affiliation(s)
- Lan-Ying Han
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, China
| | - Jing-Xin Sun
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, China
| | - Chuang Liu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, China
| | - Bing Ai
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, China
| | - Ming-Guan Piao
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, China
| | - Changhao Zhang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, China
| | - Ji-Shan Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, China
| | - Cheng-Hua Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, China
| |
Collapse
|
4
|
Meng YQ, Cui X, Li S, Jin CH. Application of Compounds with Anti-Cardiac Fibrosis Activity: A Review. Chem Biodivers 2024; 21:e202401078. [PMID: 39223082 DOI: 10.1002/cbdv.202401078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 09/04/2024]
Abstract
Coronary heart disease, hypertension, myocarditis, and valvular disease cause myocardial fibrosis, leading to heart enlargement, heart failure, heart rate failure, arrhythmia, and premature ventricular beat, even defibrillation can increase the risk of sudden death. Although cardiac fibrosis is common and widespread, there are still no effective drugs to provide adequate clinical intervention for cardiac fibrosis. In this review article, we classify the compounds for treating cardiac fibrosis into natural products, synthetic compounds, and patent drugs according to their sources. Additionally, the structures, activities and signaling pathways of these compounds are discussed. This review provides insight and could provide a reference for the design of new anti-cardiac fibrosis compounds and the new use of older drugs.
Collapse
Affiliation(s)
- Yu-Qing Meng
- Key Laboratory of Natural Resources of Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Xun Cui
- Department of Physiology, School of Medicinal Sciences, Yanbian University, Yanji, Jilin, 133002, China
| | - Siqi Li
- Key Laboratory of Natural Resources of Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Cheng-Hua Jin
- Key Laboratory of Natural Resources of Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| |
Collapse
|
5
|
Yang YX, Guo J, Liu C, Nan JX, Wu YL, Jin CH. Synthesis of amide derivatives containing the imidazole moiety and evaluation of their anti-cardiac fibrosis activity. Arch Pharm (Weinheim) 2024; 357:e2400131. [PMID: 38678538 DOI: 10.1002/ardp.202400131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/25/2024] [Accepted: 04/03/2024] [Indexed: 05/01/2024]
Abstract
Three series of N-{[4-([1,2,4]triazolo[1,5-α]pyridin-6-yl)-5-(6-methylpyridin-2-yl)-1H-imidazol-2-yl]methyl}acetamides (14a-d, 15a-n, and 16a-f) were synthesized and evaluated for activin receptor-like kinase 5 (ALK5) inhibitory activities in an enzymatic assay. The target compounds showed high ALK5 inhibitory activity and selectivity. The half maximal inhibitory concentration (IC50) for phosphorylation of ALK5 of 16f (9.1 nM), the most potent compound, was 2.7 times that of the clinical candidate EW-7197 (vactosertib) and 14 times that of the clinical candidate LY-2157299. The selectivity index of 16f against p38α mitogen-activated protein kinase was >109, which was much higher than that of positive controls (EW-7197: >41, and LY-2157299: 4). Furthermore, a molecular docking study provided the interaction modes between the target compounds and ALK5. Compounds 14c, 14d, and 16f effectively inhibited the protein expression of α-smooth muscle actin (α-SMA), collagen I, and tissue inhibitor of metalloproteinase 1 (TIMP-1)/matrix metalloproteinase 13 (MMP-13) in transforming growth factor-β-induced human umbilical vein endothelial cells. Compounds 14c and 16f showed especially high activity at low concentrations, which suggests that these compounds could inhibit myocardial cell fibrosis. Compounds 14c, 14d, and 16f are potential preclinical candidates for the treatment of cardiac fibrosis.
Collapse
Affiliation(s)
- Yu-Xuan Yang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, China
| | - Jia Guo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, China
| | - Chuang Liu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, China
| | - Ji-Xing Nan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, China
- Interdisciplinary Program of Biological Function Molecules, College of Integration Science, Yanbian University, Yanji, China
| | - Yan-Ling Wu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, China
- Interdisciplinary Program of Biological Function Molecules, College of Integration Science, Yanbian University, Yanji, China
| | - Cheng-Hua Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, China
- Interdisciplinary Program of Biological Function Molecules, College of Integration Science, Yanbian University, Yanji, China
| |
Collapse
|
6
|
Meng YQ, Ren J, Sun JX, Guo FY, Min JZ, Nan JX, Quan JS, Lian LH, Jin CH. Synthesis and anti-liver fibrosis activity of imidazole and thiazole compounds containing amino acids. Eur J Med Chem 2024; 269:116311. [PMID: 38508118 DOI: 10.1016/j.ejmech.2024.116311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/27/2024] [Accepted: 03/06/2024] [Indexed: 03/22/2024]
Abstract
Four series of imidazoles (15a-g, 20c, and 20d) and thiazoles (18a-g, 22a, and 22b) possessing various amino acids were synthesized and evaluated for activin receptor-like kinase 5 (ALK5) inhibitory activities in an enzymatic assay. Among them, compounds 15g and 18c showed the highest inhibitory activity against ALK5, with IC50 values of 0.017 and 0.025 μM, respectively. Compounds 15g and 18c efficiently inhibited extracellular matrix (ECM) deposition in TGF-β-induced hepatic stellate cells (HSCs), and eventually suppressed HSC activation. Moreover, compound 15g showed a good pharmacokinetic (PK) profile with a favorable half-life (t1/2 = 9.14 h). The results indicated that these compounds exhibited activity targeting ALK5 and may have potential in the treatment of liver fibrosis; thus they are worthy of further study.
Collapse
Affiliation(s)
- Yu-Qing Meng
- Interdisciplinary Program of Biological Function Molecules, College of Integration Science, Yanbian University, Yanji, 133002, China
| | - Jie Ren
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Jing-Xin Sun
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Fang-Yan Guo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Jun-Zhe Min
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Ji-Xing Nan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China; Interdisciplinary Program of Biological Function Molecules, College of Integration Science, Yanbian University, Yanji, 133002, China
| | - Ji-Shan Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China; Interdisciplinary Program of Biological Function Molecules, College of Integration Science, Yanbian University, Yanji, 133002, China.
| | - Li-Hua Lian
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China; Interdisciplinary Program of Biological Function Molecules, College of Integration Science, Yanbian University, Yanji, 133002, China.
| | - Cheng-Hua Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China; Interdisciplinary Program of Biological Function Molecules, College of Integration Science, Yanbian University, Yanji, 133002, China.
| |
Collapse
|
7
|
Quan YS, Li X, Pang L, Deng H, Chen F, Joon Lee J, Quan ZS, Liu P, Guo HY, Shen QK. Panaxadiol carbamate derivatives: Synthesis and biological evaluation as potential multifunctional anti-Alzheimer agents. Bioorg Chem 2024; 143:106977. [PMID: 38064805 DOI: 10.1016/j.bioorg.2023.106977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 11/08/2023] [Accepted: 11/15/2023] [Indexed: 01/24/2024]
Abstract
It is reported that panaxadiol has neuroprotective effects. Previous studies have found that compound with carbamate structure introduced at the 3-OH position of 20 (R) -panaxadiol showed the most effective neuroprotective activity with an EC50 of 13.17 μM. Therefore, we designed and synthesized a series of ginseng diol carbamate derivatives with ginseng diol as the lead compound, and tested their anti-AD activity. It was found that the protective effect of compound Q4 on adrenal pheochromocytoma was 80.6 ± 10.85 % (15 μM), and the EC50 was 4.32 μM. According to the ELISA results, Q4 reduced the expression of Aβ25-35 by decreasing β-secretase production. Molecular docking studies revealed that the binding affinity of Q4 to β-secretase was -49.67 kcal/mol, indicating a strong binding affinity of Q4 to β-secretase. Western blotting showed that compound Q4 decreased IL-1β levels, which may contribute to its anti-inflammatory effect. Furthermore, compound Q4 exhibits anti-AD activities by reducing abnormal phosphorylation of tau protein and activation of the mitogen activated protein kinase pathway. The learning and memory deficits in mice treated with Q4in vivo were significantly alleviated. Therefore, Q4 may be a promising multifunctional drug for the treatment of AD, providing a new way for anti-AD drugs.
Collapse
Affiliation(s)
- Yin-Sheng Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin 133002, China
| | - Xiaoting Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin 133002, China
| | - Lei Pang
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, Sichuan, China
| | - Hao Deng
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin 133002, China
| | - Fener Chen
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Jung Joon Lee
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin 133002, China
| | - Zhe-Shan Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin 133002, China
| | - Peng Liu
- Department of Pharmacology, Life Science and Biopharmaceutics School, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Hong-Yan Guo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin 133002, China.
| | - Qing-Kun Shen
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin 133002, China.
| |
Collapse
|
8
|
Xu WB, Li S, Zheng CJ, Yang YX, Zhang C, Jin CH. Synthesis and Evaluation of Imidazole Derivatives Bearing Imidazo[2,1-b] [1,3,4]thiadiazole Moiety as Antibacterial Agents. Med Chem 2024; 20:40-51. [PMID: 37767798 DOI: 10.2174/0115734064248204230919074743] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 06/19/2023] [Accepted: 07/27/2023] [Indexed: 09/29/2023]
Abstract
BACKGROUND Drug-resistant infections kill hundreds of thousands of people globally every year. In previous work, we found that tri-methoxy- and pyridine-substituted imidazoles show strong antibacterial activities. OBJECTIVE The aim of this work was to investigate the antibacterial activities and bacterial resistances of imidazoles bearing an aromatic heterocyclic, alkoxy, or polycyclic moiety on the central ring. METHODS Three series of 2-cyclopropyl-5-(5-(6-methylpyridin-2-yl)-2-substituted-1H-imidazol-4- yl)-6-phenylimidazo[2,1-b][1,3,4]thiadiazoles (13a-e, 14a-d, and 15a-f) were synthesized and their antibacterial activity was evaluated. The structures were confirmed by their 1H NMR, 13C NMR, and HRMS spectra. All the synthesized compounds were screened against Gram-positive, Gramnegative, and multidrug-resistant bacterial strains. RESULTS More than half of the compounds showed moderate or strong antibacterial activity. Among them, compound 13e (MICs = 1-4 μg/mL) showed the strongest activity against Gram-positive and drug-resistant bacteria as well as high selectivity against Gram-negative bacteria. Furthermore, it showed no cytotoxicity against HepG2 cells, even at 100 μM, and no hemolysis at 20 μM. CONCLUSION These results indicate that compound 13e is excellent candicate for further study as a potential antibacterial agent.
Collapse
Affiliation(s)
- Wen-Bo Xu
- Interdisciplinary Program of Biological Function Molecules, College of Integration Science, Yanbian University, Yanji 133002, P.R. China
| | - Siqi Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, P.R. China
| | - Chang-Ji Zheng
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, P.R. China
| | - Yu-Xuan Yang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, P.R. China
| | - Changhao Zhang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, P.R. China
| | - Cheng-Hua Jin
- Interdisciplinary Program of Biological Function Molecules, College of Integration Science, Yanbian University, Yanji 133002, P.R. China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, P.R. China
| |
Collapse
|
9
|
Liu C, Li S, Zhang C, Jin CH. Recent Advances in Research on Active Compounds Against Hepatic Fibrosis. Curr Med Chem 2024; 31:2571-2628. [PMID: 37497688 DOI: 10.2174/0929867331666230727102016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/14/2023] [Accepted: 06/26/2023] [Indexed: 07/28/2023]
Abstract
BACKGROUND Almost all chronic liver diseases cause fibrosis, which can lead to cirrhosis and eventually liver cancer. Liver fibrosis is now considered to be a reversible pathophysiological process and suppression of fibrosis is necessary to prevent liver cancer. At present, no specific drugs have been found that have hepatic anti-fibrotic activity. OBJECTIVE The research progress of anti-hepatic fibrosis compounds in recent ten years was reviewed to provide a reference for the design and development of anti-hepatic fibrosis drugs. METHODS According to the structure of the compounds, they are divided into monocyclic compounds, fused-heterocyclic compounds, and acyclic compounds. RESULTS In this article, the natural products and synthetic compounds with anti-fibrotic activity in recent ten years were reviewed, with emphasis on their pharmacological activity and structure-activity relationship (SAR). CONCLUSION Most of these compounds are natural active products and their derivatives, and there are few researches on synthetic compounds and SAR studies on natural product.
Collapse
Affiliation(s)
- Chuang Liu
- Key Laboratory of Natural Resources of Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Siqi Li
- Key Laboratory of Natural Resources of Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Changhao Zhang
- Key Laboratory of Natural Resources of Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Cheng-Hua Jin
- Key Laboratory of Natural Resources of Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
- Interdisciplinary of Biological Functional Molecules, College of Integration Science, Yanbian University, Yanji, Jilin, 133002, China
| |
Collapse
|
10
|
Huang X, Liu Z, Quan ZS, Guo HY, Shen QK. Synthesis and structure-activity relationship studies of fusidic acid derivatives as anti-inflammatory agents for acute lung injury. Bioorg Chem 2023; 141:106885. [PMID: 37804700 DOI: 10.1016/j.bioorg.2023.106885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/13/2023] [Accepted: 09/24/2023] [Indexed: 10/09/2023]
Abstract
Acute lung injury (ALI) are severe forms of diffuse lung disease that impose a substantial health burden all over the world. In the United States, approximately 190,000 cases per year of ALI each year, with an associated 74,500 deaths per year. Anti-inflammatory therapy has become a reasonable approach for the treatment of patients with ALI. In this study, fusidic acid derivatives were used to design new anti-inflammatory compounds with high pharmacological activity and low toxicity. A total of 30 new fusidic acid derivatives were discovered, synthesized, and screened for their anti-inflammatory activity against lipopolysaccharide (LPS)-treated RAW264.7 cells. Of them, b2 was found to be the most active, with a higher efficiency compared with fusidic acid and celecoxib in 10 μM. In vitro, we further measured b2 inhibited inflammatory factor NO (IC50 = 5.382 ± 0.655 μM), IL-6 (IC50 = 7.767 ± 0.871 μM), and TNF-α (IC50 = 7.089 ± 0.775 μM) and b2 inhibited inflammatory cytokines COX-2 and iNOS, ROS production, NF-κB/MAPK and Bax/Bcl-2 signaling pathway pathway. In vivo,b2 attenuated ALI pathological changes and inhibited inflammatory cytokines COX-2 and iNOS in lung tissue and NF-κB/MAPK and Bax/Bcl-2 signaling pathway. In conclusion, b2 may be a promising anti-inflammatory lead compound.
Collapse
Affiliation(s)
- Xing Huang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin 133002, China
| | - Zheng Liu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin 133002, China
| | - Zhe-Shan Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin 133002, China.
| | - Hong-Yan Guo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin 133002, China.
| | - Qing-Kun Shen
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin 133002, China.
| |
Collapse
|
11
|
Shang FF, Lu Q, Lin T, Pu M, Xiao R, Liu W, Deng H, Guo H, Quan ZS, Ding C, Shen QK. Discovery of Triazolyl Derivatives of Cucurbitacin B Targeting IGF2BP1 against Non-Small Cell Lung Cancer. J Med Chem 2023; 66:12931-12949. [PMID: 37681508 DOI: 10.1021/acs.jmedchem.3c00872] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Cucurbitacin B (CuB) is a potent but toxic anticancer natural product. Herein, we designed and synthesized 2-OH- and 16-OH-modified CuB derivatives to improve their antitumor efficacy and reduce toxicity. Among them, derivative A11 had the most potent antiproliferative activity against A549 lung cancer cells (IC50 = 0.009 μM) and was approximately 10-fold more potent than CuB, while the cytotoxicity of A11 toward normal L02 cells was about 10-fold less potent, indicating a much wider therapeutic window than CuB. Derivative A11 directly binds to the insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) protein with a KD value of 2.88 nM, which is about 23-fold more potent than CuB, leading to the decreased expression of downstream apoptosis- and cell cycle-related proteins. More importantly, A11 exhibited much more potent anticancer efficacy in an A549 xenograft mouse model with a TGI rate of 80% and a superior in vivo safety profile than that of CuB.
Collapse
Affiliation(s)
- Fan-Fan Shang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qing Lu
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tailiang Lin
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Miaoxia Pu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Integration Science, Yanbian University, Yanji 133002, China
| | - Ruoxuan Xiao
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wanmei Liu
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hao Deng
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Hongyan Guo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Zhe-Shan Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Chunyong Ding
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qing-Kun Shen
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China
| |
Collapse
|
12
|
Osman EO, Attia H, Samir R, Mahmoud Z. Design, Synthesis, and Antibacterial Activity of a New Series of Ciprofloxacin-Thiadiazole Hybrid. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
13
|
Štěpánek O, Čmoková A, Procházková E, Grobárová V, Černý J, Sklapničková M, Zíková AP, Kolařík M, Baszczynski O. Piperazine‐modified ketoconazole derivatives show increased activity against fungal and trypanosomatid pathogens. ChemMedChem 2022; 17:e202200385. [DOI: 10.1002/cmdc.202200385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/14/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Ondřej Štěpánek
- Charles University: Univerzita Karlova Department of Organic Chemistry CZECH REPUBLIC
| | - Adéla Čmoková
- Institute of Microbiology Mikrobiologický ústav AV ČR, v.v.i. CZECH REPUBLIC
| | - Eliška Procházková
- IOCB CAS: Ustav organicke chemie a biochemie Akademie ved Ceske republiky NMR department CZECH REPUBLIC
| | - Valéria Grobárová
- Charles University: Univerzita Karlova Department of Cell Biology CZECH REPUBLIC
| | - Jan Černý
- Charles University: Univerzita Karlova Department of Cell Biology CZECH REPUBLIC
| | - Martina Sklapničková
- Institute of Parasitology Czech Academy of Sciences: Biologicke centrum Akademie ved Ceske republiky Parazitologicky ustav Parazitologicky ustav CZECH REPUBLIC
| | - Alena Panicucci Zíková
- Institute of Parasitology Czech Academy of Sciences: Biologicke centrum Akademie ved Ceske republiky Parazitologicky ustav Parazitologicky ustav CZECH REPUBLIC
| | - Miroslav Kolařík
- Institute of Microbiology Czech Academy of Sciences: Mikrobiologicky ustav Akademie ved Ceske republiky Mikrobiologicky ustav CZECH REPUBLIC
| | - Ondrej Baszczynski
- Univerzita Karlova Prirodovedecka fakulta Department of Organic Chemistry Hlavova 8/2030 12800 Prague CZECH REPUBLIC
| |
Collapse
|
14
|
Huang X, Zhang CH, Deng H, Wu D, Guo HY, Lee JJ, Chen FE, Shen QK, Jin LL, Quan ZS. Synthesis and evaluation of anticancer activity of quillaic acid derivatives: A cell cycle arrest and apoptosis inducer through NF-κB and MAPK pathways. Front Chem 2022; 10:951713. [PMID: 36157038 PMCID: PMC9490060 DOI: 10.3389/fchem.2022.951713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/16/2022] [Indexed: 12/24/2022] Open
Abstract
A series of quillaic acid derivatives with different substituents on the 28-carboxyl group were designed and synthesized. Five human cancer cell lines (HCT116, BEL7402, HepG2, SW620, and MCF-7) were evaluated for their antitumor activity in vitro. Some of the tested derivatives showed improved antiproliferative activity compared to the lead compound, quillaic acid. Among them, compound E (IC50 = 2.46 ± 0.44 μM) showed the strongest antiproliferative activity against HCT116 cells; compared with quillaic acid (IC50 > 10 μM), its efficacy against HCT116 cancer cells was approximately 4-fold higher than that of quillaic acid. Compound E also induces cell cycle arrest and apoptosis by modulating NF-κB and MAPK pathways. Therefore, the development of compound E is certainly valuable for anti-tumor applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Li-Li Jin
- *Correspondence: Li-Li Jin, ; Zhe-Shan Quan,
| | | |
Collapse
|
15
|
Hussein BRM, Moustafa AH. Utility of arylglyoxal hydrates in synthesis of 4-aroyl-[1,3,5]triazino[1,2-a]benzimidazol-2(1H)-imines and 5-aryl-2-phenyl-4H-imidazol-4-imines. Mol Divers 2022; 26:3185-3191. [PMID: 35064443 DOI: 10.1007/s11030-022-10379-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/04/2022] [Indexed: 11/28/2022]
Abstract
Nucleophilic substitution reaction for arylglyoxal hydrates (AGs-hydrate) was studied via their reaction with some mono- and multi-nucleophilic reagents in the presence of sodium ethoxide as basic catalyst. Thus, reaction of phenylglyoxal hydrate (1a) with hydrogen sulfide and/or ammonium acetate afforded the corresponding 2-hydroxy-2-mercapto-1-phenylethanone (2) and 2-oxo-2-phenylethanimidamide (3), respectively. Heterocyclization reaction of AGs-hydrate 1a-f with 1-(1H-benzimidazol-2-yl)guanidine (4) gave 4-aroyl-[1,3,5]triazino[1,2-a]benzimidazol-2(1H)-imines 5a-f. Also, a series of 5-aryl-2-phenyl-4H-imidazol-4-imines 7a-d was synthesized via one-pot multicomponent reaction of AGs-hydrate 1a-d, benzonitrile (6) and ammonium acetate. Imidazole-4-imines 7a-d can be also prepared using other route via multicomponent reaction of AGs-hydrate 1a-d, benzenecarboximidamide acetate (8) and ammonium acetate.
Collapse
Affiliation(s)
- Bahgat R M Hussein
- Department of Chemistry, Faculty of Science, Sohag University, Sohag, 82524, Egypt
| | - Amr H Moustafa
- Department of Chemistry, Faculty of Science, Sohag University, Sohag, 82524, Egypt.
| |
Collapse
|
16
|
Solvent-Free Synthesis, In Vitro and In Silico Studies of Novel Potential 1,3,4-Thiadiazole-Based Molecules against Microbial Pathogens. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27020342. [PMID: 35056655 PMCID: PMC8779762 DOI: 10.3390/molecules27020342] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/18/2021] [Accepted: 12/30/2021] [Indexed: 02/06/2023]
Abstract
A new series of 1,3,4-thiadiazoles was synthesized by the reaction of methyl 2-(4-hydroxy-3-methoxybenzylidene) hydrazine-1-carbodithioate (2) with selected derivatives of hydrazonoyl halide by grinding method at room temperature. The chemical structures of the newly synthesized derivatives were resolved from correct spectral and microanalytical data. Moreover, all synthesized compounds were screened for their antimicrobial activities using Escherichia coli, Pseudomonas aeruginosa, Proteus vulgaris, Bacillus subtilis, Staphylococcus aureus, and Candida albicans. However, compounds 3 and 5 showed significant antimicrobial activity against all tested microorganisms. The other prepared compounds exhibited either only antimicrobial activity against Gram-positive bacteria like compounds 4 and 6, or only antifungal activity like compound 7. A molecular docking study of the compounds was performed against two important microbial enzymes: tyrosyl-tRNA synthetase (TyrRS) and N-myristoyl transferase (Nmt). The tested compounds showed variety in binding poses and interactions. However, compound 3 showed the best interactions in terms of number of hydrogen bonds, and the lowest affinity binding energy (−8.4 and −9.1 kcal/mol, respectively). From the in vitro and in silico studies, compound 3 is a good candidate for the next steps of the drug development process as an antimicrobial drug.
Collapse
|